Formation configuration of unmanned cooperative quadrotors via PID tuning approaches

Document Type : Original Article

Authors

1 Department of Optoelectronics and Control, Military Technical College, Cairo, Egypt.

2 Aircraft Armament Department, Military Technical College, Cairo, Egypt.

10.1088/1757-899X/1172/1/012041

Abstract

Formation configuration is one of the major intrinsic strategies used in cooperative Unmanned Air Vehicles field. In this paper, Backstepping-PID control technique for cooperative quadrotors unmanned aerial vehicles are developed to solve the formation problem. The proposed controller is divided into couple of parts working together. Backstepping controller is used to stabilize the position control as a higher controller. Simultaneously, PID controller receives the desired position to stabilize the attitude control as a lower controller to track the desired planning trajectories. The main contribution of this paper is using Fraction Order Approach, and Local Optimal Approach to refine the PID lower controller gains. The tunning of the PID gains through the proposed PID tuning approaches guarantee the stabilization of the attitude control for all the team members. Simulation results present the success of the proposed PID tuning approaches in solving the formation problem for cooperative unmanned quadrotors tracking a desired path. Moreover, the simulation results present the ability of the proposed approaches to handle disturbance rejection and noise attenuation while preserving the stability of the system.

Volume 19, Issue 19
The 19th International Conference on Aerospace Sciences & Aviation Technology (ASAT-19 2021) 6th-8th April 2021
April 2021
Pages 1-18