Stress analysis of multi-layered composite cylinders subjected to various loadings.

Document Type : Original Article

Authors

1 Rockets Department, Military Technical College, Cairo, Egypt.

2 PhD., Technical Research Centre, Cairo, Egypt.

10.1088/1757-899X/1172/1/012005

Abstract

Composite cylinders are widely used in many applications, common examples for these applications are power drive shafts, chemical storage tanks, rocket motor cases and pressure vessels used in aerospace vehicles. The structure of the composite cylinder can be represented as a cylinder composed of coaxial orthotropic layers. In this paper, an analytical
method is used to calculate stresses, strains and displacements through the wall thickness of multi-layered composite cylinder made of orthotropic material. The method is based on the theory of elasticity of bodies having cylindrical anisotropy. This method permits accurate stress analysis of thin and thick-walled composite cylinders subjected to axial load, torsional load and bending moment. The analytical method is modified to incorporate internal and external pressure
loads beside the prescribed load cases. A numerical example is presented for a composite cylinder subjected to internal pressure load with a tensile axial load. The resulted stresses and strains are used to validate 3-dimensional finite element model. A parametric study has been performed using the analytical method to investigate the influencing parameters on stress distribution within the cylinder thickness and the results are found to be beneficial to look into during the preliminary design phase.

Volume 19, Issue 19
The 19th International Conference on Aerospace Sciences & Aviation Technology (ASAT-19 2021) 6th-8th April 2021
April 2021
Pages 1-20