Vibration analysis of composite wing with geometric and material coupling

Document Type : Original Article

Authors

Department of Aircraft Mechanics, Military Technical College, Egypt.

10.1088/1757-899X/1172/1/012003

Abstract

Composite wing design is complicated but inevitable to enlighten modern airplanes while maintaining the required performance. Using the dynamic transfer method, this paper discusses intensively the dynamic characteristics of a cantilever composite wing with both torsion and bending coupling to represent both material and geometric coupling. The governing differential equations are obtained based upon the principle of Hamilton and are solved analytically using a harmonic oscillation assumption. For this purpose, a MATLAB code is developed and results are validated in comparison with published work. Such a comparison shows a good agreement between both results. Finally, a parametric study is carried out to show the influence of the variation of both geometric coupling and torsion bending coupling rigidity on the free vibration analysis of the composite wing. The study shows the crucial effect of both factors on the dynamic behavior of the composite wing. The current research can be considered as a base for aeroelasticians while designing composite structures.

Volume 19, Issue 19
The 19th International Conference on Aerospace Sciences & Aviation Technology (ASAT-19 2021) 6th-8th April 2021
April 2021
Pages 1-11