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Abstract. Given the importance of interplanetary transfers in celestial mechanics, 
this paper introduces a novel patched-conic method for designing interplanetary 
orbits, providing an optimized framework for mission planning. The transfer 
problem is formulated by identifying key parameters such as launch windows, 
transfer angles, and delta-v requirements, which are optimized using an 
evolutionary algorithm to minimize fuel consumption and ϐlight duration. The 
study employs consecutive solutions to Lambert's problem, focusing on the 
intersection points of conic sections to calculate the total transfer cost. The 
proposed method demonstrates rapid convergence, making it highly suitable for 
computational implementation and practical mission planning. This study 
presented an optimized interplanetary trajectory for a spacecraft traveling from 
Earth to Mars using the Particle Swarm Optimization (PSO) algorithm. The results 
successfully demonstrate the capability of PSO to minimize the total Δv required 
for the mission while ensuring adherence to mission constraints and achieving 
efϐicient ϐlight times. 

1. Introduction  

Interplanetary trajectory design is a cornerstone of space exploration, requiring precise 
modeling and optimization of spacecraft paths. The patched-conic method has emerged as a 
foundational approach in this domain, offering a practical and computationally efϐicient 
approximation of precise orbits. As highlighted by [1], this method divides a spacecraft's 
trajectory into a sequence of two-body problems, simplifying the complexities inherent in multi-
body dynamics while maintaining the accuracy required for mission planning and trajectory 
optimization. 

Traditional transfer techniques, such as Hohmann transfers [2] and bi-elliptic transfers [3], 
prove effective in speciϐic scenarios but often face limitations in efϐiciency and ϐlexibility, 
particularly in complex mission architectures [4]. These methods are less adaptable to multi-
target or long-duration missions, where a higher degree of versatility is essential to meet diverse 
objectives and constraints [5]. The patched-conic method addresses these challenges by 
segmenting the spacecraft's path into interconnected conic sections—each governed by two-body 
dynamics—providing a versatile framework for designing and optimizing interplanetary 
trajectories [6]. Planning an interplanetary mission using the patched-conics method simpliϐies 
the complex task of spacecraft trajectory planning by dividing it into manageable, interconnected 
segments [7]. The ϐirst stage is Interplanetary Exit: The spacecraft begins in a stationary orbit 
around its originating planet (e.g., Earth). A speed increase, typically achieved through a rocket 

https://creativecommons.org/licenses/by/4.0/


ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012019

IOP Publishing
doi:10.1088/1742-6596/3070/1/012019

2

burn, transitions the spacecraft from this stationary orbit into a hyperbolic escape trajectory, 
allowing it to exit the planet's gravitational inϐluence and enter an interplanetary transfer orbit. 
The second stage is Interplanetary Entry: As the spacecraft approaches its destination planet, it 
reduces its speed, again typically through a burn, to transition from a hyperbolic approach 
trajectory into an orbit around the target planet. This process requires the spacecraft to adjust its 
speed appropriately to ensure successful capture into orbit. 

A critical element in trajectory design is solving Lambert's problem, a classical two-point 
boundary value problem (TPBVP) introduced by Johann Heinrich Lambert in the 18th century 
[8]. Lambert's problem focuses on linking two speciϐied positions in space over a given time of 
ϐlight using ballistic, conic arcs. It is crucial for determining the time required for a spacecraft to 
travel between two points along a deϐined trajectory. Lambert's theorem states that the transfer 
time depends solely on the sum of the position vectors, the distance between the points, and the 
semi-major axis of the trajectory. This provides a foundation for calculating the necessary velocity 
changes (delta-v) for transfers, making it a cornerstone of orbital maneuver optimization [9]. 
Building on these principles, the patched-conic method simpliϐies interplanetary trajectory 
design by approximating a spacecraft's path as a sequence of conic sections connected at 
transition points: First Conic: Represents the spacecraft's initial stationary orbit around the 
originating planet. Second Conic: Models the hyperbolic escape trajectory as the spacecraft 
departs the sphere of inϐluence of the originating planet. Third Conic: Describes the heliocentric 
transfer orbit directing the spacecraft toward the target planet. Fourth Conic: Represents the 
approach trajectory as the spacecraft nears the target planet and transitions into its sphere of 
inϐluence. Fifth Conic: Deϐines the ϐinal orbit the spacecraft assumes around the target planet upon 
gravitational capture. This structured segmentation offers a clear and manageable way to model 
spacecraft trajectories, enabling accurate and efϐicient mission planning. It bridges the gap 
between simplistic two-body problems and the complexities of multi-body dynamics while 
allowing the integration of advanced optimization techniques, such as evolutionary algorithms, to 
minimize fuel consumption, delta-v requirements, and travel time. 

This study proposes an enhanced patched-conic method for interplanetary trajectory design, 
integrating Lambert's problem into the framework to optimize trajectory parameters further. By 
addressing the challenges of modern space exploration, the proposed method advances 
adaptability, improves computational efϐiciency, and enhances mission success. 

2. Lambert algorithm for transit orbit 
In interplanetary trajectory design, the transfer orbit typically constitutes the majority of the 

mission duration. To determine this critical segment of the trajectory, the Lambert algorithm is 
employed. This algorithm calculates the transfer orbit using two speciϐied position vectors (the 
departure and arrival positions) and the transfer time between them. The departure position is 
deϐined at the boundary of the sphere of inϐluence of the originating planet, while the arrival 
position is located at the boundary of the sphere of inϐluence of the target planet. As an initial 
approximation, the total mission time estimates the transfer time. However, the precise 
determination of these parameters departure and arrival positions, transfer time, and associated 
orbital characteristics forms the core of the proposed method [1].  

The ability to accurately reϐine these coefϐicients ensures optimal trajectory design, 
minimizing fuel consumption and mission duration while maintaining robust adaptability to 
diverse mission requirements. This proposed approach integrates advanced computational 
techniques with the Lambert algorithm to achieve high-precision solutions for interplanetary 
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transfers.  Lambert’s theorem is a fundamental principle in astrodynamics, used to determine the 
transfer time between two points, P1 and P2, along an orbital path. This is a critical aspect of 
spacecraft mission planning, particularly when transferring from one orbit to another [9]. The 
Lambert problem involves calculating a trajectory that connects two speciϐied position vectors, ࢘ா and࢘ை, in a given time of ϐlight Δt, assuming Keplerian motion. As illustrated in Figure 1 the 
primary body, F, acts as the gravitational center and origin of the reference frame. For 
interplanetary transfers, F typically represents the Sun, while for geocentric motion, it represents 
the Earth. At times t1 and t2 (where t2 > t1), the spacecraft occupies positions ݎா   and ݎை , 
respectively. The transfer time Δt = t2 - t1 represents the duration of the motion between these two 
points. Additionally, the angle θ between ݎா   and ݎைdeϐines the trajectory's direction of motion 
[10]. Kepler's equation describes the relationship between an object's position along its orbit and 
the passage of time. Speciϐically, it helps to determine the difference in eccentric anomalies (ܧଶ  ଵ) over time between two points on an orbit. The equation incorporates the orbit's eccentricityܧ−
e, a factor that characterizes how elliptical the orbit is, and the time difference (ݐଶ −  ଵ) which canݐ
be expressed as ଶܧ:[11] − ଵܧ − ݊݅ݏ)݁ ଶܧ − ݊݅ݏ (ଵܧ = ටఓ௔య ଶݐ) − ଵ)                                                                        (1)ݐ

We can express the equation in different forms:௔యଶ ߙ] − ݊݅ݏ ߙ − ߚ) − ݊݅ݏ [(ߚ = ଶݐ)ߤ√ − ଵ)                                                                                                   (2)ݐ
where α and β are angles described by.ߙ = 2 ଵି݊݅ݏ ൬ට ௦ଶ௔൰ ߚ , = 2 ଵି݊݅ݏ ൬ට௦ି௖ଶ௔ ൰                                                                                                  (3)

Equations (3) deϐine the angles α and β in terms of the semi-major axis (a) and two additional 
parameters. One of these parameters, s is deϐined as half the sum of the distances between Earth 
and another object.ݏ = ாݎ)0.5 − ைݎ + ܿ)                                                                                                                                           (4)

The parameter c represents the distance between two points based on their respective 
distances from a central body (such as Earth and an object) and the angle θ between them. This 
distance is typically calculated using the law of cosines, where θ is the angle formed between the 

Figure 1. Deϐinition of Lambert’s Problem.
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two positions vectors of the points relative to the central body. The relationship can be expressed 
as: ܿ = ටݎாଶ + ைଶݎ + ைݎாݎ2 ݏ݋ܿ  (5)                                                                                                                              ߠ

The fundamental equation relates the transfer time (Δt\Delta tΔt) to the geometry of the 
orbit ݐ߂ = √௔యఓ ቎2ܽ݊݅ݏܿݎඨ௦ି௖ଶ௔ − ݊݅ݏ ට௦ି௖ଶ௔݊݅ݏܿݎ2ܽ ቏                                                                                      (6)                              

Using Lambert's equation, one can solve for the transfer times between orbits, which is 
crucial for planning spacecraft trajectories. The solutions can handle different types of orbits, such 
as elliptical or hyperbolic, depending on the energy involved. To solve Lambert's problem, initial 
conditions must be established by specifying the starting and ending points of the transfer. From 
there, the velocities at these points can be determined, allowing the calculation of the energy 
needed for the spacecraft to follow the planned trajectory [12]. 

enabling versatile applications from debris monitoring to collision risk mitigation in support 
of Space Situational Awareness (SSA) objectives [9] 

3. Radius of the Sphere of In luence 
In celestial mechanics, especially in problems involving close encounters, it is crucial to 

identify regions where one celestial body's gravitational inϐluence dominates over others. This is 
achieved through the concept of the Sphere of Inϐluence (SOI), which delineates the region around 
a celestial body, such as a planet, where its gravitational pull is more signiϐicant than external 
forces, like the Sun's gravity [13]. 

The SOI plays a pivotal role in spacecraft mission planning, serving as a reference for key 
trajectory transitions. For instance: Departure Phase: When leaving the initial planet, a spacecraft 
must increase its velocity to escape the planet’s SOI. Exceeding the escape velocity allows the 
spacecraft to transition from the planet’s gravitational inϐluence into a heliocentric transfer 
trajectory. Gravity-Assist Maneuvers: During a planetary ϐlyby for gravity assist, the SOI marks the 
region where the approaching planet’s gravity becomes dominant. Within this zone, the 
spacecraft can exploit the planet's gravitational ϐield to alter its velocity and trajectory efϐiciently. 
Arrival Phase: As the spacecraft approaches its destination planet, the SOI deϐines the transition 
from the Sun's gravitational dominance to that of the planet. This enables the spacecraft to be 
captured into orbit around the destination planet or to execute a controlled landing. 

Understanding and accurately deϐining the SOI are essential for calculating critical mission 
parameters such as delta-v requirements, transfer trajectories, and orbital insertion strategies. 
This concept ensures precise navigation and enhances mission efϐiciency by leveraging 
gravitational interactions. 

The radius of the Sphere of Inϐluence (SOI) is a key parameter in celestial mechanics, deϐining 
the boundary at which a planet's gravitational pull becomes more signiϐicant than the Sun's 
gravitational inϐluence. This parameter is crucial for planning spacecraft maneuvers, including 
entry into and exit from a planet's gravitational domain [14]. 

The SOI radius,ݎௌைூ, can be calculated using the following equation: ݎௌைூ = ௣ݎ ቀ௠೛ெೞቁమఱ                                                                                                                                             (7) 
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where ݌ݎ is the distance between the planet and the Sun (or the central body around which 
the planet orbits), ݉݌ is the mass of the planet, and Mݏ is the mass of the Sun (or the central body). 

The equation used to calculate the Sphere of Inϐluence (SOI) determines the distance from a 
planet within which its gravitational pull surpasses that of the Sun. Within this radius, a spacecraft 
will primarily experience the planet’s gravity, making it critical for planning interplanetary 
missions. This calculation helps deϐine the region where the planet's gravitational inϐluence is 
dominant, facilitating spacecraft trajectory planning, including escape maneuvers, gravity assists, 
and orbital captures. The SOI equation is essential for guiding spacecraft navigation and ensuring 
precise mission execution in the complex gravitational environment of the solar system. ݎௌைூ = 0.9431ܽ ቀ௠೛ெೞቁమఱ                                                                                                                                    (8) 

where a: semi-major axis of the planet's orbit around the Sun (or the central body), and the 
constant 0.9431 is a coefϐicient that adjusts the formula for the speciϐic context being considered. 

4. Patched Conics Trajectory Overview 

The angular representation in the patched-conics method plays a vital role in optimizing 
spacecraft trajectories. It enables mission planners to focus on the spacecraft's orientation and 
positioning at critical points in its journey, ensuring seamless transitions between different conic 
sections, such as Earth orbit, heliocentric transfer, and Mars orbit. The angular coordinates (ܣߠ, 
 denote the spacecraft's positions at key points in the trajectory relative to a chosen (ܦߠ ,ܥߠ ,ܤߠ
reference direction. These angles are measured counterclockwise from the reference direction as 
positive values and clockwise as negative values. The trajectory involves three key maneuvers, 
facilitating transitions between the spheres of inϐluence (SOI) of Earth, the Sun, and Mars. As 
illustrated in Figure 2 the spacecraft starts from Earth's SOI at point ܣ, transitions to a heliocentric 
orbit, and eventually enters Mars' SOI at point ܥ. The angular positions at these points are critical 
for deϐining and optimizing the interplanetary transfer. These coordinates provide essential 
parameters for calculating transfer time, fuel efϐiciency, and precise orbital maneuvers.  In the ϐirst 
maneuver, the spacecraft departs from a waiting orbit around Earth and reaches the boundary of 
Earth's Sphere of Inϐluence (SOI). Point A represents the spacecraft's initial position within Earth's 
SOI, located at an altitude of 0.1 time Earth's radius and at a speciϐic angle ߠ஺ = గଶ. 
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At this position, the spacecraft moves tangentially to Earth's orbit around the Sun, with the 

angle measured from a reference direction aligned with Earth's velocity vector in its heliocentric 
orbit. After completing this initial maneuver, the spacecraft exits Earth's gravitational inϐluence 
and begins its interplanetary transfer towards Mars at a designated angle of ߠ஻ = −గଶ. In the 
second maneuver, the spacecraft transitions from the edge of Earth's SOI to the boundary of 
Mars's SOI. Point B marks this transition, where the spacecraft leaves Earth's inϐluence and 
follows an interplanetary transfer orbit. As the spacecraft approaches Mars, it begins to enter 
Mars’s gravitational inϐluence. In the third maneuver, the spacecraft moves from the edge of 
Mars's SOI to a waiting orbit around Mars. Point C indicates the spacecraft's entry into Mars's SOI 
at a speciϐied angle of ߠ௖ = గଶ. At this stage, an additional maneuver is required to transition into a 
stable Mars-centric orbit. Finally, Point D represents the spacecraft's position within Mars's SOI 
at an altitude of 0.3 Mars's radius and at a deϐined angle ߠ௖ = ିగଶ , signifying the successful 
completion of the interplanetary mission. 

To accurately account for velocity differences at various stages of the mission, it is essential 
to recognize the shifting reference frames throughout the journey: the velocity at Point A is 
measured relative to Earth, at Point B relative to the Sun, and at Point C relative to Mars. Seven 
critical parameters are considered in this mission: four angular positions (A, B, C, D) and three 
time durations. First time duration: This represents the number of days required for the 
spacecraft to complete the initial maneuver, leaving Earth's gravitational inϐluence and entering 
its interplanetary trajectory. Second time duration: This is the time required for the spacecraft's 
journey through interplanetary space, transitioning from Earth's SOI to Mars's SOI. Third time 
duration: This represents the time needed to execute the ϐinal maneuver, allowing the spacecraft 
to achieve a stable orbit around Mars upon entering its SOI. By carefully tuning these parameters, 
mission planners optimize the mission's overall cost, primarily measured by the total Δv, which 
directly correlates with fuel consumption. The angular positions determine the spacecraft's 
trajectory through space, while the time durations control the timing and speed of the journey. By 
optimizing these variables, mission planners ensure efϐicient fuel utilization, precise trajectory 
execution, and the successful transfer of the spacecraft from Earth to Mars. 

 

Figure 2. Simplified Representation of Free Parameters in Patched Conics Trajectory Analysis. 
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5. Optimizing Orbital Transfers 

In space dynamics, Particle Swarm Optimization (PSO) proves particularly effective for 
solving orbital transfer problems with high numerical precision [15]. Within this context, the 
Sphere of Inϐluence is critical. The SOI deϐines the region around a celestial body, such as a planet, 
where its gravitational inϐluence outweighs other forces, such as the Sun's gravity. The concept of 
is integral to several key mission phases: 

- Spacecraft Departure: The spacecraft must accelerate to escape the planet's SOI and enter 
an interplanetary transfer trajectory. 

- Planetary Approach for Gravity Assist: The spacecraft utilizes the SOI to exploit the planet's 
gravitational ϐield, modifying its trajectory to achieve the desired course. 

- Orbital Capture at the Destination: The SOI signiϐies the transition from a heliocentric orbit 
to the planet’s gravitational domain, enabling the spacecraft to enter and stabilize in orbit around 
the target planet. 

By incorporating PSO, mission planners can optimize critical parameters, such as Δv transfer 
times, and trajectory angles, while ensuring the spacecraft transitions smoothly through different 
spheres of inϐluence [16]. This capability makes PSO a powerful tool in modern astrodynamics. 
The PSO algorithm operates with a user-deϐined number of particles, denoted by "n" Each particle 
represents a unique state among the possible program inputs, corresponding to a vector of seven 
unknown parameters. These parameters are constrained within user-speciϐied upper bound (UB) 
and lower bound (LB) values. The seven unknowns are the parameters described in the previous 
section. Once the values for n, UB, and LB are set, the PSO algorithm randomly generates n 
particles, each represented as a vector of seven unknowns, with values randomly selected within 
the deϐined bounds. The algorithm begins by applying a cost function to each particle, calculating 
a corresponding cost value. Then, the iterative process begins, with the user specifying the 
number of iterations i. During this phase, the algorithm directs the particles toward the local 
minimum while maintaining diversity, allowing each particle to explore new regions and 
potentially discover a minimum close to the global minimum of the cost function. This is achieved 
through a velocity function, which assigns movement values to each particle, determining the 
distance a particle moves from its previous position based on its proximity to potential minima. 
In the ϐirst iteration, the velocity function is initialized with a random value, as outlined in 
Equation 9 [17]. 

1 i(b x ) ( )i i p p i g g g iv v r r b x                                                                                                     (9) 

where xi is the particle's current state, a vector with seven elements), ݒ௜is the velocity vector, 
while bi is the best state that particular particle has found so far, and ܾ௚ is the best state discovered 
among all particles. The term ࣓ refers to the inertia weight, which prevents drastic changes in 
velocity from one iteration to the next. The cognitive Parameter ࣘ࢖ is a user-deϐined value 
between 0 and 1 that inϐluences the particle's velocity based on how close it is to its personal best 
position. Similarly, the social parameter also a user-deϐined value between 0 and 1, determines 
the velocity's dependence on the particle's proximity to the global best position.ݎ௣ , and ݎ௚ are 
random values between 0 and 1 associated with the cognitive and social parameters, respectively, 
introducing variability in how the particle responds to local and global solutions during each 
iteration. 

Equation 9 can be analyzed by breaking it into three terms. The ϐirst term,߱ݒ௜  represents the 
inertia of the velocity, helping to prevent drastic changes in velocity from one iteration to the next, 
thereby maintaining stability. The second term, i(b x )p p ir , reϐlects the particle's tendency to 
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move toward its personal best position; as the particle gets closer to its historical minimum, its 
velocity decreases, making it more likely to remain near that local minimum. The third term, ߶௚ݎ௚(ܾ௚ −  ௜) represents the particle's attraction to the global best position, with the velocityݔ
decreasing as the particle approaches the global minimum, encouraging convergence toward the 
best solution found by all particles. 

The particle is updated (iterated) according to Equation 9. This process is repeated i times, 
as speciϐied by the user [18]. ݔ௜ାଵ = ௜ݔ + ௜ݒ                                                                                                                                               (10) 

In this equation, ݔ௜ାଵrepresents the updated position of the particle. This update process is 
repeated for iii iterations, as speciϐied by the user. With each iteration, the particle moves to a new 
position based on its velocity, allowing it to explore the solution space in search of an optimal 
solution. 

 
6. Numerical simulation 

 
The Particle Swarm Optimization (PSO) algorithm was employed to assess the costs 

associated with implementing a transfer trajectory via the patched conics method, integrating 
Lambert’s function for trajectory calculations. The process began with deϐining the upper bounds 
(UBs) and lower bounds (LBs) for each of the mission's variables. For this analysis, an Earth-to-
Mars interplanetary mission was modeled, leveraging the patched conics technique with 
simpliϐications. The mission adopted Hohmann transfers for all three critical maneuvers 
previously described. The estimated ϐlight times for the maneuvers were determined to be 
approximately 0.49 months for maneuver 1, 8.24 months for maneuver 2, and 0.87 months for 
maneuver 3. 

The corresponding upper and lower bounds for the variables are summarized in Table 1 This 
setup provides the foundation for the PSO algorithm to optimize the trajectory while minimizing 
the associated costs.  Table 1 shows the key parameters for the spacecraft's mission, including the 
four angles (A, B, C, and D) corresponding to critical points along the spacecraft's trajectory. Angle 
A represents where the spacecraft starts its escape maneuver in Earth's waiting orbit. Angle B 
marks the edge of Earth’s Sphere of Inϐluence, where the spacecraft transitions to an 
interplanetary trajectory. Angle C is at the edge of Mars' Sphere of Inϐluence, just before the 
spacecraft enters Mars' gravitational ϐield. Finally, Angle D represents the spacecraft’s position in 
Mars’ waiting orbit, marking the completion of its journey. The table includes the "Number of 
Days" for each phase of the mission: Number of Days 1 is the time it takes to travel from Earth's 
waiting orbit to the edge of the SOI, Number of Days 2 covers the interplanetary journey from 
Earth's SOI to Mars' SOI, and Number of Days 3 is the time it takes to move from SOI to Mars' 
waiting orbit. For the lower bounds, all angles (A, B, C, D) are 0 radians, meaning the spacecraft's 
position starts at a deϐined reference point. The lower bounds for the number of days are 0. For 
the upper bounds, the values of all angles are 2π radians (360 degrees), which represent a 
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complete orbit, allowing ϐlexibility in positioning. The upper limit for the number of days for 
Maneuvers 1 and 3 is 30 days 

7. Results and discussion 

This section presents pivotal data for analyzing and validating the optimized interplanetary 
trajectory. Table 2 shows the results obtained from various attempts to minimize the total cost 
involved in the trajectory studied through the optimization algorithm used. Here, we see different 
values for the total cost, which vary even for the same number of iterations. This is because there 
are minima, and the algorithm identiϐies a local one based on the available time (number of 
iterations) to evaluate the sample space. The table presents the positioning characteristics of each 
of the four points, generally representing one of the algorithm's executions, along with the ϐlight 
time for each arc of the connected conic sections. The sum of these times gives the total ϐlight time. 
Based on the results presented, the most optimized trajectory was found with a cost of Δv = 
5.5037 km/s. This trajectory is characterized by points A, B, C, and D. The angular coordinates of 
these points are provided, representing the direction of Earth's trajectory relative to the Sun, 
within the orbital plane. The position vectors for these points, relative to the respective planets, 
are given in kilometers and describe their precise locations within the trajectory. ⃑ݎ஺,ா௔௥௧� = (−7.04,3.76,0), �஻,ா௔௥௧ݎ⃑ = ஼,ெ௔௥௦ݎ⃑ ,(865.74,13.63,0) = (−497.34,73.76,0), ஽,ெ௔௥௦ݎ⃑ = (2.54,−3.78,0) 

Table 3 breaks down the orbital characteristics of each segment of the optimal trajectory. For 
each segment (AB, BC, CD), the orbital energy, angular momentum, semi-major axis, eccentricity, 
and rotation angle (φ) are provided. These metrics describe the spacecraft’s motion within the 
connected conic sections of the trajectory. Table 4 provides critical details on the velocities at each 
trajectory point (A, B, C, D), including the arrival velocity (Varr), departure velocity (Vᵈᵉᵖ), and the 
required Δv for orbital impulses. These values indicate the spacecraft’s dynamics and propulsion 
needs, offering a detailed picture of the mission’s velocity budget. 
 
 

Table 1. Upper and Lower Bounds for PSO Parameters. 

 Angles A 
(rad) 

Angles B 
(rad) 

Angles C 
(rad) 

Angles D 
(rad) 

No. Days 
(1) 

No. Days 
(2) 

No. Days 
(3) 

Lower 
Bound 0 0 0 0 0 0 0 

Upper 
Bound 2π 2π 2π 2π 30 360 30 
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Table 2. Optimized Trajectory Results from Iterative PSO Calculations. 

Total 
Cost 

(km/s) 

Angle 
A (rad) 

Angle 
B (rad) 

Angle C 
(rad) 

Angle D 
(rad) 

Days 
1 

Days 
2 

Days 
3 Particles Iterations 

7.1000 2.5000 0.9000 4.5000 1.5000 25.0 260.0 22.0 500 200 
6.9500 2.4500 1.0000 4.4000 1.6000 28.0 255.0 23.0 500 200 
6.7000 2.5500 3.0000 6.0000 3.0000 27.0 260.0 22.0 500 200 
6.6000 2.6000 2.9000 5.9000 2.9000 30.0 258.0 24.0 500 200 
6.3000 2.5500 3.1000 5.8000 3.0000 29.0 260.0 23.0 500 200 
6.1000 2.5000 3.0000 5.7000 2.8000 28.0 259.0 22.0 500 200 
5.9000 2.4500 6.0000 5.8000 3.2000 29.0 260.0 22.0 500 200 
5.7000 2.4000 6.1000 5.9000 3.1000 30.0 259.0 23.0 500 200 
5.6000 2.4500 6.2000 6.2000 3.1000 28.0 260.0 24.0 5000 2000 
5.5037 2.4000 6.1000 6.0000 3.0000 27.0 258.0 23.0 5000 2000 

 

Figure 3. Trajectory in Earth’s Reference Frame 

Table 3. Characterization of the Connected Conic Sections for the Refined Trajectory. 

Orbit Energy [km²/s²] 
Angular 

Momentum (h) 
[km²/s] 

Semi-major axis 
(a) [km] 

Eccentricity 
(e) 

Orbit 
Rotation(φ) 

[rad] 

AB 3.7852 (0, 0, 7.6254e04) -5.2284e04 1.1266 5.8569 

BC -351.5653 (0, 0, 4.7969e09) 1.9780e08 0.2068 1.7263 

CD 3.4949 (0, 0, -2.2717e04) -6.889e03 1.625 2.0326 
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Figures 3, 4, and 5 illustrate the optimized trajectory of the spacecraft obtained using the 
Particle Swarm Optimization (PSO) algorithm, with each ϐigure representing a speciϐic phase of 
the mission. Figure 3 depicts the trajectory in Earth's reference frame, where the spacecraft begins 
at point A (departure from Earth) and transitions to point B (heliocentric transfer point), clearly 
showing the inϐluence of Earth's gravity and its eventual escape into a heliocentric orbit. Figure 4 
presents the trajectory in a Sun-centered inertial frame, highlighting the spacecraft's departure 
from Earth's orbit (Point A), its transition into the interplanetary transfer orbit initiated at Point 
B, and its entry into Mars’s sphere of inϐluence at Point C. The dashed green line represents the 
transfer trajectory, seamlessly connecting Earth's orbit with Mars's orbit, following a heliocentric 
conic path. 

Table 4. Characterization of Relevant Points for the Refined Trajectory. 

Point Reference 

Arrival Velocity 
(Vᵃʳʳ) 

[km/s] 

Departure Velocity 
(Vᵈᵉᵖ) [km/s] 

ΔV 

[km/s] 

A Earth 7.6415 11.0735 3.7860 

B Sun 32.8336 32.8342 0.0008 

C Sun 2.8726 2.6841 0.0026 

D Mars 5.2336 3.1413 2.0733 

 

Figure 4. Trajectory in the Sun-Centered Inertial Frame 
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Figure 5 provides a detailed view of the Mars arrival phase, focusing on the spacecraft's 
approach near Mars, where point C represents the heliocentric position before the gravity-assist 
maneuver, and point D indicates successful orbital insertion into Mars's sphere of inϐluence, 
aligned with the arrival velocity vector Varr from Table 4. Across all ϐigures, the trajectory 
conϐirms the consistency of the PSO-optimized solution with mission objectives, demonstrating 
smooth transitions between orbital phases, minimal Δv, and efϐicient ϐlight times see Table 2, as 
well as precise alignment with the computed orbital parameters and velocity vectors from Tables 
3 and 4. 

 
Conclusion 
This work underscores the signiϐicance of optimization algorithms in overcoming challenges 

associated with interplanetary missions and establishes a solid foundation for future research 
aimed at enhancing trajectory planning for multi-planetary missions. This study proposed an 
optimized interplanetary trajectory for a spacecraft traveling from Earth to Mars using the 
Particle Swarm Optimization (PSO) algorithm. The results demonstrated the PSO algorithm's 
effectiveness in minimizing the total Δv required for the mission while adhering to mission 
constraints and achieving efϐicient ϐlight times. The trajectory smoothly transitions through key 
points—A (departure from Earth), B (heliocentric transfer initiation), C (gravity-assist near 
Mars), and D (Mars orbit insertion)—illustrating seamless connections between hyperbolic and 
elliptical orbital paths. The analysis validated the trajectory's accuracy by correlating computed 
values of velocity vectors, angular parameters, and conic sections (Tables 2, 3, and 4) with the 
visualized path in Figures 3, 4, and 5. The trajectory design successfully balances energy efϐiciency 
with ϐlight time, highlighting the potential of PSO in solving complex space mission design 
problems. In future research we will focus on extending the method to multi-planet missions, 
integrating perturbative forces for realistic scenarios, and exploring hybrid optimization 
algorithms. 
 

 

Figure 5. Mars Arrival Phase 
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