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Abstract. The modern High-Order Discontinuous Galerkin Finite Element Method 

(DGFEM) is considered. The method offers the advantages of the finite volume and 

the traditional finite element methods within a unified framework. However, the 

performance of the DGFEM may be affected for supersonic flow because of the 

limiters. Hence, a systematic assessment of the accuracy of the DGFEM is 

performed. The improved accuracy of the DGFEM is quantified and the benefits 

are highlighted. 

1. Introduction 

Supersonic flow is a significant phenomenon with diverse applications in aerospace, astrophysics, 

and  geophysics [1]. Several closed-form solutions are available for one-dimensional and 

linearized assumptions [2]. However, numerical simulations offer the advantage of solving the 

nonlinear multidimensional governing equations and they are an efficient choice for most 

practical problems [3]. Nevertheless, numerical simulations of supersonic flow problems should 

be performed carefully, and various issues should be considered. 

In numerical simulations, the problem domain is discretized by a numerical grid [4]. 

Cartesian grids offer simplicity and fast convergence. However, cartesian grids suffer limited 

capability because complex boundaries are not necessarily aligned to the numerical grid. This 

limitation could be handled using the immersed boundary technique [4] that was introduced 

more than five decades ago [5]. However, the immersed boundary results may suffer the presence 

of spurious oscillations near the boundaries, and this is an active research topic [6], [7].  

Generally, unstructured boundary-fitted grids are the widespread choice to model flows in 

complex geometries [4]. Using the finite-difference method with these grids requires relatively 

more computational effort and complexity. Generally, the solution is calculated using FV in terms 

of the solution averaged over polygon-shaped cells. Hence, the geometric flexibility of the FV 

method is evident [8]. Furthermore, the solution algorithm is based on calculating the cell 

interface fluxes that satisfy the conservation laws and reproduce the problem physics. However, 

developing higher-order discretization on unstructured grids using FV is not straightforward [8]. 

Generally, the solution is obtained using the FE in terms of arbitrary order polynomials defined 

over polygon-shaped elements. Hence, the FE shares with the FV the advantage of geometric 

flexibility and offers the benefit of high-order discretization. However, several obstacles are faced 

https://creativecommons.org/licenses/by/4.0/


ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012012

IOP Publishing
doi:10.1088/1742-6596/3070/1/012012

2

   

 

   

 

in case the traditional FE technique is applied to practical problems. Specifically, continuity across 

elements is imposed within the traditional FE. However, supersonic flow solutions may include 

high gradients or discontinuities, the FE method usually suffers from nonphysical oscillations [9]. 

Hence, stabilization methods are needed that include the Galerkin least squares method and 

shock capturing stabilization. However, the extension of these stabilization methods to practical 

problems is complicated and other alternatives are needed [9]. 

Based on the above discussion, it is natural to look for an intelligent combination of FE and 

FV methods. This combination leads to the Discontinuous Galerkin Finite Element Method 

(DGFEM) [8]. The DGFEM employs arbitrary order polynomials to obtain the solution. However, 

the continuity requirement of the FE is relaxed and discontinuity across elements is allowed. The 

concept of interface fluxes is borrowed from the FV and applied to DGFEM to connect elements. 

Several modern studies focused on applying the DGFEM to supersonic flow problems [10], 

[11], [12] . However, the DGFEM is not widely adopted in commercial codes. Hence, the utilization 

of DGFEM in practical problems is limited. This may be attributed to the absence of systematic 

assessment of the benefits of the DGFEM.   

Although the DGFEM offers several advantages, the accuracy of simulation of supersonic flow 

and shock waves needs to be clarified. Specifically, the limiters used to avoid spurious oscillations 

generally reduce the high-order accuracy near discontinuities and shock waves. Hence, the overall 

performance should be carefully assessed. 

Towards this goal, the opensource MATLAB code “nodal-dg” is used in this study [13]. The 

code is based on the DGFEM method. The code is used to simulate the forward step problem. This 

problem is well documented and includes shock waves, reflection, and complex geometry. To 

assess the accuracy of the DGEFEM, the widely adopted methodology developed by [14] will be 

used.  

2. Governing Equations   

The governing equation for solving the Forward step using DG-FEM is Euler equations which 

describe the conservation of Mass, Momentum, and Energy for inviscid fluid in 2D [15]. The 

equation is defined 𝒒, 𝑭𝑥, and 𝑭𝑦 vectors stand for the conserved variables, horizontal and vertical 

fluxes, respectively.  The vectors are defined as follows: 

 

𝒒 = [𝜌 , 𝜌𝑢 , 𝜌𝑣, 𝐸]𝑇,            (1) 

𝑭 = [𝜌𝑢 , 𝜌𝑢2 + 𝑝 , 𝜌𝑢𝑣, 𝑢(𝐸 + 𝑃)]𝑇,            (2) 

𝑮 = [𝜌𝑣 , 𝜌𝑢𝑣 , 𝜌𝑣2 + 𝑃, 𝑣(𝐸 + 𝑃)]𝑇 .            (3) 

 

The vectors in equations 1, 2,and 3 are defined in terms of the fluid density 𝜌,  the horizontal 

velocity 𝑢, the vertical velocity 𝑣, the total energy per unit volume 𝐸, and the pressure 𝑃. The 

pressure is defined in terms of the conserved variables and the as specific heat 𝛾 as: 

𝑃 = (𝛾 − 1) (𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)).            (4) 

To simplify notation, the flux vector 𝒇 = (𝑭, 𝑮) is defined. The Euler equations are written in 

the conservative form as: 
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𝜕𝒒

𝜕𝑡
+ 𝛻 ∙ 𝒇 = 0.            (5) 

 

Generally, the solution of the equation (5) is obtained for a domain Ω whose boundaries are 

denoted by 𝜕. The boundary conditions should be prescribed according to the problem physics. 

The wall boundaries should satisfy the no-penetration condition: 

𝑽 ∙ 𝒏̂ = 0.            (6) 

Here, 𝐕 is the velocity vector and 𝐧̂ is a unit vector normal to 𝜕. For supersonic inlet conditions, 

the values of the components of 𝒒 are specified. For supersonic exit conditions the components of 

𝒒 are obtained by extrapolation from the inside the domain. 

 

2.1 Benchmark problem – Forward Facing step 

The simulations will be focused on supersonic flow over a forward-facing step. This is a classic 

benchmark problem that includes complex flow features. These features are strong oblique shock 

waves, shock wave reflections, and intersections. The computational domain is defined as shown 

in Figure (1). 

 

  
The initial condition is defined as follows: 

[
 
 
 
 

𝜌 = 𝛾,
𝜌𝑢 = 3𝛾
𝜌𝑣 = 0

𝐸 =
1

𝛾 − 1
+

9𝛾

2 ]
 
 
 
 

 

 

           (7) 

The value of 𝛾=1.4 was adopted. Supersonic inflow conditions with a Mach number of 3 were 

applied at 𝜕1.   Outflow conditions were applied at 𝜕3. Wall boundary conditions were applied at 

𝜕2 and 𝜕4. 

 

3. Methodology 

The numerical solution of Eq. (5) will be obtained using the Discontinuous Galerkin Finite 

Element Method (DGFEM). The advantages of the DGFEM were discussed in the introduction. 

 

Figure 1. The domain of the benchmark problem, forward facing step. 
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These advantages are summarized in three points: High-order approximation, modelling complex 

boundaries, satisfaction of conservation, and accurate simulation of shock waves.  

Each of these advantages is provided based on a specific algorithm within the DGFEM. 

Specifically, the high-order approximation is achieved through careful selection of local shape 

functions. The complex boundaries are described using systematic procedures for mesh 

generation and data structures.  The conservation is implemented by employing flux formulas 

that satisfy the flow physics. Finally, shock waves are accurately modelled avoiding spurious 

oscillations. A brief description is provided for each of these algorithms. The material is based on 

the concise theoretical framework presented in [8]. 

3.1 DGFEM High-order Approximation  

The problem domain Ω is divided into a set of non-overlapping triangular elements of total 

number 𝐾. The solution is approximated locally within each element using a high-order 

polynomial basis function. The approximate solution 𝑢ℎ
𝑘(𝒙, 𝑡) is defined locally at the element 𝑘 ∈

{1, 2, … , 𝐾} as a function in the space and time variables 𝒙 = [𝑥, 𝑦] and  𝑡, respectively. 

For a polynomial of order 𝑁, the local solution is represented as: 

𝒒ℎ
𝑘(𝒙, 𝑡) = ∑𝒒ℎ

𝑘(𝒙𝑖, 𝑡)𝑙𝑖
𝑘(𝒙)

𝑁𝑝

𝑖=1

.            (8) 

Here, 𝑙𝑖
𝑘
(𝒙) is the two-dimensional Lagrange polynomial based on the grid  points, 𝒙𝑖, and 𝑁𝑝 

is the number of basis for a 2D polynomials of order 𝑁. The value of  𝑁𝑝 is given by 

𝑁𝑝 =
(𝑁 + 1)(𝑁 + 2)

2
.            (9) 

The solution is defined in terms of the nodal values 𝒒ℎ
𝑘(𝒙𝑖, 𝑡).  

3.2 Mesh Generation 

An unstructured mesh is generated to discretize the domain , and triangular elements are used.  

The mesh is defined and assembled using several matrices. The two parameters that are used to 

determine the matrices sizes are 𝐾 (total number of elements) and  the total number of nodes 𝑁𝑣 .  

The matrices are listed in Table 1 along with their sizes, types, and description. These matrices 

are used to implement the solver building blocks (fluxes, numerical integration).  

 

 

3.3 Numerical flux 

Table 1. Matrices used to define the grid. The sizes are determined in terms of the total number of 

elements 𝐾 and the total number of nodes 𝑁𝑣 .   

Matrix 
title 

Size description 
Data type 
(integer / 

real) 

Storage 
(dense / 
sparse) 

𝑉𝑋 1 × 𝑁𝑣  𝑥 -coordinates of the nodes real dense 
𝑉𝑌 1 × 𝑁𝑣  𝑦 -coordinates of the nodes real dense 

𝐸𝑇𝑜𝑉 𝐾 × 3  mapping element to nodes integer dense 
𝐸𝑇𝑜𝐸 𝐾 × 3  mapping element to neighbour elements integer dense 
𝐸𝑇𝑜𝐹 𝐾 × 3  mapping element to neighbour faces integer dense 
𝐹𝑇𝑜𝑉  3𝐾 × 𝑁𝑣 mapping face to nodes integer sparse 
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The Numerical flux is computed at the interface to capture the discontinuities. The choice of the 

numerical flux is essential to capture the discontinuities due to the shock waves and contact 

discontinuities. Harten-Lax-van-Leer (HLL) is used for solving the fluxes due to its ability to 

provide a stable approximation of the Riemann problem. The flux is computed by evaluating the 

fastest and slowest wave speeds. This is a good choice for problems involving strong shocks and 

discontinuities. The HLL flux does not suffer the disadvantages of other exact and approximate 

alternatives [16]. The flux 𝑓∗ at interfaces between two states denoted as 𝑢−for the left state and 

𝑢+ for the right state and it’s defined as: 

𝑓∗(𝑢−, 𝑢+) =
𝑆𝑅𝑓𝐿−𝑆𝐿𝑓𝑅+𝑆𝑅𝑆𝐿(𝑢𝑅−𝑢𝐿)

𝑆𝑅−𝑆𝐿
.   (10) 

 

Here, 𝑓(𝑢−) and 𝑓(𝑢+) are the fluxes corresponding to the left and right states, respectively.  

The minimum and maximum wave speed are defined as  

𝑆𝐿 = min (𝑢𝐿 − 𝑐𝐿 , 𝑢 − 𝑐),          (11) 

𝑆𝑅 = max (𝑢𝑅 + 𝑐𝑅 , 𝑢 + 𝑐).          (12) 

 

Here, subscripts 𝐿 and 𝑅 are used to denote the left and right states, respectively. The sound 

speeds in the left and right states are denoted by 𝑐𝐿 and 𝑐𝑅 , respectively. The Roe-averaged 

quantities [17] are denoted by the overbar. The sound speed 𝑐 and the entropy 𝐻 are defined as: 

𝑐 = √(𝛾 − 1) (𝐻 −
(𝑢)2+(𝑣)2

2
), 

         (13) 

𝐻 =
𝐸+𝑃

𝜌
.          (14) 

3.4 Limiter 

The high-order interpolation may generate spurious oscillations near shocks and 

discontinuities due to the Gibbs phenomenon. Hence, the limiter is introduced to avoid this type 

of oscillations. The limiter smooths gradients and ensures physical integrity by restricting 

excessive variations in conserved variables. It’s essential to use a limiter in supersonic flow 

simulations because of the formation of the shocks and discontinuities can introduce numerical 

instabilities [18]. 

The limiter algorithm used in this study operates by first grouping each element with its three 

neighbours to form a patch, and a ghost element is introduced for the missing neighbours forming 

a boundary patch. A cell average is computed for the primitive variables (𝜌, 𝑢, 𝑣, 𝑃  ) followed by 

averaging values across each vertex in each face, this will be calculated for each element and this 

averaging will be based on the primitive variable at each vertex and its neighbor. The gradients of 

these variables are then reconstructed using an area-weighted averaging technique to ensure 

stability and smooth transitions. Then the gradient of the conserved variables (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸) is 

reconstructed using the product rule. The first-order accurate-term Taylor Expansion of the 

conserved variables is computed. Finally, the reconstructed conserved variables are checked for 

unphysical values. This procedure is applied after each Runge-Kutta time step to prevent 

numerical instabilities while maintaining accurate shock capturing. 

3.5 Numerical integration   

The space discretization is obtained by substitution with equation 8 into equation 5. Next, the 

resulting equation is multiplied by a weight function 𝑙𝑖
𝑘
(𝒙) and integrated over the element 𝑘. The 

result is integrated by parts and written in the weak form. 
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∫ (
𝜕𝑞ℎ

𝜕𝑡
𝑙𝑖
𝑘(𝒙) − ∇𝑙𝑖

𝑘(𝒙) ∙ 𝒇ℎ)𝑑𝒙
 

𝐷𝑘 + ∫ 𝒏̂ ∙ 𝒇ℎ
∗ 

𝜕𝐷𝑘 𝑙𝑖
𝑘(𝒙)𝑑𝒙 =  0.          (15) 

Here, 𝐷𝑘, 𝜕𝐷𝑘, and 𝒏̂ denote the element region, element boundary, and unit outwards 

normal, respectively. 

The time integration of the semi-discrete DGFEM equations is performed using explicit time-

stepping schemes. The second-order Runge-Kutta (SSP–RK2) method is used for the integration 

of time due to its simplicity and effectiveness in handling stability constraints while maintaining 

accuracy.  The semi-discrete form the governing equations can be written as: 
𝑑𝑄

𝑑𝑡
= 𝐿(𝑄).          (16) 

Here, 𝑄 represents the conserved variables, and 𝐿(𝑄) is the spatial discretization operator, 

which includes the flux computations and the numerical solutions of the Euler equations. The 

time integration algorithm is used to advance the solution from 𝑡(𝑛) to 𝑡(𝑛+1) = 𝑡(𝑛) + ∆𝑡. The SSP-

RK2 method advances the solution in two stages as follows: 

𝑄(1) = 𝑄(𝑛) + ∆𝑡𝐿(𝑄(𝑛)) ,           (17) 

𝑄(𝑛+1) =
1

2
𝑄(𝑛) +

1

2
(𝑄(1) + ∆𝑡 𝐿(𝑄(1))).          (18) 

 

Here, 𝑄(1) is an intermediate value, and 𝑄(𝑛) and 𝑄(𝑛+1) stand for the solution at time steps 

𝑡(𝑛) and 𝑡(𝑛+1), respectively.  The time step ∆𝑡 is determined by computing the maximum 

allowable time step based on the CFL conditions.  

 

3.6  Accuracy Assessment 

The Grid Convergence Index (𝐺𝐶𝐼) is calculated to quantify numerical accuracy. A smaller 𝐺𝐶𝐼 

indciates lower uncertainity and higher accurraccy and vice versa. It is required to identify a flow 

feature 𝜙 to calculate the 𝐺𝐶𝐼. Three mesh configurations—coarse, intermediate, and fine—are 

required to evaluate the impact of mesh resolution and polynomial order on solution accuracy.  

The procedure is based on the algorithm provided by [14]. Given the average mesh size for the 

three grids to be ℎ1 < ℎ2 < ℎ3, the algorithm proceeds as follows: 

𝑟21 = ℎ2/ℎ1,          (19) 

𝑟32 = ℎ3/ℎ2,          (20) 

𝜀21 = 𝜙2 − 𝜙1,          (21) 

𝜀32 = 𝜙3 − 𝜙2,          (22) 

 

The Apparent order 𝑝 is calculated using the following expression: 

𝑝 =
1

ln(𝑟21)
|ln |

𝜀32

𝜀21
| + ln (

𝑟21
 𝑝

− 𝑠

𝑟32
 𝑝

− 𝑠
)|.          (23) 

Here, 𝑠 = 1 ⋅ 𝑠𝑔𝑛 (
𝜀32

𝜀21
). Equation 23 should be solved iteratively. Finally, the 𝐺𝐶𝐼 is calculated as 

𝐺𝐶𝐼 =
1.25  |

𝜙1 − 𝜙2
𝜙1

|

𝑟21
 𝑝

− 1
 

         (24) 
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 4. Results and Discussion 

 
The simulations were performed using three grids, coarse K=576, intermediate K=2266, and 

fine K=14168. The coarse grid is displayed in Figure 2. For each mesh, the simulations were 

performed for three discretization orders, 𝑁 = 1, 2, and 3. The simulations were conducted 

reaching the time 𝑡 = 4. The flow field is displayed in Figures 3 and 4, for the coarse and fine 

meshes, and first-order discretization (𝑁 = 1). 

 

 
The flow field features agree with the results provided by [19]. These features include a curved 

shock wave at 𝑥~0.3 on 𝜕2, an oblique shock reflected at 𝑥~1.3 on 𝜕2 and 𝑥~2.4 on 𝜕4. The flow 

features are relatively blurred smeared in Figure 3, due to the coarse mesh. However, the features 

are well resolved by the fine mesh in Figure 4.  

 

 

Figure 2. Sample for domain discretization using triangular elements. 

 

Figure 3. Flow field, coarse mesh, 𝑁=1, 𝑡 = 4. 
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4.1 Grid Convergence 
The discretization order 𝑁 was varied to conduct a parametric analysis. In the current study, the 

𝐺𝐶𝐼 will be based on the vertical pressure force 𝜙 = ℱ acting on 𝜕2. The force ℱ is defined as: 

ℱ = ∫ 𝑃𝑑𝒙
 

𝜕2
.          (25) 

The pressure distribution along the lower wall is shown in Figure 5. The results are provided 

for three meshes and first-order discretization (𝑁 = 1) and the fine mesh and 𝑁 = 3. The results 

of the fine mesh are almost indistinguishable for 𝑁 = 1 and 𝑁 = 3.  Hence, the overall accuracy of 

the simulations is further verified. 

We can observe a sharp increase at 𝑥 = 0.3 𝑚   , corresponding to the formation of the shock 

wave due to the step. Another pressure rise is observed at 𝑥 = 1.3 𝑚   , resulting from the shock 

reflections interacting with the lower boundary wall. It is important to note that the results are 

montone and free from any spurious oscillations. 

Table 2 presents the results, including the number of elements, computational time, vertical 

pressure force, apparent order (𝑝), and GCI for each polynomial order  

N. The findings show that increasing mesh resolution leads to a lower GCI, indicating improved 

solution convergence. Furthermore, the apparent order 𝑝 rises with 𝑁, confirming that higher-

order polynomial approximations enhance accuracy. 

On the other hand, the apparent order 𝑝 is significantly lower than 𝑁. This result is expected 

since the high order accuracy is expected to degrade near discontinuities. This degradation occurs 

due to the effect of the limiter. However, the benefit of increasing 𝑁 is clarified in terms of reducing 

the 𝐺𝐶𝐼. The results indicate a 50% reduction in the 𝐺𝐶𝐼 for each increase in 𝑁. Hence, high-order 

DGFEM results should be useful for accuracy-demanding applications. 

 

Figure 4. Flow field, fine mesh, 𝑁=1, 𝑡 = 4. 
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 5. Conclusions 

This study demonstrates the effectiveness of using the Discontinuous Galerkin Finite Element 

Method (DG-FEM) for simulating supersonic flow over a forward-facing step. The numerical study 

accurately captured the complex flow features such as curved shock waves and oblique shock 

reflections, while maintaining stability and high-order accuracy. The application of limiters is 

accurate and stable, especially in high-gradient regions where shock waves were formed.  

The mesh is performed using different types of mesh (Coarse, Intermediate, fine). The fine 

mesh with higher-order polynomial approximation enhances shock resolutions and reduces 

numerical dissipation. The accuracy is assessed systematically using 𝐺𝐶𝐼.  The results indicate a 

Table 2. Grid convergence Discretization order 𝑁, Case №Number of elements 𝐾.Computation time 

(seconds)Vertical pressure force ℱ, Apparent order p, and GCI 

𝑁 № 𝐾 
Computation 

time 
(seconds) 

ℱ 𝑝 𝐺𝐶𝐼 

1 
1 576 37 12.01817 

1.363 0.54% 2 2266 137 11.65513 
3 14168 3452 11.52225 

2 
4 576 189 12.01903 

1.692 0.32% 5 2266 745 11.6294 
6 14168 13130 11.52357 

3 
7 576 451 11.93982 

2.044 0.14% 8 2266 3518 11.60935 
9 14168 23610 11.54038 

 

 

Figure 5. Pressure distribution versus 𝑥 along 𝜕2 at 𝑡 = 4. The effects of grid refinement and 

discretization order is illustrated. 
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50% reduction in the 𝐺𝐶𝐼 for each increase in 𝑁. Hence, high-order DGFEM results should be 

useful for accuracy-demanding applications. 

Overall, This research highlights the capability of DG-FEM as a powerful tool for solving 

supersonic flow simulation and it’s able to accurately capture shock waves. Future work may 

explore the simulation of more complex geometries and industry-oriented applications. 
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