
Journal of Physics:
Conference Series      

PAPER • OPEN ACCESS

Integration of JSBSim and Unreal Engine for Flight Simulator
Development: A Case Study on the Cessna T-37
To cite this article: Mohamed Awd Saber et al 2025 J. Phys.: Conf. Ser. 3070 012009

 

View the article online for updates and enhancements.

This content was downloaded by mohamed.mab from IP address 154.186.120.120 on 07/08/2025 at 07:27

https://doi.org/10.1088/1742-6596/3070/1/012009
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvTYYjUpU7KHCJolPCSrWPbAZKx8QdFYj5BXAcOeSF_VHLiTs3RXNNYJMbx5nVFqGHfJ7HFKdB-7fQVMGTww4VHFLAWXNWs2ZZPWkASQxNjTSXNauC0AwWE8WQiFZrWxtnx_LQ9Lur7a4WSE9LucM53PUD85R2W8qkIhKiKpyJ73wODSs-k9D4ASUX49t8kIj9Be_R5X5GFn40OdiXPjvQD0nWHK235MeE1w1jAEoOd8A4JJPQzZDVVzj8g93v7kASe52h640ToaujZi4kCfmYRG1LIZKEYP2au5dVN8FOH9VUlzRQRWRq4oXc-IvhYU-DhznFXrNGEWrEZoMgh0-AQ9d4_fkHWLhbW5H2cfX8FHjoGeahxsXJt&sig=Cg0ArKJSzCibSUh2GDH7&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/248/registration%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_248_Early_Reg%26utm_id%3DIOP%2B248%2BEarly%2BRegistration


Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

1

Integration of JSBSim and Unreal Engine for Flight

Simulator Development: A Case Study on the

Cessna T-37

Mohamed Awd Saber1
∗
, Mohamed Y. Zakaria2, Ashraf M Kamal3

1 M.SC. Student, Aircraft Mechanics Department, Military Technical College, Cairo, Egypt.
2 Associate Professor, Aircraft Mechanics Department, Military Technical College, Cairo, Egypt.
3 Assistant Professor, Aircraft Mechanics Department, Military Technical College, Cairo, Egypt.
*E-mail: mohamed mouter@yahoo.com

Abstract. This study presents systematic procedures for the development of
a cost-effective flight simulator by integrating multiple software tools into a uni-
fied simulation environment. The simulator framework combines both Microsoft
Flight Simulator and Blender for 3D realistic CAD model generation, JSBSim
as the aerodynamics and flight dynamics model, and Unreal Engine as the pri-
mary simulation platform. The Cessna T-37 aircraft is used as a case study to
develop the simulator. The development process includes the preparation of the
3D CAD model, the integration of the aerodynamic data, and real-time control
surface animations, ensuring an immersive and accurate representation of the
aircraft behavior. The JSBSim is implemented to handle the flight dynamics
while Unreal Engine is used for visualization and interactivity. Additionally, the
simulation includes an analysis of the aircraft’s natural modes, such as phugoid,
short-period, rolling, spiral and dutch-roll modes, to assess its dynamic stability.
The response characteristics of these modes are examined to ensure consistency
with theoretical expectations and to identify nonlinear effects present in the sim-
ulation. The results demonstrate the feasibility of integrating open-source tools
for flight simulation and highlight the efficiency of the proposed cost-effective
framework in replicating realistic flight performance.

1 Introduction
1.1 Background and Importance of Flight Simulation
The origins of flight simulation date back to the early 20th century, beginning with basic me-
chanical devices designed to provide pilots with limited training in flight mechanics [1]. As
aviation technology evolved, flight simulators became increasingly sophisticated. A significant
breakthrough came in the 1960s with the introduction of computer technology, which allowed
for more precise and immersive simulations [2].

https://creativecommons.org/licenses/by/4.0/


ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

2

Currently, flight simulation is crucial in aviation industry as it is used in a variety of ap-
plications, ranging from fundamental pilot training to advanced aeronautical research and de-
velopment. Modern simulators incorporate high-fidelity graphics, accurate flight dynamics, and
immersive environments capable of replicating diverse weather conditions and flight scenarios.
Such capabilities allow enhancing safety, improving training efficiency, and making aviation more
accessible. Flight simulation offers several key advantages that make it an essential tool in avia-
tion. It provides a controlled and risk-free environment where pilots can practice essential skills
and handle emergency scenarios, allowing them to refine their decision-making abilities without
real-world dangers. Compared to actual flight training, simulators significantly reduce costs by
eliminating expenses related to fuel, aircraft maintenance, and operational wear, making pilot
training more affordable and accessible. Additionally, training in simulators enhances aviation
safety by preparing pilots to manage critical situations and emergencies more effectively. Be-
yond training, flight simulators play a crucial role in aerospace research and innovation, enabling
engineers to evaluate new aircraft designs, analyze performance, and study aerodynamics with-
out requiring physical prototypes. They also increase accessibility to aviation, allowing aspiring
pilots to experience flying from home, fostering interest in the field, and helping individuals
grasp fundamental flight concepts before formal training. Even experienced pilots benefit from
simulation-based training, as it allows for periodic skill development and ensures they remain
proficient with evolving technologies, regulations, and procedures.

1.2 Literature Review
This section examines several flight simulators designed for different user groups, from aviation
enthusiasts to professional pilots and military personnel. These simulators vary in fidelity, cus-
tomization, and accessibility, serving distinct training and operational needs. By assessing key
factors such as flight dynamics modeling, realism, graphics quality, and FAA certification, this
analysis provides a comprehensive overview of their capabilities [3][4][5][6][7].

Microsoft Flight Simulator (MSFS) 2020 excels in graphical fidelity, real-world mapping
through Bing Maps, and real-time weather simulation via Azure, offering a highly immersive
experience for general aviation. X-Plane 12, using Blade Element Theory (BET) for real-time
aerodynamic calculations, provides the most accurate physics-based flight dynamics, making it
suitable for FAA-certified training. DCS (Digital Combat Simulator) remains the best option
for military applications, utilizing wind tunnel data, computational fluid dynamics (CFD), and
flight test validation to achieve high-fidelity aerodynamics, particularly for fighter jets.

Prepar3D and Flight Simulator X (FSX), while widely used for training, rely on older
lookup table-based architectures, limiting their adaptability to changing aerodynamic conditions.
Prepar3D remains a stable choice for structured training, while FSX benefits from an extensive
add-on ecosystem. FlightGear, as an open-source alternative, offers extensive customization with
multiple flight models (JSBSim, YASim), though its graphical quality and real-time weather fea-
tures are less advanced.

The choice of Flight Dynamics Model (FDM) significantly impacts realism. X-Plane 12
dynamically calculates aerodynamic forces per surface section, ensuring highly accurate flight
physics. DCS and MSFS 2020, with CFD-based modeling, enhance airflow and turbulence re-
alism. Prepar3D and Falcon BMS use precomputed lookup tables, prioritizing stability over
adaptability. FlightGear’s flexibility allows users to select between data-driven and geometry-
based solvers.

Studies such as [6] have investigated flight dynamics through modeling, simulation, and flight
testing, particularly for unconventional configurations like tailless UAVs. Similarly, [7] validated
small airplane flight dynamics models, reinforcing the importance of accurate aerodynamic mod-
eling in flight simulation research.

DCS excels in combat physics, while X-Plane 12 is preferred for civil flight accuracy. The
choice of simulator depends on its intended use—training, research, or entertainment. Advances
in flight modeling, weather simulation, and control systems continue to enhance realism in avia-
tion and aerospace research.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

3

Table 1. Comparison of Available Flight Simulators

Feature FlightGear Prepar3D DCS

Microsoft
Flight

Simulator
(MSFS)
2020

X-Plane
11/12

Flight
Simulator X

(FSX)

Open-Source Yes No No No No No

Customization
High (fully
modifiable)

Moderate
(Software

Development
Kit (SDK)
available)

Limited
(restricted by
developers)

High (SDK +
add-ons)

High (SDK
available)

High (SDK &
SimConnect)

Graphics Quality Moderate Moderate High Very High High Moderate

Weather Simulation Moderate Moderate High
Advanced
(real-time,
Azure)

Advanced
(volumetric
clouds)

Moderate

Flight Dynamics
Model (FDM)

JSBSim, Yet
Another
Simulator
(YASim)

Table-based
(FSX legacy)

Wind tunnel,
Computa-
tional Fluid
Dynamics
(CFD), and
flight test

data

Computational
+ empirical
(CFD voxel
grid, lookup

tables)

Blade
Element
Theory
(BET)

Table-based

Methodology

JSBSim:
Data-driven

(wind
tunnel/CFD),

YASim:
Geometry-
based solver

Empirical
lookup tables

Wind tunnel,
CFD, and
flight test

data

CFD-based
modeling with
lookup tables

Divides
surfaces into
elements,
calculating
forces per
section

Empirical
(lookup
tables)

Turbulence & Non-
linear Flow

YASim
models airflow
iteratively;

lacks
high-fidelity
turbulence

Precomputed
datasets,
lacks

real-time
turbulence
modeling

CFD for
specific
aircraft,
models
dynamic
airflow

Simulates
wake

turbulence
and airflow

Simplified
turbulence
modeling,

lacks
real-time
CFD

No real-time
CFD, relies

on
precomputed

datasets

Realism & Accu-
racy

User-defined
models,

highly flexible

Stable and
widely used

for
professional
training

High fidelity,
especially for

combat
aircraft

High realism
for general
aviation,
simplified
control
surface
modeling

Realistic for
general

aviation, but
lacks

high-fidelity
combat
dynamics

Large add-on
ecosystem,

but outdated
flight physics

Failure Modeling
Fully

customizable
Moderate Advanced Limited

Customizable
but limited

Basic

Loading Speed Fast Moderate Slow Moderate Slow Moderate

Ease of Use

Complex
(Extensible
Markup
Language

(XML) edits)

Moderate
(User

Interface
(UI))

Moderate
Easy

(intuitive UI)
Moderate

(detailed UI)
Moderate

Scenery Coverage Global (basic)
Global

(add-ons)

Limited
(combat
zones)

Global (Bing
Maps,

real-time)

Global
(detailed
terrain)

Global (low
detail)

Multiplayer Available Available
Yes (Player
vs. Player

(PvP), Co-op)
Available Available Available

MATLAB/Simulink
Support

Yes
Yes

(SimConnect)
No

Yes (SDK
support)

Yes (User
Datagram
Protocol

(UDP) com-
munication)

Yes
(SimConnect

API
(Application
Programming
Interface))

Federal Aviation
Administration
(FAA) Certification

No Yes (training) No No
Yes (FAA-
certified)

No

Main Strength
Open-source,

research
flexibility

Professional
use, stable

Best for
combat sim

Best visuals,
real-world
mapping

Best flight
physics,
FAA-cert

Large add-on
ecosystem



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

4

1.3 Research Objective
The primary objective of this research is to develop a procedure for integrating JSBSim into Un-
real Engine to create a real-time flight simulation environment. The study focuses on analyzing
the resulting flight dynamics and evaluating the feasibility of using this platform for simulation
in terms of realism, precision, and applicability for training or research purposes. By examin-
ing the behavior of the simulated aircraft, this research provides insights into the potential of
game engines for professional flight simulators and identifies areas for further development and
improvement.

2 Flight Simulator Development
The following flowchart illustrates the proposed methodology for developing a flight simulator in
Unreal Engine 5 (UE5) using JSBSim as a flight dynamics model.

Figure 1. Flowchart for the Proposed Methodology to Develop a Flight Simulator



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

5

2.1 Airplane Selection
The selection of an aircraft with well-documented data is essential for accurate simulation.
Among various options, the Cessna T-37 is chosen, commonly known as the Tweet, a twin-
engine jet trainer developed by the Cessna Aircraft Company. Introduced in 1955, the T-37 has
been a cornerstone of military pilot training, providing hands-on experience in jet operations.
Table 2 summarizes the main characteristics of the Cessna T-37 airplane.

Table 2. Main Characteristics of the Cessna T-37

Characteristic Value

Wingspan 33.83 ft (10.32 m)
Wing Area 182 ft2 (16.91 m2)
Mean Aerodynamic Chord 5.47 ft (1.67 m)
Horizontal Tail Area 31.77 ft2 (2.95 m2)
Horizontal Tail Arm 11.73 ft (3.57 m)
Vertical Tail Area 28.59 ft2 (2.66 m2)
Empty Weight 4,056 lbs (1,840 kg)
Maximum Weight 6,580 lbs (2,984 kg)
Moment of Inertia (Ixx) 7,985 slug-ft2

Moment of Inertia (Iyy) 3,326 slug-ft2

Moment of Inertia (Izz) 11,183 slug-ft2

Engine Type 2 × Continental J69-T-25
Thrust per Engine 1,025 lbs (4.56 kN)
Fuel Capacity 1,400 lbs (635 kg)
Maximum Speed 425 mph (370 knots, 684 km/h)
Cruise Speed 350 mph (304 knots, 563 km/h)
Range 650 miles (1,046 km)
Service Ceiling 35,000 ft (10,668 m)

2.2 Aircraft 3D Model Development
Developing a high-fidelity 3D aircraft model is essential for accurate flight simulation. The
model must capture both the aircraft’s exterior and its functional components, including control
deflections and system interactions. Typically, users create such models from scratch using 3D
modeling software like Blender or Autodesk Maya, or they modify existing models obtained from
online repositories or other simulators. In my case, I imported the T-37 aircraft model using
the MSFS Importer plugin from Microsoft Flight Simulator (MSFS). This method was chosen
because MSFS provides a highly detailed and visually accurate 3D model, reducing the need for
extensive manual modeling while ensuring a high level of realism suitable for integration into
Unreal Engine and JSBSim.

2.2.1 Importing the Cessna T-37 into Blender

The process began with importing a freeware Cessna T-37 model from Microsoft Flight Simulator
(MSFS) using the MSFS glTF Importer plugin, a specialized tool that allows the extraction and
conversion of MSFS aircraft models from the glTF (Graphics Library Transmission Format)
used by the simulator. This plugin enables users to import and modify MSFS assets within
3D modeling software such as Blender, ensuring compatibility with other simulation platforms.
Once imported, the model underwent geometric refinements, surface topology improvements,
and optimizations to prepare it for seamless integration with Unreal Engine and JSBSim.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

6

2.2.2 Texturing and Material Design

To enhance realism, existing textures are refined, and material properties are adjusted for accu-
rate visual representation. Physically-based rendering (PBR) is used to achieve realistic reflec-
tions and lighting, while normal maps are applied to simulate fine surface details such as rivets
and panel lines.

2.2.3 Animation

Dynamic animations ensure interactive realism in the simulator, including the proper rotation of
control surfaces such as elevators, ailerons, rudder, and flaps. The landing gear follows accurate
retraction and extension sequences, while the engine blades rotate correctly along their intended
axis. These refinements allow the aircraft model to respond realistically to user inputs and
environmental conditions.

(a) Model Detailed Components.

(b) Model with Applied Textures and
Material Details.

Figure 2. Visuialization of Cessna T-37 Model Details

2.3 JSBSim Airplane Model
The process of inputting the flight model data into JSBSim, an open-source flight dynamics
simulator, is presented [8]. JSBSim enables accurate aircraft simulation by incorporating param-
eters such as geometry, landing gear, mass, inertia, aerodynamics, and engine performance. This
flight model can later be integrated with Unreal Engine for visualization and interaction.

In JSBSim, an aircraft XML(Extensible Markup Language) file defines the geometric, aerody-
namic, mass, propulsion, and control characteristics necessary for simulation. Table 3 summarizes
the key variables used to model the T-37 aircraft.

Table 3. Summary of Aircraft Data

Category Description

Aircraft Geometry
Wing area, wingspan, mean aerodynamic chord, horizontal and

vertical tail areas, moment arms, CG(Center of Gravity), Neutral
Point.

Mass and Inertia Total empty weight, moments of inertia (Ixx, Iyy, Izz), CG location.

Landing Gear Data
Positions of nose and main landing gear, friction coefficients, spring
and damping coefficients, retraction capability, and steering limits.

Propulsion System
Engine model file defining thrust characteristics, number of engines
and their locations, fuel tanks with capacity and initial fuel levels.

Flight Control System
Control surface inputs and limits, deflections and limits of elevator,
ailerons, rudder, actuation of flaps, landing gear, speed brakes, and

trim settings.

Aerodynamic Properties
Lift and drag dependencies on angle of attack, Mach number, and
control surface positions, pitching, rolling, and yawing moment

coefficients, ground effect corrections.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

7

2.4 Unreal Engine Simulator Development
2.4.1 Environment Components

The environmental setup in this Unreal Engine-based flight simulator is designed to enhance
realism and ensure accurate geographic representation. The key elements include geo-referencing,
high-resolution scenery, and dynamic weather simulation.

The GeoReferencing plugin is utilized to integrate real-world coordinates into the simulation.
This plugin allows Unreal Engine to interpret latitude, longitude, and altitude data, ensuring
precise positioning of 3D models within a global coordinate system. It converts geographic
coordinates into Unreal Engine’s world space, enabling accurate placement of scenery and terrain.
In this project, the Cairo Airport 3D model was imported and aligned with real-world Geographic
Information System(GIS) data using this method. The process involved defining a georeferenced
origin, ensuring that the airport layout matched real-world terrain and navigation points.

Cesium for Unreal was employed to stream high-resolution satellite imagery and digital el-
evation models, enhancing terrain accuracy. The integration process involved importing the
Cairo Airport model, enabling the GeoReferencing plugin, and setting its global reference point.
This ensured that the airport’s runways, taxiways, and surrounding structures were correctly
positioned relative to real-world coordinates.

For atmospheric realism, a dynamic weather system was implemented to simulate real-time
environmental changes. The Dynamic Weather plugin was configured to generate cloud forma-
tions, fog, and wind variations, affecting visibility and flight dynamics. The lighting system was
adjusted to reflect time-of-day changes, ensuring accurate sun positioning and shadow casting.

By combining geo-referencing, high-resolution terrain data, and dynamic weather effects, the
simulator achieves a high degree of realism, accurately representing the Cairo Airport environ-
ment under various atmospheric conditions.

2.4.2 Model Preparation

In this subsection, the process of preparing a detailed aircraft model for integration into Unreal
Engine is outlined, along with the creation of animations and interactive elements using Unreal
Engine’s Blueprint system. The preparation process includes defining the model’s geometry,
animations, and textures, while Blueprint scripting ensures the aircraft’s dynamic functionality
and user control.

The aircraft model was imported as a glTF-2 file, a widely used format for 3D models that
ensures compatibility with Unreal Engine without losing textures or materials. Upon import, the
model was treated as a Skeletal Mesh, which means it includes a rigged skeleton structure that
allows for animation. Along with the Skeletal Mesh, Unreal Engine also generated a Skeleton
asset, which defines the bone structure, a Physics Asset, which handles collision and physics
interactions, and additional components such as textures and animations.

The Skeletal Mesh was structured by segmenting the aircraft into multiple static meshes,
including the fuselage, wings, tail, and landing gear. Each of these components was individually
rigged with bones, enabling the animation of movable control surfaces such as ailerons, elevators,
and rudders, as well as mechanical parts like landing gear retraction and engine fan rotation.

To achieve realistic visuals, the model’s textures were carefully applied and verified. Texturing
involves assigning realistic material properties to the model, allowing surfaces to reflect light
naturally and create an immersive experience. Once the model and textures were refined, the
next step was to integrate the aircraft into Unreal Engine using Blueprint scripting.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

8

Figure 3. Cessna T-37 Cockpit Texture

2.4.3 Animation Blueprint Setup

An Animation Blueprint was created to control the animation of the aircraft’s moving parts. An
Animation Blueprint is a specialized scripting system in Unreal Engine that enables complex
animation logic. It uses a State Machine, which is a graphical system that defines different ani-
mation states and transitions between them. For example, the state machine controls animations
for the elevator, rudder, ailerons, flaps, and landing gear, ensuring that they respond dynamically
to user inputs while respecting the aircraft’s physical constraints.

Each animation is stored as an individual Animation Sequence as shown in Figure 4. For
instance, the landing gear animation is represented as a normalized value ranging from 0 (fully
retracted) to 1 (fully extended), allowing smooth transitions between states . In the other hand
control surface deflections are defined by their respective input angles as shown in Figure 5.

(a) LMG = 1 (b) LMG = 0.4

Figure 4. Left Main Landing Gear (LMG) animation blueprint flow.

(a) Rudder Angle = 30 (b) Rudder Angle = -30

Figure 5. Rudder animation blueprint flow.

2.4.4 Blueprint Class Implementation

The aircraft’s interactive behavior was implemented using a Blueprint Class, a system in Unreal
Engine that defines reusable objects with both visual and logical properties. The aircraft was
assigned to a custom Blueprint Class derived from the Pawn class, which represents any control-
lable object. Within this class, the aircraft’s Skeletal Mesh was added as a component, along



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

9

with a Camera, Camera Spring Arm (for smooth camera movement), lights, exhaust effects, and
the JSBSim flight model. These elements contribute to an accurate and visually realistic flight
experience.

To simulate realistic physics, the JSBSim flight dynamics engine was integrated. JSBSim is
an open-source model that calculates aerodynamic behavior using predefined derivatives stored
in an XML file. The key flight parameters, including thrust, pitch, roll, and yaw, are governed by
JSBSim and configured to respond dynamically to control inputs. Unreal Engine’s input system
maps user commands, allowing the aircraft to react to throttle, pitch, and yaw as expected.

The Animation Blueprint is linked to the Blueprint Class, ensuring that animations are
triggered based on real-time flight data from the JSBSimMovement Component. This integration
creates a seamless connection between the animation and physics systems, enabling realistic
aircraft motion.

Additionally, an automated control system is implemented using a Data Table, which stores
time-sequenced control inputs such as (Time, Throttle, Elevator, Rudder, Aileron). This system
enables automated flight tests to evaluate the aerodynamic model’s accuracy, analyze flight
performance, and study dynamic stability.

2.4.5 Integrating JSBSim

To integrate JSBSim into Unreal Engine, several steps are performed to ensure proper flight
dynamics simulation. First, the JSBSimMovement component is added to the Component Graph
Editor within the blueprint pawn class, allowing the aircraft to respond to aerodynamic forces
in real time.

Next, the necessary parameters are configured, including specifying the aircraft XML file
containing aerodynamic data and performance characteristics. Finally, the JSBSim model is
aligned with the aircraft’s 3D model by correctly positioning the center of gravity (CG) and
landing gear attachment points. Proper alignment ensures accurate physics calculations, enabling
realistic aircraft movement.

Figure 6. Alignment of Cessna T-37 with JSBSim Reference Points

3 Analysis of the Simulator Results
The analysis of the JSBSim-based Unreal Engine simulation focuses on evaluating flight dynamic
characteristics with respect to common mode shapes, as described in [9]. This evaluation is
conducted entirely within JSBSim, configured as the primary flight dynamics model in Unreal
Engine. By analyzing the system’s response, key flight dynamic characteristics are examined,
categorized into longitudinal and lateral-directional stability.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

10

Figure 7. Steady-Level Flight Initial Conditions

3.1 Steady-Level Flight
In steady-level flight, all forces and moments are balanced. The trim condition is found by
determining the trim angle of attack (αtrim) and elevator deflection (δe,trim).In the other hand
trim is accomplished in Unreal Engine using JSBSim built-in functions [10].

Equilibrium Conditions: The lift force must balance weight, and the pitching moment coef-
ficient must be zero; hence, thrust must balance the drag force:

L =W =
1

2
ρV 2SCL, CL,trim =

2W

ρV 2S
, (1)

CL = CLααtrim + CLδe
δe,trim, (2)

Cm = Cm0
+ Cmα

αtrim + Cmδe
δe,trim = 0, (3)

αtrim =
CL,trimCmδe

+ Cm0CLδe

CLα
Cmδe

− Cmα
CLδe

, δe,trim = −CLαCm0 + CmαCL,trim

CLα
Cmδe

− Cmα
CLδe

. (4)

T = D =
1

2
ρV 2SCD cos(αtrim), CD = CD0

+ CDα
αtrim, (5)

Figure 8 shows a steady-level flight condition, where altitude, velocity components, and at-
titude angles remain nearly constant over time. Small variations in pitch rate, pitch angle, and
angle of attack indicate minor oscillations due to numerical trimming. This confirms that the
aircraft is in a trimmed equilibrium state, maintaining stable flight dynamics without additional
control inputs.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

11

Figure 8. Steady-Level Flight Trace in Unreal Engine

3.2 Longitudinal Motion
The observed responses align with the expected behavior of the aircraft’s natural modes. he
initial elevator pulse induced a transient response that excited the phugoid mode, while the
short-period mode was initiated exclusively by an elevator doublet. The phugoid mode, a low-
frequency oscillation, is evident in the periodic variations of altitude and velocity, reflecting the
interplay between kinetic and potential energy. Similarly, the short-period mode manifests in
the rapid initial changes in pitch rate (q) and angle of attack (α), which quickly damp out. The
system’s response follows the logical progression dictated by aerodynamic stability, validating
the expected control-input-to-motion dynamics.

Figure 9. Phugoid Mode

As shown in Figure 9 The elevator pulse caused an initial sharp decrease in elevator deflection,
leading to a transient response in the aircraft’s motion. The altitude exhibited an oscillatory be-
havior, characteristic of a phugoid response, with periodic variations over time. The longitudinal
velocity (Vx) also showed oscillations, while the vertical velocity (Vz) experienced a brief spike
before stabilizing. The pitch rate (q) and pitch angle (θ) responded immediately to the elevator
input, showing rapid initial changes followed by gradual damping. The angle of attack (AoA)
increased momentarily before stabilizing, indicating the phugoid oscillations.

As shown in Figure 10 The elevator pulse induced a sharp initial change in the elevator
deflection, leading to an immediate transient response in the aircraft’s motion. The pitch rate
(q) and pitch angle (θ) exhibited rapid variations before quickly stabilizing, characteristic of the



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

12

short-period response. The angle of attack (α) momentarily deviated before settling, indicating
a quick damping effect. The velocity components (Vx and Vz) showed minor transient oscilla-
tions, with vertical velocity experiencing a brief fluctuation before stabilization. The altitude
demonstrated a slight initial drop due to the momentary downward motion before recovering as
the oscillations damped out.

Figure 10. Short Period Mode

3.3 Lateral-Directional Motion
The simulation results exhibit responses that align closely with the expected dynamic character-
istics of the aircraft’s natural modes.

The Rolling mode, a high-frequency and heavily damped motion, demonstrated an immedi-
ate response to the aileron pulse input. This response was characterized by a sharp and sudden
increase in roll rate (p), followed by a rapid decay due to strong aerodynamic damping. The
significant damping ensures that roll oscillations subside quickly, preventing excessive lateral
instability. As a result of coupling effects, transient oscillations were observed in the lateral
velocity (Vy) and yaw rate (r). These secondary responses highlight the interconnected nature
of lateral-directional motion, where roll perturbations influence yaw dynamics. Additionally, the
bank angle (ϕ) initially experienced a sharp decrease before gradually stabilizing at a steady-state
value, indicative of the aircraft’s inherent roll stability. The yaw angle (ψ) exhibited minimal
deviation throughout the response, reinforcing the notion that rolling motion primarily affects
bank angle rather than heading direction. Furthermore, the sideslip angle (β) oscillated briefly,
reflecting the aircraft’s lateral stability characteristics. This short-lived sideslip motion, governed
by sideslip damping and dihedral effect, was quickly attenuated, confirming the aircraft’s ability
to resist prolonged lateral disturbances. Overall, the rapid damping of these oscillations, particu-
larly in roll rate and sideslip angle, validates the heavily damped nature of the rolling mode. This
behavior is crucial for maintaining stable lateral control and ensuring that the aircraft remains
responsive without exhibiting excessive roll-induced instability.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

13

Figure 11. Rolling Mode

The Spiral mode, a low-frequency, weakly damped, or even unstable motion, was observed
as a slow divergence in bank angle (ϕ), indicating a gradual rolling tendency over time. The roll
rate (p) and yaw rate (r) exhibited initial oscillations before stabilizing, while the lateral velocity
(Vy) and sideslip angle (β) demonstrated weak damping. The continuous change in yaw angle
(ψ) further confirms the characteristic deviation of spiral mode.

Figure 12. Spiral Mode

The Dutch-Roll mode, a moderate-frequency and lightly damped oscillation, emerged follow-
ing an initial rudder input, leading to coupled yawing and rolling motion. The roll rate (p) and
yaw rate (r) displayed sustained oscillations before gradually damping out, while lateral velocity
(Vy), roll angle (ϕ), and sideslip angle (β) followed similar oscillatory patterns. The yaw angle (ψ)
exhibited small oscillations, highlighting the expected yaw-roll coupling. The observed damping
confirms the aircraft’s natural aerodynamic stability in mitigating Dutch-Roll oscillations over
time.



ASAT-21
Journal of Physics: Conference Series 3070 (2025) 012009

IOP Publishing
doi:10.1088/1742-6596/3070/1/012009

14

Overall, these results validate the logical aerodynamic response of the aircraft to correspond-
ing control inputs, reinforcing the established characteristics of these lateral-directional dynamic
modes.

Figure 13. Dutch-Roll Mode

4 Conclusion
This study successfully demonstrates the integration of JSBSim with Unreal Engine to develop
a cost-effective and immersive flight simulator for the Cessna T-37 aircraft. By leveraging open-
source tools, the simulator provides a realistic flight experience, combining accurate flight dy-
namics modeling together with high-fidelity visualization. The verification of the developed
simulator through the successful simulation of trim steady-level flight and the aircraft’s natural
flight modes (i.e., Phugoid, short period, spiral, roll, and Dutch roll) confirms its logical opera-
tion and consistency with theoretical expectations. The results validate the feasibility of using
JSBSim within Unreal Engine for real-time flight simulation and highlight the potential of this
framework for future applications in pilot training and flight dynamics research. Future work
will focus on further verifying the simulator’s accuracy by performing analytical calculations
based on the nonlinear equations of motion and comparing the results with simulation outputs.
Additionally, when flight test data becomes available, validation will be conducted by comparing
the simulator’s response with actual flight test results.

References
[1] Goldsman D, Nance R and Wilson J A brief history of simulation revisited 2010 pp 567–574

[2] Allerton D The impact of flight simulation in aerospace 2010 Aeronautical Journal 114
747–756

[3] del Barrio L, Korek W, Millidere M and Whidborne J Analysis of visualization systems in
flight simulators 2023

[4] Christensen C and Salmon J An agent-based modeling approach for simulating the impact
of small unmanned aircraft systems on future battlefields 2022 The Journal of Defense
Modeling and Simulation: Applications, Methodology, Technology

[5] Do M H, Lin C E and Lai Y C Validation of the flight dynamics engine of the x-plane
simulator in comparison with the real flight data of the quadrotor uav using cifer 2023
Drones 7 548

[6] Ahmed N, Zakaria M Y and Kamal A M Investigating tailless uav flight dynamics through
modeling, simulation, and flight testing 2024 Unmanned Systems 1–21

[7] Kamal A, Aly A M and Elshabka A Modeling, analysis and validation of a small airplane
flight dynamics 2015 AIAA Modeling and Simulation Technologies Conference p 1138

[8] Kunz D L and Kim J P Evaluation of unmanned aircraft flying/handling qualities using a
stitched learjet model 2021 Journal of Guidance, Control and Dynamics

[9] Napolitano M R 2011 Aircraft Dynamics: From Modeling to Simulation (John Wiley &
Sons) ISBN 978-1-118-34491-7

[10] Millidere M, Karaman U, Uslu S, Kasnakoglu C and Cimen T Newton-raphson methods in
aircraft trim: A comparative study 2020 AIAA AVIATION Forum


	Introduction
	Background and Importance of Flight Simulation
	Literature Review
	Research Objective

	Flight Simulator Development
	Airplane Selection
	Aircraft 3D Model Development
	Importing the Cessna T-37 into Blender
	Texturing and Material Design
	Animation

	JSBSim Airplane Model
	Unreal Engine Simulator Development
	Environment Components
	Model Preparation
	Animation Blueprint Setup
	Blueprint Class Implementation
	Integrating JSBSim


	Analysis of the Simulator Results
	Steady-Level Flight
	Longitudinal Motion
	Lateral-Directional Motion

	Conclusion

