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Abstract. The aeroelastic behavior of swept composite wings is predominantly governed by the coupling
between bending and torsion modes due to the anisotropic characteristics of composite materials. This study
analytically investigates the aeroelastic response of swept rectangular wings, modeled as carbon fiber/epoxy plates,
to determine flutter and divergence speeds. The analytical approach integrates classical plate theory, Rayleigh-
Ritz energy formulation, potential and kinetic energy equations, and unsteady incompressible two-dimensional
aerodynamic theory within the Lagrange framework for free vibration and aeroelastic analyses. Numerical free
vibration analysis is conducted using NASTRAN to validate the proposed analytical model. V-g curves are
employed to extract flutter and divergence speeds, and the results exhibit excellent agreement with published
findings. The study reveals that negative bending-torsion coupling stiffness significantly increases the likelihood
of divergence occurring before flutter. Positive bending-torsion coupling significantly increases the divergence
speed, effectively shifting the critical divergence speed beyond the typical flight envelope. Moreover, increasing
the sweepback angle generally increases divergence speed. The effect on flutter speed is complex and depends on
various factors, such as fiber orientation, stacking sequence, and bending-torsion coupling. These findings provide
critical insights into aeroelastic behavior and offer a foundation for optimizing the performance and structural
design of swept composite wings.

1. Introduction
The study of aeroelastic behavior in swept composite wings has garnered significant attention due to the
complex interaction between structural dynamics and aerodynamic forces, particularly in applications
involving high-performance aircraft. Several researchers have investigated various aspects of this behavior,
focusing on the influence of bending-torsion stiffness coupling, sweep angle, and composite material
properties.

Hollowell et al. [1] examined the influence of bending-torsion stiffness coupling on the aeroelastic
behavior of wings, utilizing a Rayleigh-Ritz energy formulation in combination with unsteady, two-
dimensional aerodynamic theory to predict flutter and divergence velocities. These predictions were
validated against low-speed wind tunnel tests, which confirmed that positive bending-torsion coupling
can effectively delay or eliminate divergence while also influencing stall flutter behavior. This coupling is
essential in the design of swept wings, as it can enhance structural stability under aerodynamic loading.

Lottati et al. [2] also investigated the aeroelastic behavior of a cantilevered, composite, forward-
swept rectangular wing, employing an analytical approach based on incompressible, two-dimensional
unsteady aerodynamic strip theory. The study highlighted a critical trade-off between flutter velocity
and divergence speed, showing that maximizing flutter velocity often leads to a decrease in divergence
speed. This emphasizes the need to balance these competing factors in the design of composite wings to
optimize their aeroelastic performance.

The impact of aspect ratio and sweep angle on aeroelastic behavior has also been explored. Attaran
et al. [3] analyzed the flutter characteristics of composite wings, focusing on the effects of aspect ratio,
sweep angle, and stacking sequence on flutter speed. Parametric studies revealed that forward-swept
configurations exhibit higher flutter speeds but are constrained by divergence, which is influenced by
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the structural properties of the composite materials and the stacking sequence. Similarly, Bach et
al. [4] studied forward-swept composite wings, emphasizing the significance of bend-twist coupling, which
mitigates aeroelastic divergence and enhances performance at varying sweep angles. Optimized stacking
sequences were shown to reduce structural mass while maintaining aerodynamic efficiency.

Farsadi et al. [5] investigated the coupled mode behavior of swept composite wings, focusing on the
influence of bending and torsion slopes, which affect the effective angle of attack and downwash velocity.
The study found that the sweep angle plays a critical role, with increased sweep leading to higher response
amplitudes and longer damping times, indicating a complex interaction between structural dynamics and
aerodynamic forces. These findings highlight the importance of understanding the coupled dynamics in
swept wings to improve aeroelastic performance.

In addition to the structural design considerations, Ibrahim et al. [6] explored the potential for
suppressing wing flutter through parametric excitation, a technique known to stabilize certain dynamic
systems. This approach, which induces excitation along the wing’s plane of highest rigidity, was analyzed
for its ability to stabilize the wing near the critical flutter speed. The use of nonlinear analysis and
bifurcation diagrams further expanded the understanding of the conditions under which parametric
excitation can suppress flutter.

Further studies have provided additional insights into the design of composite wings. Guo et al. [7]
focused on forward-swept wings and highlighted the trade-off between maximizing flutter velocity and
minimizing divergence speed, underscoring the importance of considering these factors in the design
process. Fabbiane et al. [8] proposed a bi-objective optimization strategy to alleviate static and dynamic
aeroelastic loads in composite wings, though without specific consideration of coupled mode behavior.
Meanwhile, Ritter et al. [9] investigated forward-swept composite wings through unsteady test cases,
emphasizing the importance of inertial coupling and highlighting the role of finite element models in
capturing the first bending mode frequency.

Xue et al. [10] discussed the optimization of composite material properties and stacking sequences
to enhance the aeroelastic performance of forward-swept wings, with an emphasis on torsion divergence
and structural deformation. The study used surrogate models to analyze the relationship between design
variables and structural deformation, offering a new perspective on optimizing wing performance under
specific loading conditions. Similarly, Kawakami et al. [11] focused on the aeroelastic characteristics of
aft-swept composite wings, using a minimum weight design approach to enhance structural damping
while ensuring flutter and divergence speed constraints.

Finally, Farsadi et al. [12] and Kameyama et al. [13] presented multidisciplinary design optimization
approaches for composite wings, integrating nonlinear aeroelastic analyses and structural damping to
improve performance. Maharan et al. [14] employed finite element methods to analyze composite
plate swept wings, incorporating advanced modeling techniques to enhance the accuracy of aeroelastic
predictions for complex composite structures.

These studies collectively highlight the intricate behavior of swept composite wings under aeroelastic
loading, with particular emphasis on the critical role of bending-torsion stiffness coupling, sweep angle,
and material properties in determining the stability and performance of these wings. The findings from
these investigations provide a comprehensive foundation for further exploration into the coupled mode
behavior of swept composite wings, offering valuable insights for the design of more efficient and stable
aeroelastic systems.

The current research discusses straight and swept wings and compares the proposed model’s results
with the published data. It uses an analytical approach and a finite element method to show the swept
wing’s effect on flutter and divergence speeds.

2. MATHEMATICAL MODELING
The coordinate system and the geometry of the laminated wing, with a sweep angle (Λ), chord length
(c), span length (l), and plate thickness (t), are shown in Fig.1.
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Figure 1 . Geometry of a swept laminated wing

2.1. Classical plate theory (CPT)
In CPT, the displacement field of a plate is given in [15] and can be expressed as:

ux(x, y, z, t) = ux0(x, y, t)− z
∂wz0(x, y, t)

∂x
(1)

vy(x, y, z, t) = vy0
(x, y, t)− z

∂wz0(x, y, t)

∂y
(2)

wz(x, y, z, t) = wz0(x, y, t) (3)

According to the kinematic hypotheses, the strain–displacement relationships for a plate can be written
as:

εx =
∂ux0

∂x
− z

∂2wz0

∂x2
(4)

εy =
∂vy0

∂y
− z

∂2wz0

∂y2
(5)

γxy =
∂ux0

∂y
+
∂vy0

∂x
− 2 z

∂2wz0

∂x∂y
(6)

The relationships between the applied forces and moments and the resulting mid-plane strains and
curvatures for a general laminate are expressed in matrix form as follows:{

N
M

}
=

[
A B
B D

]{
ε
K

}
(7)

where force and moment per unit length are denoted by N and M , respectively. The extensional stiffness
matrix, the coupling stiffness matrix, and the bending stiffness matrix are represented by the matrices
[A], [B], and [D], respectively. The mid-plane strain vector is [ε], while the curvature strain vector is [K].
The values of [B] in a symmetric laminate are zero, meaning that there is no direct coupling between
in-plane forces and bending moments. Therefore,{

Mx

My

Mxy

}
=

[
D11 D12 D16

D21 D22 D26

D61 D62 D66

]{
Kx

Ky

Kxy

}
(8)

2.2. Orthotropic composite elastic behavior
From the stress-strain relationships for an orthotropic material [16], the stiffness components, Dij , for an
n-ply laminate with arbitrary ply angle orientations can be given as:

Dij =
1

3

n∑
k=1

[
Q̄ij

]
k
(z3k − z3k−1) (9)
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2.3. General Rayleigh-Ritz formulation
The fundamental frequencies are obtained by applying the Rayleigh-Ritz method formulation. As stated
in [2] and [17], the wing transverse deflection can be represented as:

w =

4∑
i=1

γi(x, y)qi(t) (10)

where qi(t) represents the Rayleigh-Ritz generalized displacements, and γi(x, y) represents the assumed
mode modes, expressed as:

γi(x, y) = ϕi(x)ψi(y) (11)

The mode shapes, ϕi(x) in x-direction and ψi(y) in y-direction, are defined according to [18] and are
shown in Fig. 2.
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Figure 2 . Mode shapes of the rectangular composite wing: (a) In the x-direction ϕi(x), and
(b) In the y-direction ψi(y).

The equation for the transverse deflection of wings is rewritten as follows:

w = h+ ȳα (12)

where
h = ϕ1q1 + ϕ2q2 (13)

α =
1

c
(ϕ3q3 + ϕ4q4) cosΛ− (

dϕ1
dx̄

q1 +
dϕ2
dx̄

q2) sinΛ (14)

The plunge and pitch deflections are represented by h and α, respectively, as shown in Fig. 3.

Figure 3 . Force-Moment-deflection diagram of swept laminated wing, illustrating plunge h
and pitch α deflections.

2.4. Lagrange Equation
According to [17], Lagrange’s equation is based on three key components: kinetic energy (T ), potential
energy (V ), and generalized force (Qi), which represents the virtual work performed by external forces
(δWext). It is expressed as follows:

d

dt
(
∂T

∂q̇i
) +

∂V

∂qi
− ∂T

∂qi
= Qi (15)
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2.4.1. Kinetic energy equation : It represents energy related to the motion of the plate and the limits
of integration of the swept wing are considered using ℓ = l

cos Λ , x = x̄ cos(Λ), and y = ȳ, hence:

T =
1

2
cos(Λ)

∫ ℓ

0

∫ c
2

− c
2

mẇ2 dȳ dx̄ (16)

Where t is the wing thickness, m is the wing mass m = ρ · t, and ρ is the wing specific gravity (density
per unit area). The first term of (15) can be expressed algebraically as follows by substituting (12) into
(16), differentiating w.r.t qi, and assuming a harmonic motion qi = q̄ie

iωt, hence:

d

dt
(
∂T

∂q̇i
) = −ω2[M]{q̄i}eiωt (17)

2.4.2. Potential energy equation : It defines the energy stored in the laminated wing because of its
position [18] and assumes that no forces act in the x and y directions. Hence, after simplification, it can
be expressed as follows:

V =
1

2
cosΛ

∫ ℓ

0

∫ c
2

− c
2

[
D11wxx

2 + 2D12wxxwyy +D22wyy
2

+4D16wxxwyy + 4D26wyywxy + 4D66wxy
2
)
dȳdx̄

(18)

The final matrix form can be expressed as follows by substituting (12) into (18) and differentiating (18)
w. r. t. qi, hence:

∂V

∂qi
= [K]{q̄i}eiωt (19)

2.4.3. External work equation : The generalized forces, which represent the changes in the external
forces on the plate according to [1, 17], are stated below:

δWext = cosΛ

∫ ℓ

0

∫ c
2

− c
2

∆pzδwdȳdx̄ (20)

where ∆pz represents the distributed lateral load per unit area. Eq. 20 can be decomposed as follows:

δWext = Q1δq1 +Q2δq2 +Q3δq3 +Q4δq4 (21)

where

Q1 = cosΛ

∫ ℓ

0

Lϕ1dx̄− cosΛ sinΛ

∫ ℓ

0

Ma
dϕ1
dx̄

dx̄ (22)

Q2 = cosΛ

∫ ℓ

0

Lϕ2dx̄− cosΛ sinΛ

∫ ℓ

0

Ma
dϕ2
dx̄

dx̄ (23)

Q3 = −cosΛ2

c

∫ ℓ

0

Maϕ3dx̄, Q4 = −cosΛ2

c

∫ ℓ

0

Maϕ4dx̄ (24)

The relations for 2D incompressible unsteady aerodynamic flow were derived by Spielberg [19] and adapted
for the swept plate as described in [17]. The generalized forces, as previously shown in Fig. 3 where
aerodynamic lift is denoted by L and moment by Ma, can be written as:

L = πρb3ω2 cosΛ

[
Lh

h

b
+ Lαα

]
eiωt (25)

Ma = πρb4ω2 cosΛ

[
Mh

h

b
+Mαα

]
eiωt (26)
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where

Lh = 1− 2i
C(k)

k
, Lα =

i

k
+ 2

C(k)

k2
+ i

C(k)

k
(27)

Mh = −iC(k)
k

, Mα =
1

8
− i

2k
+
C(k)

k2
+ i

C(k)

2k
(28)

The lift and moment coefficients, Lh, Lα, Mh, and Mα, are caused by changes in the plunge (h) and
pitch (α) deflections, respectively.

Where the R. T. Jones approximation for the Theodorsen function, denoted by C(k), is written as
follows:

C(k) =
0.5P 2 + 0.2808P + 0.01365

P 2 + 0.3455P + 0.01365
(29)

where P = ik and k is the reduced frequency. The final matrix form is obtained by substituting Equations
(13), (14), (22), (23), (24), (25), and (26) into the appropriate equations, as stated below:

Qi = πρb3ω2 [A] {q̄i} eiωt (30)

Finally, substitute Equations (17), (19), and (30) into Lagrange’s equation. This yields:

(−ω2[M] + [K]){q̄i}eiωt = πρb3ω2[A]{q̄i}eiωt (31)

2.5. Free vibration analysis
By setting the generalized forces (Qi) to zero on the right-hand side in matrix form (31), the four
natural frequencies (first bending, first torsion, second bending, and second torsion) can be obtained.
This involves setting the determinant of the resulting eigenvalue problem to zero and extracting the
eigenvalues. The natural frequencies are then calculated as the square root of each eigenvalue.

2.6. Aero-elastic analysis
After obtaining natural frequencies, an aeroelastic analysis is performed to determine the divergence and
flutter velocities of the composite wings.

2.6.1. Flutter analysis : The V-g method is used to analyze structural stability through damping.
Positive structural damping indicates instability, while negative damping indicates that the structure
is stable. Flutter occurs when the actual damping of the structure matches the structural damping
coefficient, g.

The matrix form in Equation (31) is simplified and rearranged as:

Z [K]− [B] = 0 (32)

Where the complex eigenvalue (Z) and [B] can be respectively represented as: Z = (1+ig)
ω2 , and

[B] = πρb3[A] + [M]. The equation of motion can be solved at a specified value of the reduced fre-
quency (κ).This leads to four complex eigenvalues, denoted as Zi. For each complex eigenvalue (Zi), the
corresponding natural frequency (ω) and structural damping (g) can be determined using the following

relationships: ω = 1√
Re(Z)

, and g = Im(Z)
Re(Z) . The airspeed (V ) can then be calculated using the following

equation: V = bω
κ .

By repeating this process for a range of reduced frequency values, the V-g diagram can be generated.
This diagram plots the structural damping (g) against the airspeed (V ) for each eigenvalue.

Flutter occurs when the structural damping (g) becomes zero. The corresponding airspeed at this
point is the flutter speed (VF ), and the associated frequency is the flutter frequency (ωF ).

2.6.2. Divergence analysis : It is computed using the V-g diagram, in which the V-g branch, without
exceeding the V-axis, goes from a negative value to zero. The V-ω diagram, in which the V-ω branch
goes to zero frequency, is the clearest from the V-g diagram.
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3. RESULTS AND DISCUSSION
3.1. Free vibration analysis
3.1.1. Straight wings : The analytical and numerical analysis is evaluated using MATLAB code
and NASTRAN software to validate the current analysis. In the finite element model, a CQUAD4
quadrilateral shell element with a size of 2 mm is utilized, resulting in a mesh with 5776 elements and
5967 nodes. In the current research, the material properties and dimensions used are presented by S. J.
Hollowell et al. [1]. A variety of laminates are investigated to confirm that the current model is applicable
for a broad range of bending-torsion coupling stiffness. The flexural moduli (Dij) of the various layers of
the laminated composite plates used in this study and subsequent subsections are presented in Table 1.
The results of the present model (Pres.), the finite element model (FEM), and the experimental results
(Exp.) are compared in Table 2, with allowable differences (Diff%).

Table 1 . Flexural modulus of the straight laminated wing.

Lamination D11 D12 D22 D16 D26 D66

[02/90]s 5.473 0.128 0.651 0 0 0.260
[±45/0]s 1.996 1.291 1.803 0.579 0.579 1.422
[+452/0]s 1.996 1.291 1.803 1.254 1.254 1.422
[−452/0]s 1.996 1.291 1.803 -1.254 -1.254 1.422
[+302/0]s 3.541 1.000 0.840 1.589 0.583 1.132
[−302/0]s 3.541 1.000 0.840 -1.589 -0.583 1.132

In Table 1, the laminate [02/90]s is the only uncoupled example and exhibits the maximum bending
stiffness, D11, with zero bending-torsion coupling stiffness coefficients, D16 and D26. The maximum
torsional stiffness, D66, is demonstrated by the three laminates [±452/0]s, [+452/0]s, and [−452/0]s;
however, , except for the laminate [±452/0]s, they still show significant values for D16 and D26. The
maximum bending-torsion coupling stiffness, D16, and significant bending stiffness, D11, are exhibited
by the two laminates [+302/0]s and [−302/0]s. Notably, as illustrated in Fig.4, the flexural modulus of
laminate [−θ2/0]s and laminate [+θ2/0]s are the same, with the only difference being the signs of D16.

-45 -30 -15 0 +15 +30 +45

-1

0

1

Figure 4 . Flexural modulus of the laminate [θ2/0]s.
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Table 2 . Natural frequencies of the straight laminated wing.

Lamination Mode shapes Pres. FEM REF. [1]
Diff.%

Pres. with FEM Pres. with [1]

[02/90]s

1B 12.747 12.73 12.7 0.13 0.37
1T 35.533 41.76 34.4 -14.91 3.29
2B 79.885 79.753 79.8 0.17 0.11
2T 130.861 142.32 - -8.05 -

[±45/0]s

1B 7.231 6.303 7.25 14.72 -0.26
2B 45.743 39.111 47.9 16.96 -4.5
1T 80.850 79.018 80.6 2.32 0.31
2T 246.611 226.47,5th - 8.89 -

[+452/0]s& [−452/0]s

1B+1T 5.162 5.388 5.23 -4.20 -1.30
2B+1T 35.508 33.307 46.8 6.61 -24.13

1T 81.538 55.243 81.4 47.60 0.17
2T 248.119 168.4,5th - 47.34 -

[+302/0]s& [−302/0]s

1B+1T 6.288 6.906 6.35 -8.95 -0.98
2B+1T 44.292 41.063 59.7 7.86 -25.81

1T 74.548 64.734 75.9 15.16 -1.78
2T 228.943 197.05,5th - 16.19 -

Table 2, except for the laminate [02/90]s, all the laminated models have the first bending mode (1B) as
the smallest frequency, followed by the second bending (2B), first torsion (1T), and second torsion (2T),
respectively, as shown in Figs. 5b, c, d. As seen in Fig. 5a, the first torsion (1T) and second bending
(2B) modes switch places for the cross-ply laminate because of the clear bending-torsion decoupling.
This decoupling results from the absence of significant off-axis stiffness contributions, which allows the
bending and torsion modes to behave independently.

Due to the significant values of coupling stiffnesses D16 and D26 for the laminate [+452/0]s, which
produce the frequency disparities, the first two natural frequencies of the laminate [+452/0]s are lower
than those of the laminate [±45/0]s. This is because the stiffness coupling alters the structural response,
reducing the overall stiffness and shifting the natural frequencies. The bending and torsion frequencies of
the laminated models are highly sensitive to this coupling, as demonstrated by the frequency disparities
in the results.

Figure 5 visually illustrates these effects by showing the mode shapes (1B, 1T, 2B, 2T) for different
laminates, such as [02/90]s, [±45/0]s, [+452/0]s, and [+302/0]s. It highlights how bending-torsion
coupling influences the mode shapes. For instance, laminates with positive coupling (e.g., [+452/0]s)
exhibit coupled modes (e.g., 1B+1T), where bending and torsion deformations occur simultaneously. In
contrast, laminates with negative coupling (e.g., [−452/0]s) show distinct bending and torsion modes, as
the coupling stiffness causes the deformations to work against each other. This figure helps visualize the
stiffness anisotropy and its impact on the structural dynamics of the wing.

A notable observation is that the second bending mode (2B) coupling with the first torsion mode
(1T) in the laminates [+θ2/0]s and [−θ2/0]s differs from Ref. [1]. This discrepancy arises because Ref. [1]
used a three-term deflection model, whereas the finite element method (FEM) employed in this study can
more accurately capture the coupled mode behavior. Additionally, the unbalanced laminates [+θ2/0]s
and [−θ2/0]s exhibit significant discrepancies in the first torsion (1T) and second torsion (2T) modes, as
the FEM accounts for transverse shear deformation and warping effects, which are ignored by Classical
Lamination Theory (CLT). These effects are particularly important in torsion-related modes and are
more adequately represented in finite element models.
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1B 1T 2B 2T

(a)

1B 2B 1T 2T

(b)

1B+1T 2B+1T 1T 2T

(c)

1B+1T 2B+1T 1T 2T

(d)

Figure 5 . Mode shapes of the straight laminated plate: (a) [02/90]s, (b) [±45/0]s, (c) [+452/0]s
& [−452/0]s, and (d) [+302/0]s & [−302/0]s.
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3.1.2. Swept wings : Swept-forward wing is represented by negative angles, and the swept-back wing
is represented by positive angles. The present results of swept wings are illustrated in Table 3.

Table 3 . Natural frequencies of the swept laminated wing.

Lamination Mode shapes Λ = 0◦ Λ = 10◦ Λ = 20◦ Λ = 30◦

[06]

1B 12.970 12.580 11.464 9.776
1T 34.466 35.572 34.466 31.291
2B 78.707 81.281 78.707 69.918
2T 127.012 131.731 127.012 113.660

[+152/0]s& [−152/0]s

1B 9.036 8.756 7.959 6.765
1T 47.049 48.499 47.049 42.791
2B 62.978 65.581 62.978 54.852
2T 168.721 174.304 168.721 152.490

[+302/0]s& [−302/0]s

1B 6.289 6.095 5.544 4.717
2B 42.416 44.292 42.416 36.619
1T 72.154 74.548 72.154 65.244
2T 221.893 228.944 221.893 201.454

[+452/0]s& [−452/0]s

1B 5.162 5.005 4.558 3.884
2B 34.046 35.508 34.046 29.470
1T 79.031 81.538 79.031 71.804
2T 240.554 248.119 240.554 218.712

The results presented in Tables 3 and Figure 6 demonstrate a consistent trend: the natural frequencies
of the laminated models decrease with increasing sweep angle (Λ), regardless of whether it is forward or
backward sweep. This behavior can be attributed to the reduction in structural stiffness as the sweep
angle increases. When a wing is swept, the effective spanwise stiffness decreases because the load path
becomes less direct, leading to a reduction in natural frequencies. This is particularly evident in the
bending modes, where the wing’s ability to resist deformation is diminished due to the sweep-induced
geometric changes.

Figure 6: Natural Frequencies of Swept Laminated Plates visually illustrates this trend by plotting
the natural frequencies of swept laminated wings as a function of the sweep angle (Λ). The figure shows
that increasing the sweep angle reduces the natural frequencies, with laminates exhibiting higher off-axis
stiffness (e.g., [+452/0]s) displaying different trends compared to those with minimal coupling (e.g., [06]).
This highlights the influence of stiffness anisotropy on the frequency characteristics of swept wings.

The influence of the outer layer orientation angle (θ) on the frequency characteristics is further explored
in Figure 7: Natural Frequencies of Outer Layer Orientation Angle (θ). This figure shows how the natural
frequencies vary with θ for different sweep angles. It reveals that laminates with positive orientations
(e.g., [+302/0]s) have higher frequencies compared to those with negative orientations (e.g., [−302/0]s).
This is due to the stiffness coupling introduced by the off-axis plies, which alters the structural response
to dynamic loading. As θ increases, the coupling between bending and torsion becomes more pronounced
due to the increased D16 and D26 terms in the flexural stiffness matrix. This coupling causes a shift
in the mode order, where the first torsion mode (1T) occurs after the second bending mode (2B). This
phenomenon is a direct result of the stiffness anisotropy introduced by the off-axis plies, which alters the
structural response to dynamic loading.

For laminates with lower outer layer orientation angles, such as [06] and [+152/0]s, the mode order
remains consistent: first bending (1B), first torsion (1T), second bending (2B), and then second torsion
(2T). This is because these laminates exhibit minimal bending-torsion coupling, and their stiffness is
dominated by the axial and transverse stiffness components (D11 and D22). The absence of significant off-
axis stiffness contributions ensures that the natural frequencies follow the expected order for a decoupled
system.

The observed discrepancies between the present model and the finite element results, particularly for
the first torsion (1T) and second torsion (2T) modes, can be explained by the limitations of Classical
Lamination Theory (CLT). CLT does not account for transverse shear deformation, which becomes
increasingly important in torsion-related modes. Additionally, warping effects, which are more accurately
captured by finite element models, are not considered in the present analytical model. These factors
contribute to the differences in the higher-order modes, especially for laminates with significant bending-
torsion coupling.
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Figure 6 . Natural frequencies of swept laminated plates.
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Figure 7 . Natural frequencies of outer layer orientation angle θ.

3.2. Aeroelastic analysis
3.2.1. Straight wings : The flutter and divergence speeds of the straight laminated wing were compared
with those reported in the literature (Refs. [1, 12, 13]), as summarized in Table 4. The flutter and
divergence speeds for the straight laminated wing were determined by analyzing V-g curves, as illustrated
in Fig. 8.

Table 4 . Flutter and divergence speeds and frequencies of the straight laminated wing.

Present Ref [1] Ref [18] Ref [19]
Lamination

VD VF ωF VD VF ωF VD VF VD VF

[02/90]s 20.11 18.582nd 23.24 22.3 21 25 30.6 23 25.4 26.4
[±45/0]s – 42.582nd 39.6 – 39 39 – 40.1 – 47.5
[+452/0]s – 36.052nd 31.5 – 27.8 28 – 27.5 – 27.8
[−452/0]s 10.25 47.993rd 47.48 9.9 27.8 27 13.7 27.8 12.7 29.1
[+302/0]s – 30.982nd 33.65 – 27.8 31 – 27.1 – 27.4
[−302/0]s 9.69 49.953rd 39.93 10.2 30 29 13.8 37.3 12.8 48.1

The analysis of Tables 1 and 4 reveals a strong correlation between bending-torsion coupling stiffness
and aeroelastic stability. The underlying structural mechanics and material behavior of the laminated
wings can explain the observed trends.

Figure 8: V-ω & V-g Curves of the Straight Laminated Wing presents the V-ω (frequency vs. airspeed)
and V-g (damping vs. airspeed) curves for straight laminated wings. These curves are used to determine
the flutter and divergence speeds by identifying the points where damping becomes negative (flutter)
or the frequency drops to zero (divergence). The curves show how the bending-torsion coupling and
outer layer orientation influence the aeroelastic stability of the wing. For example, laminates with
positive bending-torsion coupling stiffness values (D16 and D26), such as [+θ2/0]s and [±θ/0]s, exhibit
divergence-free behavior. This is because the positive coupling enhances the structural stability of the
wing by aligning the bending and torsional deformations in a way that delays the onset of divergence.
Flutter in these laminates typically occurs in the second bending mode (2B), as evidenced by the V-g
curves for laminates [±45/0]s, [+452/0]s, and [+302/0]s in Figs. 8b, c, and e. This behavior results from
the stiffness anisotropy introduced by the off-axis plies, which increases the torsional rigidity and delays
the onset of flutter.

Conversely, laminates with negative bending-torsion coupling stiffness, such as [−452/0]s and
[−302/0]s, exhibit divergence occurring before flutter. This is because the negative coupling reduces
the structural stability of the wing, making it more susceptible to divergence at lower airspeeds. In these
cases, divergence typically occurs in the first bending mode (1B), while flutter occurs later in the third
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mode (1T), as observed in Figs. 8a, d, and f. The negative coupling causes the bending and torsional
deformations to work against each other, reducing the overall stiffness and making the wing more prone
to aeroelastic instabilities.
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Figure 8 . V-ω & V-g curves of the straight laminated wing.

3.2.2. Swept wings : The flutter and divergence speeds are obtained as presented in Table 5.

Table 5 . Flutter and divergence speeds of the swept laminated wing at various sweep angles.

Sweep angle Speeds [−452/0]s [−302/0]s [−152/0]s [02/0]s [+152/0]s [+302/0]s [+452/0]s

Λ = −30◦ VD 6.004 6.339 7.771 14.015 No No 22.114
VF 37.0873rd 33.8383rd 18.7583rd 17.4542nd 24.2752nd 31.4452nd 34.9573rd

Λ = −20◦ VD 7.145 7.375 8.861 15.990 No No No
VF 45.2543rd 47.5723rd 37.7712nd 18.7552nd 24.8052nd 32.0032nd 42.0693rd

Λ = −10◦ VD 8.501 8.488 9.917 18.007 No No No
VF 48.2413rd 51.2303rd 36.4982nd 18.6892nd 24.4362nd 32.8552nd 39.0292nd

Λ = 0◦ VD 10.246 9.687 10.890 20.128 No No No
VF 47.9893rd 49.9533rd 37.6342nd 18.5652nd 23.3482nd 30.9852nd 36.0502nd

Λ = 10◦ VD 12.949 11.044 11.747 22.608 No No No
VF 44.3383rd 41.6383rd 39.4672nd 17.9072nd 22.3912nd 28.6122nd 31.9732nd

Λ = 20◦ VD 19.544 12.765 12.463 26.342 No No No
VF 39.3773rd 34.4693rd 36.2102nd 16.6102nd 21.1102nd 23.9982nd 26.0532nd

Λ = 30◦ VD No 15.473 12.986 30.899 No No No
VF 34.6923rd 30.1353rd 16.0613rd 15.2052nd 18.4582nd 20.6322nd 22.3762nd

Table 5 illustrates the variation of flutter and divergence speeds with sweep angle (Λ) for various
laminated models.The flutter speeds for the laminates [−452/0]s, [−302/0]s, and [06] consistently decrease
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as the sweep angle increases. For the laminates [−452/0]s and [−302/0]s, the flutter speeds are associated
with the third mode shape (1T). In the case of the laminate [−152/0]s, the flutter speeds correspond to
the second mode shape (1T) when the sweep angle is in the range of −20◦ < Λ < 20◦. However, at sweep
angles outside this range (−20◦ > Λ and Λ > 20◦), the flutter speeds are linked to the third mode shape
(2B). For the laminate [06], the flutter speeds are also associated with the second mode shape (1T).

For the laminates [+452/0]s, [+302/0]s, and [+152/0]s, the flutter speeds decrease as the sweep-back
angle increases, while they increase as the sweep-forward angle increases. The flutter speeds relate to the
second mode shape (1T) for the laminate [+152/0]s, and they correspond to the second mode shape (2B)
for the laminates [+452/0]s and [+302/0]s as shown in Fig. 9a. The laminates [−452/0]s, [−302/0]s,
[−152/0]s, and [06] exhibit slight increases in divergence speed as the sweep angle (Λ) becomes more
positive, particularly when Λ exceeds 0◦. In contrast, the laminates [+452/0]s, [+302/0]s, and [+152/0]s
show slight increases in divergence speed as the sweep angle becomes more negative, especially at Λ < 0◦.

Furthermore, divergence speeds are generally higher for laminates with positive outer ply orientations
([+452/0]s, [+302/0]s, and [+152/0]s) compared to those with negative outer ply orientations ([−452/0]s,
[−302/0]s, and [−152/0]s), as illustrated in Fig. 9b.

Referring to Tables 5, the flutter and divergence speeds are a function of the outer layer orientation
angle for various sweep angles. The results provide insight into how flutter speeds vary with changes in the
outer layer orientation and sweep angle. The flutter speeds are highly sensitive to outer layer orientation
angles, with significant variations depending on the orientation. Sweep-forward angles (Λ < 0◦) tend to
result in higher peak flutter speeds compared to sweep-back angles as shown in Fig.10a.

Divergence speeds are generally lower and less sensitive to outer layer orientation angles at sweep
forward angles and are higher at sweep back angles. Positive orientation angles (θ > 0) generally result
in higher divergence speeds compared to negative orientations (θ < 0) as shown in Fig. 10b.

Due to the high bending-torsion coupling of the laminates [+θ2/0]s, flutter speeds decrease as the
sweep-back angle increases, while they increase as the sweep-forward angle increases. Additionally, a
divergence-free wing is observed, as shown in Fig. 11. Specifically, as the sweep angle increases, the
flutter speeds for the laminate [θ2/0]s decrease. In contrast, the divergence speeds increase with a larger
sweep-back angle and decrease with a larger sweep-forward angle, as illustrated in Fig. 12.
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Figure 9 . Variation of flutter and divergence speeds with sweep angle.

-90 -75 -60 -45 -30 -15 0 +15 +30 +45 +60 +75 +90

10

20

30

40

50

(a) Flutter speed vs. outer layer orientation.

-90 -75 -60 -45 -30 -15 0 +15 +30 +45 +60 +75 +90

20

40

60

80

100

(b) Divergence speed vs. outer layer orientation.

Figure 10 . Variation of flutter and divergence speeds with outer layer orientation angle.
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Figure 11 . Flutter and divergence speeds of the laminate [+302/0]s.
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Figure 12 . Flutter and divergence speeds of the laminate [−302/0]s.

4. Conclusion
This study investigated the aeroelastic behavior of swept composite wings, focusing on flutter and
divergence. Key findings include the significant influence of bending-torsion coupling stiffness on
aeroelastic stability. Negative coupling can lead to divergence occurring before flutter, while positive
coupling can effectively increase the divergence speed. Furthermore, increasing the sweepback angle
generally increases divergence speed. The proposed analytical model provides a time-efficient alternative
to finite element methods for analyzing these critical aeroelastic phenomena. These findings have
significant implications for aircraft design, enabling the optimization of composite wing structures through
tailored layup schedules to enhance aeroelastic stability and performance.
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