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Abstract. Radio Direction-Finding (DF) is an extremely important process in numerous commercial
and military applications. Array signal processing-based DF methods have been developed to improve
estimation performance in recent applications that require higher resolution and accuracy. Practically, angle
of arrival (AOA) estimation is challenging due to various intrinsic and extrinsic parameters that affect the
results. Therefore, clarifying these parameters and researching their impact on various DF methods are
considered important research topics. The Cramer-Rao Bound (CRB) for estimating AOA is calculated
based on a model of a linear antenna array system. This bound identify the factors that significantly
impact the estimation performance. The current study conducts a comparative analysis of the most widely
used array-signal-processing-based direction-finding (DF) methods under different conditions of the CRB
parameters. According to the simulation results, Multiple Signal Classification (MUSIC) AOA estimator
provides more accurate and stable results. Accordingly, it is chosen for implementation using a prototype
testbed based on Software Defined Radio (SDR) technology using National Instruments Universal Software
Radio Peripheral (NI-USRP) platform version 2930. Experimental outcomes were tested at various AOA
values. The appendix includes the complete derivation for the CRB relation applied on the system model.

1. Introduction
Direction-Finding (DF) has drawn significant attention in the field of array signal processing as it is used
in numerous applications, both military and civilian, including radar, navigation, tracking RF sources,
rescue, wireless communications, emergency assistance cases, radio astronomy, army surveillance, and
security services [1–4]. Observing and determining the directions of the incoming signals on the antenna
array is the foundation of the radio monitoring systems. To estimate the AOA of incoming waves, many
different methods have been developed over time.

• Classical DF methods
(i) DF based on directional antennas: This setup is simple and inexpensive, and it uses a

mechanical rotated directional antenna to provide great sensitivity, making it the simplest
method of DF. Due to the antenna’s limited rotation speed and directivity, this approach has
some drawbacks that reduce the probability of intercept [1].

(ii) DF based onWatson-watt method: It has a compact size and a straightforward implementation.
However, this method has poor accuracy that can not handle numerous sources simultaneously
and have not accurate correct measurements in multi-path situations [5, 6].
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(iii) DF based on Doppler effect: It operates in both stationary and moving modes, however it
is unable to handle correlated sources. Moreover,it performs poorly with signals that are
horizontally polarised and since Pseudo-Doppler requires greater sensitivity, the receiving
circuit quality needs to be more sophisticated. [1, 6].

(iv) DF based on Correlative Interferometer (CI): compared to previous DF methods, CI has
many important advantages. It has excellent accuracy, great multi-path immunity, and
the accuracy of CI-based systems is not impacted by signal polarization. There are some
operational constrains that appear on inability to handle multiple sources of the same frequency,
having poorer resolution and accuracy than super-resolution methods and requiring very
specialized engineering and production resources due to the related extremely strict design and
manufacturing tolerances [1, 7–9].

• Array-signal-processing-based DF methods: These methods use propagation delays between
antenna array elements to calculate the signal’s AOA [5, 8, 10, 11]. With benefits like Array
Gain, handling many signals simultaneously, and interference reduction, these methods significantly
outperform classical DF methods in terms of estimation performance and resolution [8, 9, 12]. the
following methods represents some of the most applicable methods of this category.
(i) DF based on Bartlett method: It is seen to be the most straightforward technique, although it

lacks good resolution and precision [3, 10, 11, 13].
(ii) DF based on Capon method: Although it outperforms Bartlett, it does not offer the highest

estimation accuracy or resolution [2, 10, 11, 13].
(iii) DF based on Linear Prediction: This approach is based on predicting the output of a single

element utilizing linear combinations of other elements’ outputs, and then getting array weights
that minimize the mean-square-error between both estimated and real output. However, the
choice of that element influences the estimating performance and the resolution capability, there
is no standard for choosing the position of the selected element and this consider a drawback
which limits its practical implementation [3, 10, 11].

(iv) DF based on Maximum Entropy: Although it is viewed as a development of beamforming
techniques that produces improved performance, its resolution and performance are inferior
to those of sub-space decomposition techniques. This approach requires choosing a specific
column of the inverse array correlation matrix in order to compute the spatial spectrum. It is
important to note that the selection of which column from the inverse array correlation matrix
to employ might have a big impact on the reached resolution [3, 10, 11].

(v) DF based on MUSIC algorithm: Although it is more reliable and provides a high level of
resolution and accuracy, it cannot resolve highly correlated sources without a pre-processing
stage and it must know exactly how many incoming signals there are [2, 10, 12–15].

(vi) DF based on Root-MUSIC algorithm : It is regarded as a modified form of the MUSIC
algorithm. It minimizes computational complexity and raises estimation resolution. Its
limitation to uniform-linear-array (ULA) is a vital drawback [2, 4, 10, 13, 15].

(vii) DF based on ESPRIT algorithm: Although it reduces computing complexity, it can’t handle
correlated sources and requires a doublets array [2, 11, 13, 14].

Despite of the benefits that array-signal-processing-based DFmethods have, a serious drawback exists
in their computational intensive needs [2,8]. The CRB-based study depends on the concept that utilizing
noisy data to estimate parameters will produce inaccurate results [16]. This indicates that there is an
estimation variance between the actual value and the estimated value in every estimating process. In
real-time applications, numerous variables, including those linked to the application environment as well
as the source of the incoming signal, influence the outcomes of a AOA estimation process such as signal-
to-noise ratio (SNR), number of the received snapshots, total number of elements in the array, coherence
between received signals, the value of the AOA itself, ..... etc [4, 12, 17, 18]. The CRB derived equation
of the system under study can serve to clarify these parameters, and analyzing these parameters can then
aid to reduce the estimation variance and enhance estimation performance [19, 20].
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In this paper, we study the key parameters affecting AOA estimation process which are specified from
the derived CRB equation applied on linear antenna array DF system. In addition, a comparison study
based on these parameters is used to select the appropriate DF method to be implemented using SDR
technology.

The remainder of this paper is structured as follows, Section “2” presents the system modeling and
its CRB derived equation to define the parameters that affect the estimation performance. The key
benefits and drawbacks of the DF methods under study and their fundamental operating principles are
outlined in section “3”. Section “4” provides the simulation analysis,which supports the conclusion of the
theoretical analysis. Moreover,the estimation performance of the most popular DF methods is compared
under various conditions of the parameters affecting them. The experimental implementation of the most
appropriate and efficient DF method is included in section “5” using a NI-USRP SDR platform. Section
“6” then concludes the paper research work. Finally, “Appendix A” contains the detailed mathematical
derivation for the CRB of the system under consideration.

2. System modelling and CRB derivation
2.1. System modelling
As shown in figure 1, consider a far-field narrow band Signal-Of-Interest (SOI) incident on a ULA
composed ofM isotropic antenna elements with an inter-element spacing of d. The SOI is assumed to be
impinging with center-frequency Fc and angle θ. Suppose we are coping with a White-Gaussian-Noise
channel (AWGN) in which noise samples are i.i.d and ∼ N (0, σ2) where σ2 is the noise variance.

The received signal can be expressed as follows

X = a(θ)s+ N (1)

where, N ∈ CM×J , s ∈ C1×J and J are the noise matrix, the vector of SOI samples and the total
number-of-snapshots, respectively. Steering vector a(θ) ∈ CM×1 is defined as follows

a(θ) = [1 e−i2πFc
(m−1)d sin(θ)

C ... e−i2πFc
(M−1)d sin(θ)

C ]T (2)

Figure 1. System Model.
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where θ is AOA of SOI, d = λ/2 and λ represents the wavelength related to Fc. DF algorithms based
on array processing depend on array recieved signal correlation matrix, which is defined as follows

R = E[XXH ] (3)

As previously assumed, SOI and noise are uncorrelated, so equation (3) can be reduced to the following
form

R = a(θ)E[ssH ]aH(θ) + E[NNH ] (4)
= a(θ)RssaH(θ) + σ2IM×M (5)
= a(θ)RssaH(θ) + Rnn (6)

where Rnn and Rss represent the noise and the source correlation matrix, respectively.
Practically, during reception time, receiver can acquire a finite number of snapshots, just J snapshots,

hence correlation matrix can be written as follows [3, 14]

R̂ =
1

J

J∑
j=1

XXH (7)

2.2. CRB derivation
In real-time applications, the SOI that impinges on the array usually has unknown amplitude and direction,
as well as low SNR and is exposed to other practical issues [4, 12, 15]. As a result, AOA estimation is
considered to be a challenging problem. Therefore, determining the factors that have an impact on the
AOA estimation procedure is crucial aspect. The minimum estimate variance for a particular system
under consideration is provided by CRB, which warns that parameter estimation using noisy data will
produce noisy estimates [16]. The system under study’s CRB equation can be derived to help clarify these
parameters [19,20]. Consequently, analyzing these parameters can help to lower the estimation variance
and improve estimation performance. For the system modeled in Section “2.1”, the CRB equation can
be defined as follows

CRB ≥ 1

2Jα(Kd cos(θ))2
∑M

m=1(m− 1)2
(8)

Depending on equation (8), the AOA estimation process can be influenced by several factors, such as
the number of snapshots, number of array elements, SNR, value of the AOA itself,inter-element spacing,
SOI carrier frequency and its bandwidth. The impact of some of these parameters on AOA estimation
performance will be discussed in Section “4”. The derivation of equation (8) has been explained in detail
in “Appendix A”.

3. DF algorithms based on array signal processing
3.1. Beam-forming for spectral estimation
The basic principle of BF methods is to steer the antenna array in one direction at a time and measure the
total Received Signal Strength (RSS) to have the maximum signal’s power at the correct AOA.

3.1.1. DF based on Bartlett method. It calculates the signal power at each possible AOA, the true AOA
is selected according to the highest power value in the spectrum.

This process is similar to array mechanical steering and measuring received power at each possible
direction unless the steering occur electronically by introducing specific delays / weights, it sometimes
called delay and summethod, on the received signal of every array element. In this method, the maximum
received power occurs at the true AOA. Pseudo-spectra of Bartlett method can be written as [2, 13]

PBar(θ) =
aH(θ)Ra(θ)

N2
(9)
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Despite being computationally simpler, Bartlett method suffers from poor resolution and this reduces
its performance and effectiveness as the ability to resolve angles is limited by the array Half-Power
Beam-Width (HPBW),which has an inverse proportional relation with the number of array elements so
an increase in resolution requires a larger array [2, 10].

For large array lengths with inter-element spacing, d=λ/2, the AOA resolution value is approximately
1/M ,which approximately equals to HPBW [10].

3.1.2. DF based on Capon method. It is similar to the Bartlett method, since it evaluates the power of
the received signal in all possible directions. In this method, the mean output received power is minimized
in order to minimize the contributed power from undesired signals in the undesired directions and also to
minimize noise power while keeping unity response in the direction of interest. Pseudo-spectra of Capon
method can be written as [2]

PCap(θ) =
1

aH(θ)R−1a(θ)
(10)

This method has a disadvantage of the computation of the inverse matrix,which leads to have a poor
performance for the case of highly correlated signals [4]. This method has better resolution than Bartlett
method but it does not has the best resolution w.r.t. all methods [11,13].

3.2. DF based on sub-space decomposition algorithms
These algorithms are considered high-resolution algorithms and they are known as subspace
decomposition algorithms because they depend on decomposing the correlation matrix according to the
following considerations [11]

• The space spanned by eigen-vectors of the correlationmatrix can be decomposed into two orthogonal
sub-spaces: signal subspace and noise subspace.

• Steering vectors associated with signals of interest are orthogonal to noise subspace and contained
in signal subspace.

• Noise subspace is spanned by eigen-vectors with smallest eigen-values and on the contrary signal
subspace is spanned by eigen-vectors with the largest eigen-values.

Therefore, these algorithms search for directions that have steering vectors, which are orthogonal to
noise-subspace and contained in signal-subspace [11].

3.2.1. DF based on MUSIC algorithm. this algorithm depends on the orthogonality between the signal
or noise subspaces supposing that the noise in the receiving channels is uncorrelated with SOIs. The
steering vector corresponding to SOI, a(θ), and this implies a(θ) ∗ Qn = 0, where Qn is the matrix
corresponding to noise subspace and its columns contain eigen-vectors that correspond to the smallest
eigen-values. In a practical situation, a(θ) and Qn will not be precisely orthogonal. The following
equation is known as MUSIC pseudo-spectrum and it gives a very large value when θ equal to AOA of
the corresponding SOI [2, 11, 13].

PMUS(θ) =
1

aH(θ)QnQH
n a(θ)

(11)

When signals are highly correlated, traditional MUSIC is not accurate in its estimation, and therefore,
a spatial-smoothing-technique-based pre-processing method is necessary to address this scenario [13].
MUSIC algorithm also is constrained to the precise knowledge of the number of incoming signals [11].
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3.2.2. DF based on Root-MUSIC algorithm. The basic idea of this algorithm is represented in the
straightforward AOA estimation through the search for specific polynomial zeros. The pseudo-spectrum
of MUSIC algorithm becomes equal to that polynomial on the unit circle, and MUSIC-spectrum peaks,
that represent the estimated AOAs, exist as the roots that existed close to the unit circle [13]. This
algorithm provides enhanced resolution and a lower computational complexity but it is limited to ULA
architecture [2,14]. After calculating the steering vectors by ULA and estimating the correlation matrix,
MUSIC pseudo-spectrum represented in equation (11) will be simplified to the following expression

PRMUS(θ) =
1

aH(θ)Ba(θ)
(12)

where B = QnQH
n . Hence, denominator of equation (12) can be written as follows

aH(θ)Ba(θ) =
M∑

m=1

M∑
n=1

ei2π
(m−1)d sin(θ)

λ bmne
−i2π

(n−1)d sin(θ)
λ

=

M−1∑
l=−M+1

ble
−i2π

ld sin(θ)
λ

(13)

where bmn is the element of themth row and nth column of B and bl is sum of lth diagonal elements
of B and can be defined as follows

bl =
∑

n−m=l

bmn (14)

Simplifying equation (13) as follows

E(z) =
M−1∑

l=−M+1

blz
l (15)

where z = e−i2π
d sin(θ)

λ .
Roots of equation (15) that closest to unit circle represents the MUSIC pseudo-spectrum pole and can

be expressed in polar form as follows

zv = |zv|eiarg(zv), v = 1, 2, ..., 2(M − 1) (16)

where arg(zv) represents the phase of the root zv. Hence, the AOA can be calculated from the
following equation

θv = − arcsin
(

λ

2πd
arg(zv)

)
(17)

3.2.3. DF based on ESPRIT algorithm. ESPRIT algorithm symbolizes Estimation of Signal Parameters
through Rotational Invariance. This algorithm estimates the AOA directly without the calculation of a
pseudo-spectrum, nor even the search for roots of the Root-MUSIC polynomial [14]. As illustrated in
figure 2, this algorithm decomposes the main array into two sub-arrays of similar antennas such that One
sub-array can be got by a translation of the other [10,13]. Although the ESPRIT algorithm has a reduced
computing complexity, it needs a doublets array and cannot handle correlated sources [11].

Getting the observation vectors x1(t) and x2(t) of the two subarrays, the received signal can be
modeled as follows

x(t) =
[
x1(t)
x1(t)

]
=

[
A1
A1Φ

]
s(t) + n(t)

(18)
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Figure 2. Array configuration for ESPRIT algorithm.

where Φ = diag
[
ei

2π
λ
sinh θ1 , ....., ei

2π
λ
sinh θv , ...., ei

2π
λ
sinh θD

]
, v = 1, 2, ...., D, D is the number of

incident SOI and A
The correlation matrix can be described as follows

Rxx =

[
R11
R22

]
=

[
A1
A1Φ

]
Rss

[
AH
1

ΦHA1
H

]
+ σ2I

(19)

By applying Eigen-decomposition on the Correlation matrix represented in equation (19), these results
will be

• M eigen-values with D largest eigen-values are correspond to the D sources
• There exist a matrixQs of dimensionMXD which contains the eigen-vectors corresponding to the
signal sub-space.

• Signal sub-space, formed by the whole array, can be divided into two sub-spaces Qs1 and Qs2
corresponding to the first and the second sub-array, respectively.

• Qs1 and Qs2 columns contains eigen-vectors that related to the eigenvalues of correlation matrix of
the two sub-arrays.

The relation between Qs1 and Qs2 can modelled as follows

Qs =

[
Qs1
Qs2

]
=

[
A1T
A1ΦT

]
(20)

Since the sub-arrays are translationally related to each other, the signal sub-spaces corresponding to
them are related by unique transformation matrix Ψ and equation (20) can be written as

Qs2 = Qs1Ψ = A1ΦT
= A1TT−1ΦT

(21)

Consequently, Ψ can be written as
Ψ = T−1ΦT (22)

The eigen-values ofΨ correspond to the diagonal elements ofΦ. Therefore, using these eigen-values,
the AOA can be estimated as follows

θv = arcsin
(

λ

2πd
arg(ev)

)
(23)

where v=1,2, .... , D and e1, e2, ..., eD represent eigen-values of Ψ.
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4. Simulation analysis
In order to evaluate the performance of the AOA estimation algorithms, previously discussed in section
3, simulation analysis using MATLAB is performed. In this simulation, two uncorrelated narrow-band
SOIs with AOAs of θ1 = −5◦ and θ2 = 5◦, respectively, incident on ULA consisting ofM elements with
inter-element spacing of d = λ

2 . Additionally, it is assumed that J snapshots will be taken over AWGN
propagation channel.

The performance analysis is based on RMSE calculation as a function of SNR, total number of
snapshots and the number of elements in the array [13]. The results are averaged over 100 independent
test runs. RMSE of the estimated AOA can be described as follows

RMSE =

√√√√ 1

100Z

100∑
r=1

Z∑
b=1

(θ̂b(r)− θb)2 (24)

where θ̂b(r) is the estimate of actual θb at the rth run and Z is the total number of the signals impinged
on the array.

4.1. The effect of varying the number-of-array-elements
In this simulation, the number of array elements varies with values [4, 6, 8, 10, 12, 14, 16] at SNR= 10dB
and J = 500 snapshot.

According to figure 3, it is observed that increasing array elements tends to decrease RMSE and hence
improves estimation performance, but at the expense of raising computation complexity and slowing
down processing speed. In practical applications, it is necessary choosing an appropriate number of
array elements to guarantee adequate estimation performance and speed up processing. As seen in figure

Figure 3. RMSE Vs number of elements.

3, Capon and Bartlett methods give the worst results compared to the other algorithms. Additionally, as
shown in figure 3, simulation results indicate that Root-MUSIC, ESPRIT, andMUSIC achieve equivalent
performancewhenM is smaller than 10. It is clear thatMUSIC algorithm starts to have the best estimation
performance whenM is more than 10 elements, with its RMSE decreasing to zero when M is more than
14 elements.

4.2. The effect of varying total number of snapshots
In this simulation, total number of snapshots varies with values [100, 200, 300, ...., 1000] at SNR= 10dB
andM = 10 elements.
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As shown in figure 4, increasing the number of snapshots decreases RMSE and hence improves
estimation performance, but at the expense of raising computation complexity and slowing down
processing speed. In practical applications, it is necessary to choose an appropriate number of snapshots
to guarantee adequate estimation performance and speed up processing.

As shown in figure 4, Bartlett method gives the worst results compared to the other algorithms.
Additionally, Capon method achieves a better estimation performance but not the best of all.

As shown in figure 4, When there are fewer than 100 snapshots, the ESPRIT method outperforms
other algorithms in terms of estimation performance. Simulation results of Root-MUSIC and MUSIC
algorithms achieve equivalent performance when there are more than 100 snapshots, and they outperform
other algorithms with their RMSE decrease below 0.05 degree when there are more than 300 snapshots.

4.3. The effect of varying SNR
In this simulation, SNR ,in decibels, varies with values [−10,−5, 0, 5, ...., 30], with J = 500 snapshot
and M = 10 elements. As shown in figure 5, increasing the SNR often lowers RMSE and hence
improves estimation performance. Capon and Bartlett methods give the worst results compared to the

Figure 4. RMSE Vs number of snapshots.

Figure 5. RMSE Vs SNR.
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other algorithms, as seen in figure 5.
For SNR values between−10 and−5 dB, the Root-MUSIC and ESPRIT algorithms outperform other

algorithms in terms of estimation performance. As shown in figure 5, the Root-MUSIC and MUSIC
algorithms achieve equivalent performance at SNR values between −5 and 10 dB. When SNR equals
more than 10 dB, theMUSIC algorithm begins to outperform other algorithms and has the best estimation
performance. At SNR = 10 dB, RMSE of MUSIC algorithm decreases to almost 0.05 degree, and at SN
= 20 dB and above, it decreases to 0 degree. Consequently, one of the main areas of study for high-
resolution DF continues to be an open area of research for improving AOA estimation performance in
low SNR scenarios.

5. Experimental results
According to simulation analysis and theoretical study, MUSIC algorithm is widely used for its accuracy
and robustness, moreover, it is appropriate for being used in the experimental implementation. In table 1,
the hardware components utilized in this experiment are listed in detail. Figure 6 illustrates the block-

Figure 6. DF experiment block-diagram. Figure 7. AOA measurement scalling.

diagram of DF experiment setup in which four USRPs-2930 constitute a four-channel RF receiver and
another one is used as an SOI transmitter. An external clock distributor (Octoclock) is used to synchronize
the local-oscillator (LO) by connecting a 10MHz reference clock to the Ref-in port in Rx-USRPs. In
addition, this reference clock is also used to align the ADC’s timestamp by connecting the 1PPS signal
generated by the Octoclock to the PPs-in port in Rx-USRPs. GPSDO must be manually disconnected in
all used-USRPs in order to accept external reference input signals.

Another USRP-2930 is used to perform calibration process to cancel out the constant relative phase
offsets that exist between receiving channels by using a deterministic reference signal (ref-sig) that is
duplicated by the four-port RF power splitter. The power splitter output signals are then fed directly into
eachRX2 port in each USRP. Four antennas are attached to each RX1/TX1 port in each USRP to capture
SOI.

According to the prior description, the receiver acquires two signals, ref-sig and the SOI. A digital filter
is used to separate these signals. At first, ref-sig is separated and utilized to estimate the phase offsets
between reception paths. Secondly, SOI is also separated and calibrated using these estimated phase
offsets before applying the MUSIC algorithm. Figure 7 represents the AOA measurement scalling [21].
A radio transmitter, operated as an SOI, is configured to generate an unmodulated sine-wave with a center
frequency of 920MHz. For acquiring the SOI, receiver channels are tunedwith the same center frequency.
The antenna array has an inter-element spacing of 16.3 cm, which equals nearly half the wavelength. The
SOI has a base-band frequency of 100 kHz and the ref-sig has the same center frequency with a base-
band frequency of 10 kHz. Measurements were taken with the target source placed at different AOAs
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Table 1. List of used components in experment setup.

Item Version Amount Function

CPU HP Core I7 1 Host for signal processing

USRP NI USRP-2930 6 4 USRPs to form 4-channel receiver (Rx),1 utilized as reference-signal
transmitter and 1 utilized as SOI transmitter

Clock distributor OctoClock-G CDA-2990 1 LO synchronization in all Rx-USRPs and Aligning ADC timestamp
Gigabit Ethernet Switch TP-Link 1 Connect all USRPs to host PC
Software LabVIEW 2019 Processing environment
Rf antennas VERT400 Antenna 783074-01 5 4 antennas for the receiver and one for SOI transmitter
Operating system Windows 10
power splitter Mini-Circuits ZFRSC-4-842-S+ 1 power splitting for the calibration process
Cables SMA-M to SMA-M 17 For all connections illustrated in fig 6

Figure 8. AOA estimation for SOI located at 90◦.

Figure 9. AOA estimation for SOI located at 45◦. Figure 10. AOA estimation for SOI located at
120◦.

according to the measurement scaling as shown in [21]. In table 2, the difference between the correct and
estimated angles for different cases of AOA is depicted.

Figures 8, 9 and 10 represent the MUSIC pseudo-spectrum, PMUS(θ), computed according to
equation (11), for θ = 90◦, 45◦ and 120◦. The maximum pseudo-spectrum value represents the estimated
values of AOAs.

6. Conclusion
At first, the CRB for AOA estimation process is derived to identify the factors affecting the estimation
process. Subsequently, various DF algorithms are studied.

Theoretical study ensures that Bartlett method is regarded as one of the simplest ones but it doesn’t
provide good resolution and accuracy. Capon method is better than Bartlett method but it doesn’t provide
the best estimation accuracy and resolution. MUSIC algorithm is one of the common super-resolution
DF method and it is considered to be more stable and provides high resolution in AOA estimation.
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Table 2. Experimental results.

True AOA Estimated AOA Error Ratio

90◦ 93.5◦ 3.8%
45◦ 45.5◦ 1.11%
120◦ 117◦ 2.5%

MUSIC algorithm constrains precise knowledge of the number of incoming signals and has a limitation in
resolving correlated sources. Root-MUSIC algorithm is deemed a modified version of MUSIC algorithm
to improve estimation resolution and reduce computational complexity but it has the limitation of applying
only to ULA. ESPRIT algorithm achieves a lower computational complexity but it can’t deal with
correlated sources, where it needs doublets array.

In simulation analysis, DF algorithms are compared according to the parameters appeared in CRB
equation. According to simulation results, subspace decomposition-based DF algorithms enhance
estimation accuracy and resolution more than spectral estimation-based algorithms.

The overall performance analysis between DF algorithms based on array processing yields in giving
the best rating for MUSIC algorithm because of its robustness and higher accuracy and resolution.
Consequently, MUSIC algorithm is selected to be implemented on SDR platform, USRP, which is
programmed by LABVIEW. Tests were taken with the SOI placed at different AOAs.

Our future work will focus on improving estimation performance and resolution for MUSIC-based
Direction finders in low SNR environments and in the presence of correlated sources.

Appendix A. CRB derivation
Depending on the modeled system in Section “2.1”, CRB for AOA estimation using ULA is derived. We
begin with deriving Conditional-Probability-Density-Function (CPDF). From equation (1) the CPDF is
derived as follows

P (X/θ) = const ∗ e−(
(X−a(θ)s)H (X−a(θ)s)

σ2 ) (A.1)
where (const) represents a constant term.

P (X/θ) =
J∏

l=1

const ∗ e−(
(x⃗l−a(θ)sl)

H (x⃗l−a(θ)sl)
σ2 )

= (
J∏

l=1

const) ∗ e−
1
σ2

∑J
l=1(x⃗l−a(θ)sl)H(x⃗l−a(θ)sl)

= (const) ∗ e−
1
σ2

∑J
l=1(x⃗l−a(θ)sl)H(x⃗l−a(θ)sl)

(A.2)

Equation (A.2) can be represented in logarithmic form as follows

lnP (X/θ) = ln const+
−1

σ2

(
J∑

l=1

(x⃗l − a(θ)sl)H(x⃗l − a(θ)sl)

)

= const+
1

σ2

J∑
l=1

[−(x⃗H
l x⃗l)−

(
(a(θ)sl)Ha(θ)sl

)
+ x⃗H

l (a(θ)sl) + (a(θ)sl)H x⃗l]

(A.3)

So that

lnP (X/θ) = const+
1

σ2

J∑
l=1

[−x⃗Hl x⃗l−s∗l a(θ)
Ha(θ)sl + x⃗Hl a(θ)sl+s∗l a(θ)

H x⃗l] (A.4)
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As indicated in [16, 20] Fisher information matrix can be written as

I(θ) = −E
[
∂2

∂θ2
logP (X/θ)

]
(A.5)

The first derivative of equation (A.4) w.r.t θ can be written as

∂

∂θ
logP (X/θ) =

1

σ2

J∑
l=1

[−s∗l a
′(θ)

Ha(θ)sl−s∗l a(θ)
Ha′(θ)sl+x⃗Hl a

′(θ)sl + s∗l a
′(θ)

H
x⃗l] (A.6)

Hence, second derivative will be

∂2

∂θ2
logP (X/θ) =

1

σ2

J∑
l=1

[−s∗l a
′′(θ)

Ha(θ)sl−s∗l a
′(θ)

Ha′(θ)sl−s∗l a
′(θ)

Ha′(θ)sl

−s∗l a(θ)
Ha′′(θ)sl + x⃗Hl a

′′(θ)sl + s∗l a
′′(θ)

H
x⃗l] (A.7)

Taking expectation of equation (1) and then substitute in equation (A.7) will give the following

∂2

∂θ2
logP (X/θ) =

1

σ2

J∑
l=1

[−s∗l a
′′(θ)

Ha(θ)sl−s∗l a
′(θ)

Ha′(θ)sl−s∗l a
′(θ)

Ha′(θ)sl

−s∗l a(θ)
Ha′′(θ)sl + s∗l a(θ)

Ha′′(θ)sl + s∗l a
′′(θ)

Ha(θ)sl] (A.8)

∂2

∂θ2
logP (X/θ) =

1

σ2

J∑
l=1

−2s∗l a
′(θ)

Ha′(θ)sl

=
−2Ja′(θ)Ha′(θ)Sp

σ2

(A.9)

where Sp is the signal power and a(θ) is the steering vector and can be defined as follows

a(θ) =
[
1, e−i2πFc

d sin(θ)
C , ... , e−i2πFc

(M−1)d sin(θ)
C

]T
(A.10)

whereK = 2π
λc

is the propagation constant.
Derivative of steering vector a(θ) w.r.t (θ) can be written as follows

a′(θ) = −jKd cos(θ)[0 , ... , (m− 1)e−i2πFc
(m−1)d sin(θ)

C , ... , (M − 1)e−i2πFc
(M−1)d sin(θ)

C ]T (A.11)

a′H(θ) = jKd cos(θ)[0 , ... , (m− 1)ei2πFc
(M−1)d sin(θ)

C , ... , (M − 1)ei2πFc
(M−1)d sin(θ)

C ]T (A.12)

Consequently, the term a′(θ)Ha′(θ) can be written as follows

a′(θ)Ha′(θ) = (Kd cos θ)2
M∑

m=1

(m− 1)2 (A.13)

The result of substituting equation (A.13) into equation (A.9) will give the following

∂2

∂θ2
logP (X/θ) =

−2JSp(Kd cos(θ))2
∑M

m=1(m− 1)2

σ2
(A.14)
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Hence
E
[
∂2

∂θ2
logP (X/θ)

]
=

−2JSp(Kd cos(θ))2
∑M

m=1(m− 1)2

σ2
(A.15)

Hence, fisher information can be written as follows

I(θ) = −E
[
∂2

∂θ2
logP (X/θ)

]
=

2JSp(Kd cos(θ))2
∑M

m=1(m− 1)2

σ2

(A.16)

The SNR can be defined as
α =

Sp

σ2
(A.17)

By substituting equation (A.17) into equation (A.16), the result can be written as

I(θ) = 2Jα(Kd cos(θ))2
M∑

m=1

(m− 1)2 (A.18)

Equation (A.19) represents the relation between CRB and fisher information as indicated in [16, 20]

CRB ≥ I−1 (A.19)

Then CRB can be defined as follows

CRB ≥ 1

2Jα(Kd cos(θ))2
∑M

m=1(m− 1)2
(A.20)

References
[1] Rana N A 2016 Cell 92 300–7272402
[2] Gentilho E, Scalassara P R and Abrão T 2020 Journal of Signal Processing Systems 92 239–256
[3] Khmou Y, Safi S and Frikel M 2014 Journal of Telecommunications and Information Technology
[4] Abdullah A N and Abdul-Rahaim L A 2021 Technology Reports of Kansai University 63
[5] Kratschmer G 2010 Radiomonitoring and Radiolocation 2011 2011
[6] Poisel R A 2015 Electronic warfare receivers and receiving systems (Artech House)
[7] Denisowski P 2011 presentation, Dept of Energy Spectrum Management Conference, Las Vegas
[8] Ly P Q C 2013 Fast and unambiguous direction finding for digital radar intercept receivers. Ph.D. thesis
[9] Ko C B and Lee J H 2020 Applied Sciences 10 2331
[10] Gross F B 2015 Smart Antennas with MATLAB® (McGraw-Hill Education)
[11] Godara L C 2004 Smart antennas (CRC press)
[12] Tang H 2014 Doa estimation based on music algorithm
[13] Sharma A and Mathur S 2016 IETE Technical review 33 472–491
[14] Osman L, Sfar I and Gharsallah A 2012 International Journal of Research and Reviews in Wireless Communications

(IJRRWC) Vol 2
[15] Boustani B, Baghdad A, Sahel A, Ballouk A and Badr A 2018 2018 4th International Conference on Optimization and

Applications (ICOA) (IEEE) pp 1–5
[16] Poor H V 2013 An introduction to signal detection and estimation (Springer Science & Business Media)
[17] Ko C B and Lee J H 2021 Applied Sciences 11 467
[18] Krim H and Viberg M 1996 IEEE signal processing magazine 13 67–94
[19] Stoica P and Nehorai A 1990 IEEE Transactions on Acoustics, Speech, and Signal Processing 38 2140–2150
[20] Barkat M 2005 Signal detection and estimation (Artech House Publishers)
[21] Valdez K 2021 Radio Direction Finding Implementing Music Algorithm with USRP Node Arrays Ph.D. thesis The

University of Texas at El Paso
[22] Anand A and Mukul M K 2016 2016 IEEE International Conference on Recent Trends in Electronics, Information &

Communication Technology (RTEICT) (IEEE) pp 343–347
[23] Chowdary G P 2016 International Journal of Review in Electronics and Communication Engineering 4 15–19



ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012039

IOP Publishing
doi:10.1088/1742-6596/2616/1/012039

15

[24] Abdelbari A 2018 Direction of arrival estimation of wideband RF sources Ph.D. thesis Near East University Nicosia,
Cyprus

[25] Shahid M U, Nauman M, Haider D and Imran Y 2017 2017 International Conference on Infocom Technologies and
Unmanned Systems (Trends and Future Directions)(ICTUS) (IEEE) pp 451–454

[26] Ali S S, Liu C, Liu J, Jin M, Yoo S J and Kim JM 2017 2017 International Conference on Information and Communication
Technology Convergence (ICTC) (IEEE) pp 480–485

[27] Devendra M and Manjunathachari K 2015 2015 International Conference on Signal Processing and Communication
Engineering Systems (IEEE) pp 309–313

[28] Shan T J, Wax M and Kailath T 1985 IEEE Transactions on Acoustics, Speech, and Signal Processing 33 806–811
[29] Goverdovsky V, Yates D C, Willerton M, Papavassiliou C and Yeatman E 2016 IEEE Transactions on Instrumentation

and Measurement 65 1577–1584
[30] Borkar A N 2019 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA)

(IEEE) pp 1355–1359
[31] Shirvani-Moghaddam S and Almasi-Monfared S 2011 International Journal on Communications Antenna and

Propagation (IRECAP) 1
[32] Monzingo R A and Miller T W 2004 Introduction to adaptive arrays (Scitech publishing)


