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Abstract
The complexity of spacecraft systems and their missions is increasing, requiring higher

levels of performance and innovative solutions. It is essential to have onboard autonomy with
minimal faults to ensure reliability, availability, and safety. Fault Detection and Identification
(FDI) is critical in identifying spacecraft faults before they cause major failures. However,
FDI design and application are challenging due to the space environment and the reliance
on system information. To improve accuracy, speed, and noise robustness, modern FDI
methods based on Artificial Intelligence (AI) techniques have been developed. This paper
investigates the latest FDI techniques in the spacecraft attitude determination and control
subsystem (ADCS) and electrical power subsystem (EPS). The article discusses various FDI
methodologies and frameworks, highlighting their advantages, drawbacks, and the significance
of AI implementation. Additionally, the paper presents a thorough analysis and comparison of
the different methods.

1. Introduction
Spacecraft is considered one of the most expensive control systems created in recent decades. It
consists of a group of integrated systems such as EPS, ADCS, onboard computer (OBC), thermal
control system (TCS) and communication system (CS). To ensure quick and precise execution
of tasks in a real-time environment, spacecraft must maintain a high level of efficiency. Failures
in any spacecraft subsystems will significantly harm the mission’s chances of success.

According to statistics in 2009 [1], 130 different on-orbit spacecraft had been lost in space
before reaching the end of their lifetime, with 156 recorded failures. This study shows that
most frequently failures occurred in spacecraft were conducted as a result of ADCS and followed
by EPS failures. Increasing operational demands on autonomous spacecraft systems require
structural methods to support the design of a complete and reliable monitoring system.

To improve the reliability and availability while providing a desirable performance, it is
necessary to design control systems with fault-tolerant control (FTC) capability, while potential
faults are tolerated [2]. These types of control systems are often known as fault-tolerant control
systems (FTCS). There are two main approaches to design techniques for FTC: passive and
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active. Passive FTC involves designing a controller that can handle a predetermined number of
known faults without needing online information about faults. This type of controller is relatively
simple to implement and can mitigate expected faults. However, it has limited fault tolerance
capacity and certain characteristics that make it less effective in dealing with faults. Thankfully,
active FTC offers a solution by utilizing available resources and incorporating redundancy in
both physical and analytical systems to handle unforeseen faults [2]. A general diagram for
active FTC is illustrated in figure (1).

Figure 1: Schematic diagram for active FTC systems [2].

Active FTC addresses faults by either choosing a pre-established control action or generating
a new control action in real-time. In both cases, an FDI algorithm is necessary to constantly
update information about the system’s status and any induced changes, and to adjust the
control law as needed. In this context, FDI systems provide basic information about system
health status and enable subsequent tuning actions to improve system reliability, availability
and conveniently [3].

FDI techniques designed for ADCS or other spacecraft systems is typically comprised of
three stages. Initially, fault detection is implemented to recognize any faults that may arise.
Following that, a fault isolation mechanism is established to determine the type and location of
the fault, along with identifying the component experiencing the fault. Finally, fault diagnosis
or identification is conducted to obtain the magnitude or value of the detected fault.

S. Yin et al (2016), introduced in [4] an intensive review with a refined classification for
the existing FDI techniques that are being applied in space systems, and he categorized these
techniques into two classes: model-based and data driven-based FDI. A refined classification of
the existing FDI techniques is shown in figure (2).

Figure 2: Classification of FDI techniques for spacecraft systems [2].
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Model-based techniques rely on modeling capabilities to identify and diagnose faults in
spacecraft subsystems. However, the growing complexity of these subsystems has impacted
the availability and accuracy of mathematical models, which has limited the use of model-based
FDI. The typical structure of FDI model-based involves two stages, as depicted in figure (3):
(1) a residual generator, which is a filter designed to generate non-zero residual signals when
a failure occurs, and (2) a decision-making process that distinguishes between genuine failures
and false alarms caused by noise or other disturbances. The decision-making process can involve
simple threshold tests, or it may use a statistical method [5]. Typically, the fault information
obtained from this monitoring module is then utilized to actively modify the controller, ensuring
that stability and acceptable performance of the entire system are still maintained.

Figure 3: General architecture of a model-based FDI system [5].

Data-driven technique uses empirical data, rather than prior assumptions or theoretical
models, to guide the decision-making process. In these techniques, data is used as the main
source of information and the basis for making predictions or decisions. Data-driven techniques
are getting more attention by the recent researchers as it offers various benefits such as minimal
memory consumption, ease of use, and quick execution time [6]. These aspects greatly affect
the resources of the spacecraft’s OBC such as, microprocessor, non-volatile memories, volatile
memories and different peripherals. Comparison between set of data-driven and model-based
techniques using memory benchmark illustrated in tabble(1) showing the impact of using data-
riven techniques on memory utilization.

Table 1: Memory benchmarks [6].

Technique
Reaction Wheel Solar Panel

Memory (Kbyte) Memory utilization % Memory (Kbyte) Memory utilization %
ARMA 122 6.7 % 223 11.1%
Prony 18 0.9% 30 1.5%

STE-Prony 12 0.6% 21 1.05%

The performance comparison for different data-driven techniques is summarised in table (2).
As shown in table (2), no technique outperforms the other on all performance metrics. Taking an
examples of this, the bayesian conditional generative adversarial network in [7], which showed the
best performance as it has four stars (highest grade) in classification speed,physical explanation
and robustness to parameters and one star (lowest grade) in accuracy in general. A deep bayesian
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neural network and hybridizations with fuzzy logic are additional options that have not yet been
extensively researched for FDI [8]. Application of a deep belief network (DBN), which effectively
makes use of stacked boltzmann machines and a layer-by-layer learning algorithm, is another new
advancement. Exploring deep learning technique for FDI showed promising results. However,
it has mainly been relegated to uses outside of space applications or concentrated on a single
component [9].

Table 2: Performance Comparison of FDI Data-Driven techniques [10].

Naive Bayes Deep Learning SVM K-NN ANN

Robustness to parameters **** ** * *** *
Classification speed **** ** **** * ****
Physical explanation **** * * *** *
Over Fitting Handling *** *** ** *** *
General Accuracy * **** **** ** ***
Robustness to noise *** **** ** * **

This study investigates the use of FDI in spacecraft, its impact on the level of autonomy and
mission success, as well as, the benefits of using different AI techniques. The latest state-of-
the-art FDI techniques are presented and evaluated. Furthermore, a detailed comparison of
different techniques is also discussed.

2. FDI State-Of-The art techniques
This section will showcase various FDI techniques, including those based on models and data.
While model-based techniques still deliver satisfactory performance, recent researchers have
shown more interest in data-driven techniques due to their promising results. Nonetheless,
as demonstrated later, model-based techniques are still in use and achieving acceptable
performance.

2.1. Artificial Neural Network (ANN) Model-Based FDI technique
Spacecraft actuators suffer from various types of faults such as, stuck at low, stuck at high,
producing incorrect output, or may become completely faulted. ANN model-based FDI
techniques used to detect faults in spacecraft actuators such as reaction wheel(RW). To create a
model-based for detecting faults in reaction wheels an ANN architecture is built using MATLAB
Simulink toolbox. It is selected to be a three-layered Elman network with back-propagation
algorithm with two inputs and one output. Elman network output response after training phase
is compared to the output response of reaction wheel dynamic model at the same inputs in
fault-free normal conditions. Then, the difference between estimated and actual torque values
used to generate threshold and residual for FDI task. [11–16].

FDI strategy is based on the comparison between normal threshold and fault residuals. If
residual signals at any time exceeds upper or lower band of normal threshold, faulty condition is
detected. To evaluate the performance of this FDI technique, dataset consists of 100 samples for
each anomaly were simulated and checked by the FDI technique. Results obtained by the model
based FDI approach presented in table (3) showed fault detection accuracy between (90-98)%
and detection time between (270-318) m sec.

However, this approach introduced fault detection method with detection accuracy that is not
meet satisfaction and reliability in fault classification, furthermore detection time is considered
to be high with respect to real time onboard software computational cycle.
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Table 3: ANN Model-Based FDI technique performance [17].

Fault Type Detection Accuracy Detection Time (m sec)

Over Voltage 92% 300
Under Voltage 90% 290
Current Loss 94% 301

Over Temperature 96% 318
Under Temperature 98% 270

2.2. The Autoregressive Moving Average (ARMA) Model-Based FDI technique
ARMA is described as an analysis model for time-series that typically contains two basic parts,
the (AR-part) and (MA-part). The (AR-part) represents an auto-regression process for the
variable values. Whereas the moving average (MA-part) introduces the error modeling term
as linear combinations of contemporaneously occurring errors at previous time intervals. This
general method is described berifly in [18]. Modeling of ARMA(p, q) can be performed by
combining AR(p) and MA(q) models where (p) is autoregressive model’s order and (q) is moving
average model’s order. The mathematical representation of the output parameters obtained by
applyingARMAp,q(yt) on a time signal yt were expressed by equation (1) and illustrated by
figures (4a) and (4b) [18] for reaction wheel torque signals up to the 10th order, the result of
equation (1) [18] can be represented by two feature vectors.

ARMAp,q(yt) =

AR1 MA1

AR2 MA2

. .

. .
ARp MAq

(1)

Where: AR(p) is AR-Model parameters for (i = 1, 2,. . . p), MA(q) is MA-Model parameters
for (j = 1, 2,. . . q) and yt is Time series actual value.

(a) 10th order AR-model for reaction
wheel signals.

(b) 10th order MA-model for reac-
tion wheel signals.

Figure 4: 10th order ARMA-model for reaction wheel signals [18].

The selection of ARMA model order has a direct impact on the distinctness of features used
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for fault classification. It is essential to estimate the optimal order that enables ARMA model
and pre-processing algorithm to produce different data vectors for each fault.

Results in table (4) illustrate that the 10th order of ARMA model is the minimum order that
provides distinct features all types of anomalies.

Table 4: Fault ID at ARMA 10th order [18].

Fault Type
Order Index

1 2 3 4 5 6 7 8 9 10
Voltage above limit 0 1 0 0 0 0 0 0 1 0

Voltage loss 0 1 0 0 0 0 1 0 0 0
Voltage below limit 0 1 0 0 0 0 0 0 0 1

Current Loss 0 0 0 1 0 0 0 1 0 0
Temp. above limit 0 0 1 0 1 0 0 0 0 0
Temp. below limit 1 0 0 0 0 0 1 0 0 0

Normal State 1 0 0 0 0 0 0 0 1 0

Fault classification is performed by employing an ANN classifier based on the feed-forward
structure implemented using MATLAB-Simulink toolbox. General structure block diagram of
ARMA model-based FDI technique shown in figure (5).

Figure 5: General architecture of ARMA model-based FDI system [6].

Learning phase was performed using 70% of features obtained by ARMA model 30% of
data were left for testing and validation. FFNN architectures were evaluated by comparing
classification accuracies using single layer architecture and double layer architecture at different
numbers of hidden neurons as shown in tables(5).

Hence, this technique presents high classification accuracy. However, it requires a large
memory footprint and more processing time that is not compatible with onboard computer
requirements.
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Table 5: FFNN performance using ARMA model [18].

Layer Neurons
Reaction Wheel Solar Panel
Epochs Acc. % Epochs Acc .%

Single Hidden Layer
32 430 97 % 680 96%
42 510 98% 760 97%
52 590 99% 890 98%

Double Hidden Layer
32 800 98% 1414 98%
42 1050 99% 1922 98%
52 1240 99% 2500 99%

2.3. Prony Method Data-driven-Based FDI technique
Omran and Murtada in [15, 19] proposed an accurate and efficient technique for FDI for on-
orbit satellites and spacecraft subsystems in real time. They proposed an approach capable of
differentiating among signatures of faults that frequently take place in ADCS and EPS. This
approach is developed using a feature-extraction technique employed by Prony method [20] in
order to discriminate between different behaviors of spacecraft subsystems accompanied by a
Feed-Forward Neural Networks (FFNN) to be used for fault classification.

To perform Prony feature extraction technique, a datasets consist of 100 samples for each fault
were generated in the interval [−50o, 50o] with a step of 1o using reaction wheel mathematical
model and 100 samples were generated using MATLAB-Simulink simulator, also for each fault of
PV solar arrays within a range of [1000W/m2, 1300W/m2] with a step of 3W/m2. Prony method
is applied on these datasets according to equation (2) [19] at different orders starting from 2nd
order up to 10th order to generate feature vectors in terms of poles and zeros as follows:

Prony(l,m)(yt) =

P11 P21 . Pn1

P11 P21 . Pn1

. . . .

. . . .
P11 P21 . Pn1

Z11 Z21 . Zn1

Z12 Z22 . Zn2

. . . .

. . . .
Z1m Z2m . Znm

(2)

Where: l is number of poles, m is number of zeros, n is number of data samples, P is pole value
and Z is zero value.

The Prony technique for fault classification is performed by employing an artificial neural
network classifier based on the feed-forward structure type implemented using MATLAB-
Simulink toolbox. Learning phase was performed using 70% of features obtained by Prony’
method and 30% of data were left for testing and validation. FFNN architectures were
evaluated by comparing classification accuracies using single layer architecture and double layer
architecture at different numbers of hidden neurons as shown in table (6). FFNN classification
accuracy for reaction wheel faults and solar arrays faults respectively through the confusion
matrix illustrated in figures (6a) and (6b). As shown in table (6), using single FFNN layer
classifier with less number of neurons produced better accuracy than using higher number
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of neurons, while using FFNN classifier with double layer improves the accuracy however,
the execution time increased as a result of increased iterations. Results show that Prony
FDI technique has significantly greater capability than contemporary feature extraction-based
research in terms of classification accuracy and complexity. Additionally, the FDI system’s
computation time produces quick and precise results.

Table 6: FFNN performance using Prony method [19].

Layer Neurons
Reaction Wheel Solar Panel
Epochs Acc. % Epochs Acc .%

Single Hidden Layer
32 430 97 % 680 96%
42 380 100% 500 100%
52 560 100% 713 100%

Double Hidden Layer
32 800 98% 1414 98%
42 840 100% 902 100%
52 1065 100% 1147 100%

(a) Reaction wheel Faults [19].

(b) Solar arrays faults [19].

Figure 6: Confusion matrix for reaction wheel and solar arrays faults.
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2.4. Deep Learning Data-driven-Based FDI techniques
S.P.M. (Sander) Voss in [10] developed a new FDI technique based on using Long Short-
Term Memory (LSTM) network. The MATLAB-Simulink simulator of PROBA-V spacecraft by
ESA [21] was used in the simulation for the case study. The proposed FDI technique concentrate
on ADCS system devicses such as, star trackers and reaction wheel.

A simulation model and case study have been constructed to investigate the LSTM network,
which has been identified as a promising technique. A total of 4,000 simulations, or more than
30 hours of simulation, have been performed on 35 different fault scenarios, each of which was
run 90 times for the training dataset and 30 times for the testing dataset. The results showed
a average performance with a blatant bias towards freezing fault prediction. It performs well
when dealing with RW freeze and power outages faults identification with accuracy 80% and
95% respectively.

J Mansell in [22] developed a data-driven architecture that uses transfer learning to identify
anomaly patterns from a spacecraft MATLAB-Simulink simulator and apply this knowledge to
isolate and recover from faults on the real spacecraft. The method was demonstrated on the full
FDI cycle for ADCS faults in a generic CubeSat simulation and used to diagnose both known
and previously unknown faults on the LightSail 2 solar sail spacecraft. The core idea is to make
both simulated and actual faults look identical from the perspective of fault identification. A
set of one class support vector machines (OCSVMs) and rule-based checks are used to process
raw telemetry into a more abstract collection of anomaly scores.

Figure (7a) shows the resulting OCSVM decision boundary with an outlier fraction of µ=
0.001. The OCSVM includes 1983 support vectors. Figure (7b) shows the resulting OCSVM.
As with the other OCSVMs, an outlier fraction of µ = 0.001 is used. There are 3820 total data
points and 1914 support vectors. Results in figure (8) is the reliability with which nominal cases
are diagnosed. Out of 22 nominal cases, all were correctly identified by the LSTM network as
being devoid of faults. The method attained an overall fault identification accuracy of 96% on
the ADCS simulator and 91% when applied to LightSail 2.

(a) Detecting anomalies [19].
(b) Detecting anomalies in the
accumulation [19].

Figure 7: OCSVM for detecting anomalies.
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Figure 8: CM summarise LSTM fault identification performance using the fault simulator [22].

2.5. Hybrid Data-driven-Based FDI technique
Hybrid approaches were also presented for spacecraft subsystems FDI in order to enhance fault
detection and classification performance.

In [23] a parameter reduction algorithm using hybrid voting mechanism (HVM) combined
with SVM. (HVM-SVM) was used to improve SVM classification accuracy for spacecraft fault
diagnosis. SVM adequate for tiny samples classification but not numerous faults. In this
technique to handle numerous faults, several SVM classifiers were merged using the majority
vote rule.multiple SVM classifiers combined and the majority vote rule used to deal with
multiple faults. The contribution is not only that combined classifiers are used to vote, but
also the fault associativity is added to improve the voting. Various experimental findings
demonstrated the (HVM-SVM) technique’s suitability for spacecraft fault identification and
its superior performance when compared to other classification techniques.

A powerful technique for spacecraft ADCS has been proved using (SVM) combined with
principal component analysis (PCA), which was introduced in [24]. Input data are converted
to a low-dimensional feature vector using PCA to extract features. Binary (SVM) then used by
the algorithm to find any faults. Multi-class SVM is used to determine the type of fault if it is
found. According to experimental data the technique found to be effective and feasible for fault
detection and diagnosis of spacecraft systems. However, PCA is a linear technique and is not
suitable for nonlinear systems. Some components of spacecraft systems are nonlinear. Another
work planned to replace PCA with nonlinear PCA, such as KPCA, for feature extraction.

3. Results analysis, open challenges and promising direction
In this section a comparison between various discussed FDI techniques were held, taking under
consideration ADCS and EPS for comparison.

For spacecraft RW fault detection and identification, FDI approaches results were compared
such as the model-based technique in [12,15] that introduce about 97% accuracy for classification.
However, this approach introduced fault detection accuracy that does not meet satisfaction and
reliability in space field, furthermore detection time is considered to be high with respect to
real time onboard software computational cycle. The same presented anomalies and feature-
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based techniques such as (SVM with PCA) [24] that introduced accuracy up to 97.4% and
ARMA Model-Based FDI technique in [15] produce detection and identification accuracy up
to 96% and 98% respectively. Furthermore, regarding their algorithm complexity and number
of features employed, the high orders of these techniques’ required more processing time than
other suggested techniques.

Hybrid approaches that were presented in [23] based on (HVM-SVM) and different classifiers
were compared as other technique performance. Using deeplearnning appear to have a major
role in near future in design and implementation of FDI techniques results from OCSVM and
LSTM in [10,22] introduced promising progress. Prony with FFNN and STE-Prony with FFNN
in [15] showed the most promising results from accuracy, memory usage and time consumed
point of view related to others compared techniques. Results analysis survey are concluded by
table (7).

Table 7: Results analysis for reaction wheel FDI approaches.

Ref. No. FDITechnique
Accuracy

Mission/Dataset Technique No. Of Faults Detection Time
Detection Identification

[15] ANN Model-based 97% N/A
Simulated Data

MATLAB-Simulink simulator

Simulink RW model
for simulation and

ANN for dynamic model
6 270-318 (m sec)

[24] PCA and SVM 97.4% N/A
Archived/Simulated

satellite control system simulator
PCA to extract features
and SVM to detect fault

4 N/A

[18] ARMA and FFNN 96% 98%
EgyptSat-2 Spacecraft

MATLAB-Simulink simulator

Simulink RW model
for simulation and

(ARMA) model for classification
6 12 (m sec)

[23] HVM-SVM 99.8% 98%
Remote sensing

real satellite telemetry

SVM for classifying
small samples, and combine
Multiple SVM classifiers

to multiple faults

3 N/A

[15] Prony and FFNN 100% 100%
EgyptSat-2 Spacecraft

MATLAB-Simulink simulator
Prony method feature
extraction mechanism

6 5 (m sec)

[10] LSTM 91 %-96% 95%
PROBA-V Spacecraft

MATLAB-Simulink simulator/real telemtry
Remote sensing
satellite data

6
100 (sec)

Fault fully identified

[22] OCSVM and LSTM 91 % 96 %
LightSail-2 Spacecraft

MATLAB-Simulink simulator/real telemtry

OCSVMs and rule-based
checks to anomaly scores
LSTM network to scores
to each possible fault

5 N/A

For spacecraft electric power subsystem, a comparison for discussed FDI techniques was
performed among different fault identification techniques, such as model based techniques
[25, 26]. Large-Scale Bayesian technique in [27] and feature extraction techniques such as PCA
with SVM [28], KPCA as in [29] and the recent approaches that use PCA and Weighted Proximal
Support Vector Machine WSVM as in [30]. Moreover, STE-Prony [15] FDI approach introduced
the highest accuracy for anomalies classification compared to other presented techniques. Results
analysis survey are concluded by table (8).

Based on the results, we discovered a strong relationship and trade-off between accuracy,
number of faults to be detected and detection time. Many techniques discussed only the challenge
of detecting one fault at a time, while other techniques discussed detecting multiple faults in
multiple systems. However, the challenge of detecting multiple faults in the same subsystem at
the same time requires more research and investigation because it is not well discussed, and also
the detection accuracy still needs to be improved.

From a another perspective, as the number of ANN layers increases, so does accuracy, but
at the same time, detection time also grows, creating a trade-off and contradiction between
accuracy and detection time.
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Table 8: Results analysis for solar arrays FDI approaches.

Ref. No. FDI Technique
Accuracy

Mission/Dataset Technique No. Of Faults Detection Time
Detection Identification

[27] Bayesian 100% 75%
Advanced Diagnostic and

Prognostic Testbed (ADAPT)
Large-Scale Bayesian Networks

by Composition
2 5.9 (sec)

[28] PCA and SVM 100% 89%
Archived telemetry/Simulated

satellite control system simulator
Offline FCM clustering

and online SVM classifier
3 N/A

[29] KPCA 100% 90%
Feng-Yun satellite

real Satellite simulator
Kernel Principal Component

Analysis
4 N/A

[30] PCA and WPSVM 100% 93%
Simulation experimental data
MATLAB-Simulink simulator

FCM clustering and WPSVM
classification with

PCA feature extraction
5 N/A

[18] ARMA and FFNN 100% 100%
EgyptSat-2 Spacecraft

MATLAB-Simulink simulator

Simulink SA model
for simulation and

(ARMA) model for classification
6 12 (m sec)

[15] STE-Prony and FFNN 100% 100%
EgyptSat-2 Spacecraft

MATLAB-Simulink simulator
Prony method feature
extraction mechanism

6 5 (m sec)

Results analysis for various FDI techniques, as shown above , indicates that there is still much
work to be done in order to improve the performance of detection and identification while also
taking into account the spacecraft’s limited resources, such as onboard memory, when designing
and implementing FDI techniques.

Future work should focus on developing a new data-driven FDI technique that can
simultaneously detect multiple faults, as well as applying FDI to other spacecraft subsystems.
It should also use a new AI technique and pay particular attention to deep learning, which has
shown promising results and is thought to be a fertile area for research.

4. Conclusion
This paper focused on state-of-the-art FDI model-based and data driven based techniques in
spacecraft ADCS and EPS. The complexity of spacecraft systems made FDI a crucial aspect
in defining the reliability, availability, and safety of spacecraft systems. The analysis shows
that data-driven approaches are higher accuracy than model-based ones when dealing with
FDI problems. It is clear from the comparison between different model based such as ANN
and ARMA and data-riven techniques such as HVM-SVM and Prony that data driven based
techniques have high accuracy in fault detection and identification in spacecraft ADCS. Beside
that, in EPS most of the data driven based techniques used show better accuracy than model
based techniques in fault detection and identification.The results shows the superiority of Prony
with FFNN and STE-Prony with FFNN over all others mentioned techniques in the accuracy
of detection and identification. However, challenges such as dealing with multiple faults at the
same time and implementation with other spacecraft systems must be addressed using Prony
method. On other hand,computational resources and memory space limitations still need to be
considered in data-driven FDI.
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