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Abstract. Streak detection is important in space situational awareness and space asset protection. It is 

desirable to detect moving targets (e.g., satellites, space debris, or meteorites) in images of the sky. This 

paper presents a comparison between two astronomical frameworks for streak detection based on deep 

CNNs. The first framework uses the extended feature pyramid network (EFPN) with faster region-based 

CNNs (Faster R-CNN) and compares it with the second framework that uses the feature pyramid network 

(FPN) with Faster R-CNN. Because there aren't enough publicly available astronomical data sets, we use 

the simulated data set to train the neural network. The metrics of mean average precision (mAP), recall, 

precision, and F1 score were used to measure the performance of the two frameworks. The experimental 

results confirmed that the EFPN-based framework achieves a significant improvement in streak detection 

than the Faster R-CNN framework based on the FPN model. 

1. Introduction      
There is an increased interest in sky monitoring because the number of astronomical objects (active satellites and 
space debris (SD)) is continuously increasing. SD is all artificial targets created by explosions, including elements 

and fragments that revolve around the orbit of the earth. The amount of SD is rapidly increasing, and it poses a 

significant risk to other space stations and satellites in orbit. If SD collides with a satellite, it will cause satellite 
damage. For this reason, it is necessary to monitor the motion and the position of SD and satellites to make an 

accurate prediction for preventing accidents [1].  

Streak detection is a vital process in monitoring the sky. Optical observations are used for the detection of 

celestial objects in the sky. Astronomical images that have a long exposure time are taken sequentially. The SD or 

satellites appear as streaks in these images. A streak is a line segment parameterized by position, length, width, 

brightness, and angular orientation. Finding streaks in astronomical images has been the main focus of earlier 

research on the topic of streak detection. Astronomical images usually suffer from severe noise effects that make a 
vast challenge for the streak detection step. The most common sources of noise in astronomical images may 

include atmospheric disturbances like airglow, cosmic rays, and hot and cold pixels as well as instrument 

misalignments like shot noise, read-out noise, and dark noise. Astronomical images also have several types of 

background variations that could be due to the clouds or the light pollution from bright stellar targets such as the 

Moon, and other reasons. So, the denoising process is vital to preprocess the astronomical images, to decrease the 

harmful impact of this noise. Various machine-learning techniques have been proposed to denoise astronomical 

images like denoising using dictionary learning [2], and Astro U-net framework [3].   

The celestial objects appear in astronomical images as small objects around ( 5 × 5 ) pixels for stars with a 

moderate signal-to-noise ratio (SNR) and extend to tens of pixels for bright stars and streaks [4]. So the detection 
of small objects like streaks poses a challenge because it is difficult to gather data about these objects. Also, the 

faint streaks and the overlapping celestial objects with streaks pose a challenge in the detection.   
Recently, many different CNNs frameworks have been presented for streak detection in astronomical images 

like YOLO-v2 [5], DeepStreaks [6], and Faster R-CNN based on FPN [4]. Inspired by their work, we propose a 

comparison between the EFPN-based framework [7] and the FPN-based framework [4] for streak detection in 

astronomical data sets. Because there aren't enough publicly available astronomical data sets, we use the 



ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012024

IOP Publishing
doi:10.1088/1742-6596/2616/1/012024

2

simulation observation data set to estimate the performance of the two frameworks. We discover that the EFPN-

based framework [7] is more effective at achieving satisfactory accuracy in detecting streaks in astronomical 

images than the FPN-based framework [4]. 

The paper is organized as follows: Section 2 presents the related work associated with this paper. Section 3 

discusses the structure of an EFPN-based framework [7]. Section 4 presents the experimental results of the 

comparison between the EFPN-based framework [7] and the FPN-based framework [4] for streak detection. 
Section 5 presents the conclusion of the paper. 

2. Related work     
Recently, the detection of streaks in astronomical images has attracted increasing attention in space situational 
awareness. This section provides a quick overview of the existing streak detection studies that have been divided 

into 2 groups: traditional and CNNs frameworks. 

2.1. Traditional streak detection       
There are many frameworks proposed for streak detection. Ding et al. [8] presented a framework based on the 

Hough transform (HT) and the prior orbit data. This framework can detect streaks in the low earth orbit (LEO) 

effectively. Santoni et al. [9] proposed a framework for the automatic detection of SD that appear as streaks in 

astronomical images based on the HT model and the morphological filtering technique. It detects SD without a-

priori data and is based on a single image's analysis. It can detect SD in both the object-tracking and the sidereal 

operations. Zhou et al. [10] implemented an optical masking technique for streak detection in geostationary-earth 

orbit (GEO). It presents a technique for eliminating the noise and detecting SD that appear as streaks with (SNR > 

3) in astronomical images. It consists of three steps: the first step is to remove the background by using The top 

hat method, the second step is to remove stars by using a masking method, and the final step is to detect the SD by 
using a weighted model. Niu et al. [11] proposed a real time streak detection technique using the multicore DSP. 

It can detect weak and faint celestial objects and SD and it includes two processes the first one is the SD detection 

technique and the second one is the DSPs’ scheme. These proposed frameworks frequently have a respectable 

performance depending on the prior data, but the computation load and the probability of detection can still be 

improved.  

Sease et al. [12] proposed a framework for streak detection depending on phase congruency transform (PCT) 

that had four processes. The first process is edge detection used to determine if the target belongs to a streak or a 
star. The second process is thresholding which PCT is thresholded using a histogram of the pixel intensities to 

produce a binary image. The third process is cleaning in which the image is cleaned by making any pixel less than 

four non-zero neighbors in the adjacent eight pixels to zero. The fourth process is background removal which the 
background is calculated as a polynomial of order quadratic and subtracted to get rid of large-scale gradients. This 

method is simple, but the detection accuracy can still be enhanced. The Hough Transform (HT) [13] framework 

uses Gabor filters (GFs) to recognize line segments and then detect streaks. A subtracted image is processed with 
each GF by convolving it with the filter, creating a response image. These response images are handled by the HT 

for detecting line segments. Despite the simplicity of this technique, the detection probability can still be 

increased.   

2.2. Deep learning-based streak detection      
Varela et al. [5] proposed a CNN streak detection framework (YOLO - v2). This framework is tested on a system 

with a multi camera wide-field of view (WFoV) which has a ( 60 - 160 ) degree. The structure of the YOLO-v2 

contains layers such as convolutional, and max-pooling layers, and also one concatenation layer. It makes a good 

performance improvement (specifically in precision). By using a GPU, it processed about 4.7 images every 

second to satisfy the real-time requirements for the wide-field of view (WFoV) system. 
Duev et al. [6] proposed a CNN streak detection framework (DeepStreaks) that is designed to detect fast and 

near targets from the earth that appear as streaks in the astronomical images. It achieves a (96 - 98)% true positive 

rate while preserving a false positive rate of less than one percentage. DeepStreaks framework has decreased 
human participation in the streak detection procedure. But, the ability to detect fainter and weak celestial targets in 

images is still to be further improved [6].   
Krucinski et al. [14] proposed a CNN framework for single streak detection of moving objects like a satellite in 

astronomical images captured from an optical camera. It divides the process into 2 steps the first step is the 

detection of streaks and the second step is the localization. It is faster and more accurate. However, it can not 

detect several streaks in the same image.   

Xi et al. [1] proposed a CNN framework for detecting SD that appears as a streak in astronomical images using 

FLCR. It divides into more than steps. The first process is to remove the noise from astronomical images by the 
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one-dimensional mean iteration technique. The second process is the FLCR framework presented to detect SD 

from the extracted candidate regions. It has good performance and can detect targets with low SNR, but the 
probability of detection can still be improved.   

Jiang et al. [15] proposed a CNN framework depending on a small SD detection that had two processes. In the 

first process, the astronomical image's spatial contrast map (SCM) is produced using the local-contrast technique. 

In the second process, the spatiotemporal data is taken by combining it with the SCM.  The framework has good 

robustness and also it is effective for small SD detection. However, lens glare has an impact on the framework 

that is sensitive to it.   

Liu et al. [4] propose an astronomical detection framework based on CNNs to detect and classify celestial 

objects. It approves the Faster R-CNN by using an adapted Resnet-50 and FPN model to extract features from 

astronomical images. It improves (25%) of the detection ability than the classical technique when the threshold is 
(0.6). It is more reliable and has a good performance than the traditional method. However, the accuracy of 

detection can still be improved.   

Due to the astronomical images nature, the above mentioned approaches had restrictions that could be 
summarized as First: the detection accuracy of fainter streaks is still to be further improved. Second: can not 

detect several streaks in the same image. Third: sensitive to the impact of noise. Forth: the accuracy of streak 

detection in astronomical images can still be improved. Accordingly, we propose a modified Faster R-CNN 
framework that overcomes such limitations by extracting features from astronomical images using EFPN.   

3. Streak detection using deep learning      
Since astronomical images' exposure time is short and the spatial sampling rate is low, astronomical images have 

around ( 5 × 5 ) pixels for stars with moderate SNR and extend to tens of pixels for bright stars and streaks. To 

assign an appropriate feature level for small celestial targets like streaks, we use EFPN as a feature extraction 

network in the Faster R-CNN [7] and then compare it with the FPN-based framework [4]. The FPN-based 

framework is discussed in detail in [4]. But now we focus on the EFPN-based framework in this paper [7]. Figure 

1 demonstrates the general structure of The EFPN-based framework [7].   

 

 

  Figure 1. The overall construction of The EFPN-based framework [7]. 
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3.1. Extended Feature Pyramid Network       
The EFPN [7] architecture is implemented by the FPN-like network [4] integrated with a feature super-resolution 
(SR) model. This model produces high-resolution features to support small and faint streaks from low-resolution 

astronomical images, whereas keeping a low cost of computation. Figure 2 depicts the construction of the EFPN. 

We represent the feature maps that share an identical semantic level by Ci/Pi but with the high-resolution levels as 

Ci
' /Pi

' . In the bottom extension in the EFPN that contains a feature texture transfer (FTT) model, the third and 

fourth pyramid layers of the EFPN are represented by green color and yellow color respectively are involved to 

produce the intermediate feature P3
'  with selected regional data that is represented by the color blue. Then, the 

intermediate feature P3
'  merged with a high-resolution feature map C2

' , constructing the final layer P2
'  . This 

process can be defined as:   

  P2
' =P3

' ↑(2×)+ C2
'  (1) 

where ↑(�×) represents double-upscaling with the nearest-neighbor approach.   

 

  Figure 2. The overview of EFPN [7].   

 

3.2. Feature Texture Transfer       
The FTT model [7], which is based on image reference-based SR, is made to synchronously super-resolve 

features and then extracting regional textures from the reference features. In figure 3, the feature map P3 from the 

third layer of the EFPN model serves as the main input for the FTT model, and the feature map P2 from the fourth 

layer serves as the reference. The output P3
'  can be associated with:   

  P3
' =EXt�P2∥EXc(P3)↑(2×)�+EXc(P3)↑(2×) (2) 

where EXt(.) represents a texture-extractor component, EXc(.) represents a content-extractor component, ↑(�×) 

represents double-upscaling with the sub-pixel CNN, and ∥ represents the feature concatenation.   

Both the texture-extractor block and the content-extractor block are built from residual blocks. Within the 

reference layer, The texture-extractor block receives the super-resolved content feature P3  and the reference 

feature P2. Within the main layer, the sub-pixel CNN is applied to upscale the content features' spatial resolution 

from the main layer P3 while taking efficiency into account. The output feature map P3
'   combines both the 

semantic and the regional data from the input feature P3 and the reference feature P2.    
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  Figure 3. The overview of FTT [7].   

 

3.3. Region Proposal Network       
The RPN [4] is a CNN that predicts objectness scores and object bounds at each position. RPN takes an 

astronomical image and generates several rectangular region proposals (RPs). The network slides over the 

convolutional feature map and takes as input the spatial window with a size  ( m × m ) to generate RPs. At each 
sliding-window location, it predicts several RPs, and the maximum number of RPs that can be obtained for each 

location is represented as k. Each sliding-window produces a low-dimensional vector that is fed into 2 fully 

connected layers (FC), the first layer is the box regression layer (reg) and the second layer is the box classification 

layer (cls). The reg layer has ~ 4k outputs, while the cls layer has ~ 2k outputs for each RP.   

3.4. Region of Interest Alignment       
The ROI  alignment [4] converts RPs that have distinct sizes into RPs of the same size through RPs and their 

matching feature maps. Then feature maps of resized RPs sent to the FC layer for classification. To accurately 

maintain floating point boundaries, it iterates over each RP and divides each RP into ( p × p ) parts. A bilinear 

interpolation technique is used to compute the values of 4 fixed coordinate positions in each part. It estimates the 
values of these 4 positions based on the distance between recognizable coordinate positions, and the values of 

theirs. After that, the maximum pooling process is carried out to aggregate the result.   

3.5. Classification and Regression      
The feature maps of RPs are classified using a classification neural network. Also, RPs are sent into bounding box 

regression to rescale and shift it again to improve classification and regression accuracy. Finally, the final types of 

these RPs will be output. Following this, it determines the type and position of the candidate astronomical frames.   

4. Experiments and Results       

4.1. Datasets for training and testing       
Because there aren't enough publicly available astronomical data sets, we use the simulation observation data [4] 

which is generated by using the Skymaker application [4]. Skymaker application usually is used to create 

simulation astronomical frames. The performance of the streak detection framework was tested on a simulated 

data set [4]. The astronomical data set includes a variety of astronomical targets, including streak-like sources and 
point-like sources. Streak-like sources are caused by moving targets during the capture, such as satellites, SD, 

asteroids, and meteors, while point-like sources such as stars, galaxies, supernovae, etc.    

Figure 4 shows examples of sample images from the data set. It contains 2500 astronomical images with an 
image size of ( 800 × 800 ) pixels that are divided into 2000 frames for training and 500 frames for testing. Before 

sending the training set into the frameworks, we apply data augmentation by randomly rotating the images to 

create about 8000 frames to raise the quantity of training set images and the generalization ability of the 
frameworks. A rectangular box known as the ground truth box is used in the original images to label the locations 
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and kinds of celestial objects. For each celestial object i, the ground truth box of this object has data kept in a 4-

dimensions vector: Ximax , Ximin , Yimax , and Yimin . Ximax and Ximin  represent the celestial object's maximum and 

minimum values along the X direction, while Yimax  and Yimin  represent the celestial object's maximum and 

minimum values along the Y  direction.   

 

  

  Figure 4. Examples of an astronomical image dataset.   

 

4.2. Details of the experiments       
The neural network is initialized with random weights and trained for 30 epochs using the Adam algorithm as the 

optimization. The starting learning rate is set to 0.00003 with the warming-up technique. For the classification 

neural network's loss function, the CrossEntropy function defined in Equation (3) is used and the smooth L1 loss 

function defined in Equation (4) for the bounding box regression.     
  LH�p

i
,y

i
�=- ∑  d

k=1 �p
ik

log
y

ik
+�1-p

ik
�log�1-yik

)
	 (3) 

 

where p
ik

 represent the probability for celestial frames of type y
i
. 

 

  L1loss(a , b)=
1

n
∑  i Ci (4) 

where 

  Ci= 
0.5�ai - bi�
2
, if ∥∥ai - bi∥∥<1

∥∥ai - bi∥∥ - 0.5,   otherwise. 
 (5) 

 

4.3. Performance evaluation       
Streak detection performance is quantified using mAP, recall, precision, and F1-score which are in turn computed 

from the counts of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).   

4.3.1. mAP:  The average accuracy of all categories and it can be defined as:   
 

  mAP=
∑  

Q
q=1 AP(q)11 points 

Q
 (6) 

where  Q denotes the class number. And AP(q)11 points is associated with: 

 

  AP(q)11 points =
1

11
∑  1.0

r=0 Pinterp (r) (7) 
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where AP(q)11 points  is a sum of the maximum precision Pinterp (r) for eleven distinct recall numbers where r =[ 

from 0 to 1 ] increment by 0.1.   
4.3.2. Recall:  The ratio of true streaks that are correctly detected as streaks and is associated with:   

 
  Recall = TP 

TP + FN
 (8) 

 

4.3.3. Precision:  The ratio of detected objects that are true streaks and is associated with:   
 

  Precision =
TP 

TP + FP
 (9) 

 
4.3.4. F1-score:  The harmonic mean of the recall and the precision and is associated with:    

 
  F1 =2 × Recall × Precision

Recall + Precision
 (10) 

4.4. Competitive approaches       
The performance of the EFPN-based framework [7] was compared with the FPN-based framework [4]. The 

performance of each framework was estimated by the metrics of mAP, precision, recall, and F1 score. We find 

that mAP is stable after 30 training epochs, which are used to train the two frameworks. After training, the two 

frameworks have been tested using the 500 astronomical images from the data set. Figure 5 displays the recall rate 

vs precision rate curve for each framework. The precision-recall curves calculate precision and recall over distinct 

thresholds, giving a demonstration of the framework’s ability. It is shown that the EFPN-based framework [7] is 

better than the Faster R-CNN framework based on the FPN model [4].   
 

 

  Figure 5. Precision–recall curve for each framework.   
 

The results confirmed that the EFPN-based framework [7] achieves a significant improvement in streak 

detection. The resultant mAP, Recall, Precision, and F1-score values for the two frameworks are presented in 
Table I. It could be noticed that the EFPN-based framework [7] outperforms the FPN-based framework [4], in 

terms of mAP, recall, precision, and F1 score values by (3.8), (3.7), (5.8), and (5.1)  respectively.   

The significant improvement in precision indicates that the number of FP decreases and this leads to the ratio 
of detected objects that are true streaks increasing. Also, The significant improvement in recall indicates that the 

number of FN decreases and this leads to the ratio of true streaks that are correctly detected as streaks increase. 

This indicates that the ratio of missing streaks in astronomical images decreases and also the number of wrong 

streaks detected decrease. So the EFPN-based framework [7] demonstrates its ability in detecting streaks more 

precisely.   

In Figure 6, we show the difference between the EFPN-based framework [7] and the FPN-based framework 

[4], we find that the EFPN-based framework [7] detects the faint streaks more precisely and also it increases the 
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detection ability of streaks that overlap with other streaks and streaks that overlap with other celestial objects. 

Also, the number of FP and FN decreased in the astronomical data set which was detected by the EFPN-based 
framework [7].  

  

Table 1. The performance of the EFPN-based framework and FPN-based 

framework. Bold means the best performance for each metric.   

framework mAP Recall Precision F1-score 

Astro FRCNN w FPN [4] 71.1 85.8 75.3 80.0 

Astro FRCNN w EFPN [7] 74.9 89.5 81.1 85.1 

 
 

   
 

   
 

   
Figure 6. The left image in each row represents the original image, the central image in each row denotes the 
detection result of the EFPN-based framework [7], and the right image in each row denotes the detection result of 

the FPN-based framework [4].   

 

5. Conclusion      
In this paper, a comparison between the EFPN-based framework and the FPN-based framework shows that the 

EFPN-based framework is robust and has a good performance for streak detection in astronomical data sets. We 
use the simulated data set to train the neural network and compare the performance between the two frameworks by 
using mAP, recall, precision, and F1 score metrics. The EFPN-based framework achieves a significant 
improvement in streak detection than the Faster R-CNN framework based on the FPN model by 5.3% in terms of 
mAP, 4.3% in terms of recall, 7.7% in terms of precision, and 6.4% in terms of F1 score. The EFPN-based 
framework can detect faint streaks more precisely and also it increases the detection ability of streaks that overlap 
with other streaks and streaks that overlap with other celestial objects.   



ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012024

IOP Publishing
doi:10.1088/1742-6596/2616/1/012024

9

References     
[1] Xi J, Xiang Y, Ersoy OK, Cong M, Wei X, Gu JJIA. Space debris detection using feature learning of 

candidate regions in optical image sequences. 2020;8:150864-77. 

[2] Beckouche S, Starck J-L, Fadili JJA. Astronomical image denoising using dictionary learning. 

2013;556:A132. 

[3] Elhakiem AA, Ghoniemy TE, Salama GI. Astronomical image denoising based on Convolutional Neural 
Network. 2021 Tenth ICICIS; 2021: IEEE. 

[4] Jia P, Liu Q, Sun YJTAJ. Detection and classification of astronomical targets with deep neural networks in 

wide-field small aperture telescopes. 2020;159(5):212. 
[5] Varela L, Boucheron L, Malone N, Spurlock N, editors. Streak detection in wide field of view images using 

Convolutional Neural Networks (CNNs). Advanced Maui Optical and Space Surveillance Technologies 
Conference; 2019. 

[6] Duev DA, Mahabal A, Ye Q, Tirumala K, Belicki J, Dekany R, et al. DeepStreaks: identifying fast-moving 

objects in the Zwicky Transient Facility data with deep learning. 2019;486(3):4158-65. 

[7] Deng C, Wang M, Liu L, Liu Y, Jiang YJIToM. Extended feature pyramid network for small object 

detection. 2021;24:1968-79. 

[8] Ding S, Wang H, Chen D, Fu T, Gao M, editors. An improved method for dim space debris detection based 

on Hough transform. 2016 IEEE 13th ICSP; 2016: IEEE. 

[9] Diprima F, Santoni F, Piergentili F, Fortunato V, Abbattista C, Amoruso LJAA. Efficient and automatic 

image reduction framework for space debris detection based on GPU technology. 2018;145:332-41. 

[10] Kong S, Zhou J, Ma WJIJoO. Effect analysis of optical masking algorithm for geo space debris detection. 
2019;2019. 

[11] Sun Q, Niu Z, Yao C, editors. Implementation of real-time detection algorithm for space debris based on 

multi-core DSP. Journal of Physics: Conference Series; 2019: IOP Publishing. 

[12] Sease B, Flewelling B, editors. GEODETICA: A general software platform for processing continuous 

space-based imagery. 25th AAS/AIAA Space Flight Mechanics Meeting; 2015. 

[13] Mukhopadhyay P, Chaudhuri BBJPR. A survey of Hough Transform. 2015;48(3):993-1010. 

[14] Krucinski J, Bienkowski A, Pattipati KR, editors. Machine Learning for Missile Streak Detection and 
Localization. 2021 IEEE Aerospace Conference (50100); 2021: IEEE. 

[15] Tao J, Cao Y, Zhuang L, Zhang Z, Ding M, editors. Deep Convolutional Neural Network Based Small 

Space Debris Saliency Detection. 2019 25th ICAC; 2019: IEEE. 
 


