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Abstract. Flight testing is probably the most accurate approach for defining the aerodynamic 

characteristics of a flying vehicle. This is justified by the fact that compared to other approaches, 

either engineering or computational ones, flight testing is indeed the one that perfectly resembles 

the real flight environment. Flight data are either obtained by measuring the vehicle's kinematics 

via onboard sensors or by tracking the vehicle's flight via (commonly) radars. The advantages of 

the latter approach are evident in cases where modifying the vehicle design is not possible or in 

cases where rival/enemy vehicles are examined. The key issue for this approach is the quality 

and demands of the technique by which vehicle aerodynamic characteristics are reduced from 

flight-tracked data. In the open literature, different techniques are used to analyze radar data of 

vehicle position and utilize them to predict vehicle drag coefficient. Each technique has its 

strengths and pitfalls. In this paper, the three well-used techniques of drag estimation from radar 

data namely, Least Square (LS), Maximum Likelihood Estimation (MLE), and Stepwise 

regression (SR), are considered. The underlying principle, the output, and the range of validity 

for each technique are addressed with emphasis on what differentiates each of them. The viability 

and validity of the three techniques are addressed based on the own flight testing of a free-flight 

supersonic vehicle and using the point-mass flight model. Meteorological data are also recorded 

and flight conditions are used to enhance the resulting calculations. Based on experimental data 

available from the literature, a comparison is conducted for the techniques examined. 

Considering the lack of flight data utilized, and in conjunction with data from the literature, it 

has been concluded that the SR technique outperforms for a higher sample rate, however, the 

MLE is more feasible when there is a lack of data. 

1.  Introduction 

Aerodynamic drag is one of the most significant factors that impact the vehicle flight performance 

namely its range. Less aerodynamic drag concludes higher vehicle range (or lower propulsion demands), 

which can be obtained by enhancing the vehicle airframe configuration  dictated by the vehicle mission. 

Different techniques [1] are used to estimate vehicle drag among all other aerodynamic characteristics. 

They include theoretical approaches, numerical solutions using computational fluid dynamics (CFD), 

and experimental techniques. Theoretical approaches are based on empirical or semi-empirical 

equations as well as tabulated data reduced from basic theories or experiments on simple configurations. 

Examples include SPINNER [2], NSWCAP [3], MC-DRAG [4], MISSILE[5], AP98[6], DATCOM[6]. 

In contrast, computational methods [7-12] using CFD packages provide more accuracy and flexibility 

for non-conventional shapes and better insight into the physics of drag. Experimental techniques include 

mailto:m.doso@mtc.edu.eg


ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012007

IOP Publishing
doi:10.1088/1742-6596/2616/1/012007

2

 

 

 

 

 

 

wind tunnel [13-15], spark range [16-18], and flight test [13, 15, 19];  the latter is the most representative 

of the real nature of drag.  

Drag is indirectly estimated from flight data. Estimation of drag based on flight data, a.k.a. data 

reduction, is conducted via a number of techniques [20-22]; requiring huge flight datasets including 

rounds with different launch conditions to accurately characterize drag in various flight conditions. 

Flight data are either measured or recorded during flight tests either via ground radar tracking or onboard 

sensors. The former-radar tracking- is the most convenient if modifications to the vehicle are infeasible. 

Focusing on various radar data reduction, numerous studies are available in the open literature [23-35] 

with different techniques had been developed. Chahan and Singh [36] collected and reviewed the 

majority of available techniques. Nonetheless, the most well-defined ones are the least-square, 

maximum likelihood estimation, and stepwise regression techniques.  

The least-square (LS) technique was implemented to estimate drag for the 155mm M107 projectile in 

[23] and in [24] to investigate drag for the 155mm M549 projectile. The second technique, namely the 

maximum likelihood estimation (MLE) was applied through different studies to obtain drag for different 

aerial vehicles. Maine and Iliff [25] reduced the drag coefficient successfully for the T-37B airplane 

using flight data. In [27], MLE was implemented for a short-range tactical tail-controlled vehicle. 

Another study [26], was implemented to estimate the drag coefficient for the 130mm-Cargo projectile. 

For higher drag estimation accuracy, flight trajectory data were divided into sets with a constant time 

step.  

The stepwise regression (SR) technique was applied in [13] for a modern fighter operating within an 

angle of attack range of 5-60 degrees to estimate its aerodynamic performance. Another study [28] was 

conducted to estimate the drag of aerospace vehicles via SR.  

In the open literature, only a few studies (e.g., [36]) were devoted to assessing (viz-a-viz) the accuracy, 

demands, advantages, and disadvantages of flight data reduction techniques. More importantly, for the 

supersonic vehicle in concern, Hydra 70mm, drag reduced from radar data was briefly reported in [37]. 

The technique used (among other essential details) was not explained. These two aspects were the prime 

motivations of the present research.  

This paper proposes a comparative study of the above mentioned techniques for estimating the variation 

of drag with flight Mach number (a.k.a, drag profile) for a case study vehicle based on flight data. The 

dependence of accuracy on the monotony of drag profile, dataset size, and model complexity is assessed. 

The remainder of the paper is organized as follows. The three drag estimation techniques are explained 

first. Then, the case study vehicle is introduced as well as the recorded radar data and the corresponding 

meteorological conditions. Next, results are discussed and compared with experimental data from the 

literature. Finally, the conclusion and forthcoming work are highlighted. 

2.  Drag prediction based on radar-tracked data 

Based on radar-tracked flight data, the vehicle drag can be estimated using different estimation 

algorithms. In this study, three well-known techniques are implemented to explore the advantages and 

shortages of each one. In all, vehicle flight is defined by the point-mass PM flight trajectory model [23, 

26]. The features of these techniques are explained below. 

2.1.  Least square (LS) technique 

It is implemented by fitting the vehicle position [𝒙(𝒕) 𝒚(𝒕) 𝒛(𝒕)]𝑻 in polynomial functions of arbitrary 

degrees and differentiating them twice to get the corresponding velocity and acceleration components 

𝐕(𝒕) = [𝒗𝒙 𝒗𝒚 𝒗𝒛]𝑻, 𝐚(𝒕) = [𝒂𝒙 𝒂𝒚 𝒂𝒛]𝑻. Then, using these kinematics along with measured 

launch and meteorological conditions in the inverse PM trajectory model equation (1) under the action 

of earth’s gravity𝐠 = [𝟎 −𝟗. 𝟖𝟏 𝟎]𝑻 and the measured wind 𝐖 = [𝒘𝒙 𝟎 𝒘𝒛]𝑻, the vehicle drag 

coefficient 𝑪𝑫(𝒕) as a function of Mach number 𝑴(𝒕) can be reduced as: 



ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012007

IOP Publishing
doi:10.1088/1742-6596/2616/1/012007

3

 

 

 

 

 

 

𝐶𝐷(𝑡) =
−8 𝑚[(𝐚(𝑡) − 𝐠). (𝐕(𝑡) − 𝐖)]

𝜋 𝜌(𝑦(𝑡)) 𝑑2 𝑉∞
3(𝑡)

 
(1) 

 

𝑀(𝑡) =
𝑉∞(𝑡)

√𝛾 𝑅 𝑇(𝑦(𝑡))

 (2) 

where, 𝒎 is the vehicle burn-out mass, 𝒅 is the vehicle caliber, 𝝆 and 𝑻 are the measured air density 

and temperature, respectively, and 𝑽∞ = √(𝒗𝒙 − 𝒘𝒙)𝟐 + 𝒗𝒚
𝟐 + (𝒗𝒛 − 𝒘𝒛)𝟐 is the free stream velocity. 

LS requires data from multiple flights. In [23], 28 flight tests with different launch conditions were 

implemented. 

2.2.  Maximum likelihood estimation (MLE) technique 

This is the most frequently used technique to estimate different parameters based on vehicle flight data. 

The flight dynamic model is implemented prior to applying ML. The drag coefficient is fitted as a 

polynomial function with nth degree of the Mach number M as,  

𝐶𝐷(𝑗) = 𝑐0 + 𝑐1𝑀 + 𝑐2𝑀2 + ⋯ + 𝑐𝑖𝑀𝑖 + ⋯ + 𝑐𝑛𝑀𝑛 (3) 

Using the maximum likelihood technique [27], the error between the measured and simulated trajectory 

parameters is iteratively minimized to estimate the polynomial coefficients of the proposed equation (3). 

The point mass model (PM) is utilized using equation (4) to simulate the trajectory of the projectile as, 

𝐚(𝑗) = −
𝜋 𝜌(𝑦(𝑗)) 𝑑2 𝐶𝐷(𝑗) 𝑉∞(𝑗)

8 𝑚
(𝐕(𝑗) − 𝐖) (4) 

where, j is the instant position point and 𝑗 = [1 ∶  𝑛𝑜. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠]. Finally, the polynomial 

coefficients (𝑐0, 𝑐1, …, 𝑐𝑛) are reduced at the end of each iteration until a minimum or a priorly defined 

error between the simulated and the measured data is achieved. This iterative process is implemented 

using the genetic algorithm GA [38, 39] which adds to the complexity and computational demands of 

the MLE technique. 

2.3.  Stepwise regression (SR) technique 

Here, the rate of change of any measured parameter through any two successive measurements is 

assumed constant; i.e., linear variation. Hence, using the PM model, based on the vehicle position, the 

instantaneous vehicle elevation 𝜃 and azimuth 𝜓 are computed as, 

θ𝑖 = tan−1 (
∆y

√∆x2 + ∆z2
) (5) 

𝜓𝑖 = tan−1 (
∆z

∆x
) (6) 

Then, the instantaneous vehicle velocity components can be estimated as, 

𝐕𝑖 = V𝑖. [cos 𝜃𝑖 cos 𝜓𝑖 sin 𝜃𝑖 cos 𝜃𝑖 sin 𝜓𝑖]𝑇   (7) 

Vehicle acceleration is computed by dividing the velocity difference of any two successive instances by 

the time step as: 

𝐚𝑖 =
[Δ𝑣𝑥 Δ𝑣𝑦 Δ𝑣𝑧]𝑇

Δ𝑡
 (8) 

Finally, by substituting equations (7) and (8) in the inverse PM model proposed in equations (1) and (2), 

an estimation for the vehicle drag coefficient 𝐶𝐷(𝑖) as a function of Mach number 𝑀(𝑖) is obtained. 

3.  Case study and flight-test setup 

In this study, the Hydra 70 mm [37] unguided air-to-surface tube-launched vehicle with three wrap-

around fins WAFs is selected as the case study, Figure 1. The vehicle is composed of a blunt nose tip 
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followed by an ogive-cylinder body. Both the vehicle boosting time and the corresponding burn-out 

velocity are about 1.05 s and 740 m/s, respectively. Different studies [37, 40] from the literature 

proposed the drag profile for this vehicle as shown in Figure 2. Chusilp et al [40]calculated the drag 

coefficient using the engineering technique “DATCOM” whereas Dahlke and Batiuk [37] deduced drag 

coefficient values at different Mach numbers from radar data; results of the latter will be used here for 

the sake of assessment of the examined techniques. 

 

 

Figure 1 Case-study vehicle configuration and basic dimensions, 𝐷 = 70 𝑚𝑚. 

 

Figure 2 Case-study vehicle drag profile [37, 40]. 

Flight testing is conducted on the case study vehicle in a specialized firing range at a launch angle of 

30°. Radar tracking range system MFTR-2100/40 [41] is used and flight data are recorded with a 

sampling frequency of 1000 sample/s and then analyzed. The measured data include vehicle down range 

𝑥(𝑡), altitude 𝑦(𝑡), drift 𝑧(𝑡), and velocity 𝑉(𝑡) through flight time t as illustrated in Figure 3. For 

accurate estimation of vehicle drag, meteorological conditions [42, 43] are measured including air 

temperature, pressure, density, and both the wind speed and direction referenced to the height above sea 

level as illustrated in Figure 4. 

  

Figure 3  Vehicle flight trajectory features based on measured radar data.  
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Figure 4 The measured meteorological conditions. 

4.  Results and Discussion 

As the case study vehicle is an unguided fin-stabilized vehicle, the angle of attack is small enough that 

implementation of the point-mass model is assumed acceptable. Therefore, as a good approximation to 

the real trajectory, both the gravity and the aerodynamic drag forces are included considering flat, non-

rotating Earth approximation. The radar data for the above experimental test is analyzed and reduced 

using three different techniques and the results are presented here. Only data beyond sonic speed through 

the coasting and the ascent flight phase are utilized for drag coefficient estimation to avoid the thrust 

effect. Assessment of the accuracy of the techniques is sought by comparing the reduced drag 

coefficient-Mach relation with that in [37], Figure 2. 

As the drag profile has different (non-monotonic) patterns through different Mach regimes, two 

scenarios have been proposed dealing with the measured data as single- and two- datasets. In the single-

dataset approach, the whole measured flight data are utilized to estimate a unified drag profile for the 

whole flight Mach regimes. In contrast, in the two-dataset approach, the measured flight data are divided 

into two datasets based on the flight Mach regimes namely the transonic regime (i.e. 1 < M < 1.2) and 

the supersonic regime (i.e. M > 1.2) and hence, two separate drag profiles are reduced. 

 

Firstly, applying the least-square (LS) technique, the case study vehicle drag coefficient is obtained as 

a function of the Mach number. Different trials were conducted to address the impact of (1) splitting the 

Mach range into two sets, (2) changing the fitting polynomial degree, and (3) reducing the sample rate 

of implemented data. It was found that neither Mach range splitting nor sample rate have an impact on 

the quality of drag estimation. In addition, the highest accuracy was attained using a third-degree 

polynomial.  Figure 5 illustrates the comparison between the best-estimated results and the experimental 

data available from the literature [37]. Deviation of the estimated drag coefficient is evident, especially 

for the transonic and higher supersonic regimes. 
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Figure 5 Estimated drag coefficient using the LS technique. 

Secondly, applying the maximum likelihood estimator (MLE),  the vehicle drag coefficient as a function 

of Mach number is reduced based on the form of equation (3) assuming a second-degree polynomial 

function, where the equation coefficients are estimated by minimizing the cost function (i.e. root mean 

square error RMSE between measured and simulated data) using genetic algorithm GA. The impact of 

dataset splitting is evident in the MLE technique. As illustrated in Table 1, the two-datasets solution 

outperforms the single-dataset one as the RMSE is reduced resulting in a better fit of the simulated data 

to the measured ones as shown in Figure 6. Similar to the LS technique, polynomial degree and sample 

rate were found to have no impact on the accuracy of MLE accuracy. 

 

Table 1 The Results obtained using MLE. 

No. of phases Mach no. c0 c1 c2 RMSE 

One phase M > 1 0.776 0.3429 -0.1447 0.696 

Two phases 
1 < M < 1.2 (transonic) -0.3046 1.872 -0.6534 0.0083 

M > 1.2    (supersonic) 1.125 -0.083 -0.016 0.0843 

 

 

Figure 6 Estimated drag profile using the MLE technique. 

Finally, the stepwise regression (SR) technique is implemented. One feature of this technique is that its 

accuracy is dependent on the sampling rate. Therefore, an investigation is performed to examine the 

impact of changing the data sample rate on vehicle drag profile including 2, 10, 100, and 1000 samples 

per second (referred to as SR1, SR2, SR3, and SR4, respectively).  Figure 7 shows the vehicle drag 

coefficient as a function of the Mach number for different data sampling rates. It is obvious that the 
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resulting accuracy is sensitive to the given number of samples along the flight. In contrast, splitting the 

dataset was found to have an insignificant impact on the accuracy of drag estimation.  

 

 

Figure 7 Estimated drag coefficient using SR technique for different sample rates. 

To wrap up, the resulted drag coefficient of the three techniques are compared in Figure 8 along with 

published results [37]. The drag profile estimated via the LS technique is the least accurate with a RMSE 

of 0.123. The drag profile for the maximum likelihood technique (ML) with two datasets and the 

stepwise regression technique (SR) with a rate of 1000 samples/second are almost coincident. The 

RMSE values of these two techniques are 0.0324 and 0.0421, respectively. Deviation from [37] may be 

due to other aspects e.g., measurement tolerances, and radar system features. The drag estimation 

technique adopted in [37] was not stated. All RMSE in drag profiles based on the aforementioned drag 

estimation techniques are listed in Table 2. 

 

Figure 8 Comparison of different drag estimation techniques. 

Table 2 RMSE in drag profiles.  

Technique RMSE 

Least square (LS) 0.123 

Maximum likelihood (ML, two data sets) 0.0324 

Stepwise regression (SR4, 1000 samples/second) 0.0421 

5.  Conclusion 

Estimating drag from flight data is one of the most accurate approaches. However, the estimation 
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defined, widely-used techniques is conducted for a free-flight unguided supersonic vehicle as a case 

study. These techniques include the Least Square, Maximum Likelihood Estimation, and Stepwise 

Regression. The impact of technique complexity, sampling rate, and flight regime variation on accuracy 

and cost of drag estimation is highlighted.  

For the case study examined, results showed that the least square technique yields the least estimation 

accuracy based on a single flight. More flights would yield higher drag estimation accuracy. For the 

MLE technique, splitting the measured flight data into multiple sets based on the flight Mach regime 

improves estimation accuracy that is independent of sampling rates. MLE is generally more 

computationally expensive yet shows high accuracy even with low sample rates, i.e., less flight-

demanding. In contrast, SR is less computationally sophisticated however, its accuracy is sensitive to 

the sampling rate. Low sampling rates would yield low drag estimation accuracy. 
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