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Abstract. Classical elasticity theory failed to produce accurate results given in agreement with the experimental
results. As this theory fails at stress concentration near the gaps or holes, or materials with significant
microstructure contributions as soil, composite material, and polymer material generally in aerospace materials.
In order to improve accuracy, the consistent couple stress theory is used. In the consistent couple stress theory,
the microrotation and macro rotation are equal, where the macro rotation is half the curl of displacement, and
the couple stress tensor is skew-symmetric. In this paper, the fundamental solutions for couple stress elasticity
are derived in a systematic way via the Hörmander technique. The used technique is characterized by its ease
and also develops the Galerkin tensor used in many applications, for example, the transformation of domain
integral, computing the body force in the domain without discretization. All necessary kernels for displacements
and tractions are derived and given in terms of a generalized Galerkin tensor for further use.

1. Introduction
According to the recent rapid microstructural development of materials, a new appeared as it was known as
scale effects, which is a reflection of geometrical characteristics as well as microstructural characteristics of
the material, the scale effect is associated with the ratio l/d, where l is length scale and d is the grain size.
The traditional theories of elasticity and mechanics could not explain scale effects since it is incompatible
with the length scale of materials, because it depends on the behavior of materials at the macro-scale (the
strain tensor), where it neglects the microstructure size dependency, so it could not describe the behavior of
composite materials. Therefore, the couple stress theory was developed by Mindlin and Tiersten[1] to keep
pace with the development of composite materials which is used in a number of vital areas, for example, in
aerospace industry[2]. The version in[1] suffers from the indeterminacy of the couple stress which was solved
by Dargush[3] in the version called the consistent couple stress theory, where the couple stress tensor is proved
to be skew symmetric. Hassanpour[4] gave a review on the micropolar elasticity theory and how it is simplified
to the couple stress theory and then to the classical elasticity theory. Taig[5] used composite carbon fiber in the
manufacture of aerospace structures not only for military aircraft production but also for civil aircraft, because
of its high strength and stiffness in addition to the lighter weight. Kumar et al[6] employed high-temperature
composite materials in the aerospace industry. Skrzat et al [7] used the couple stress theory to compute the
effective elastic properties of a metal open-cell foam. Jun Lei et al [8] derived the general formulation for
displacement and traction boundary integral equations of plane strain problems for couple stress with crack
problems. The couple stress theory is also used in fluid, Hayat et al [9] used the couple stress theory to study
the combined impacts of heat generation/absorption and convective condition in a three-dimensional magneto-
hydrodynamic (MHD) flow which is used in many applications, including aerospace technology.

The fundamental solution of the micropolar elasticity is derived by N.Tosaka[10] who used Hörmander
technique. The fundamental solution of the couple stress elasticity is derived by Dargush[11] using the decom-
position method where the displacement is decomposed into dilatational and solenoidal components. Moreover
it gives the final kernels without putting them as higher derivatives of scalar potential (such as the well-known
Galerkin tensor in classical elasticity). It has to be noted that the fundamental solution for (2D) elasticity was
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derived by Rashed [12] using Hörmander technique and also he computed the fundamental solution for plates
in bending by the same technique.

The importance of this method (Hörmander technique) is in the form of such solution in terms of generalized
Galerkin tensor Φ(x, ξ) which could be used in many fields, Cheng et al[13] used it in the direct boundary
element method to transform the domain integral of the body force to the boundary by radial basis function for
thermoelasticity and elasticity problems. Brebbia[14] generalize the Galerkin method and used it to solve the
problem with body forces, centrifugal forces, and thermal effects. Brebbia and Rashed [15] presented general
methods for processing domain integrals in boundary elements, such as by transforming to the boundary,
like cell and Monte Carlo methods, as well as Green’s Identity and Dual Reciprocity technique. Nasry [16]
discover a new technique for transforming variables and coordinates from the original to the new. When using
this technique, it is noted that it is simpler and faster to compute and more obvious than other techniques.
In this paper, the fundamental solutions for couple stress theory are derived via the Hörmander method where
it is characterized by systematic and clear steps. On the other hand, the derived solutions, are presented as
derivatives of the developed generalized Galerkin tensor, which could be used in many applications in future
research.

2. Basic equations
Assume a solid occupies a region Ω ∈ R2 where linear isotropic couple stress theory is considered. The plane
strain has three Degrees of freedom, two in-plane displacements uα and one in-plane rotation u3.
Figure 1 show the force stress and couple stress tensor. It is assumed that Greek indices take values (1,2),
whereas Latin indices take values from 1 to 3, The notation for partial differentiation with respect to spatial
coordinate xα is V,α = ∂(V )

∂xα
.

As a result of these assumptions:

uα,3 = 0 in Ω, (1a)
e3α = eα3 = 0 , (1b)
σ3α = σα3 = 0 . (1c)

where, eαβ is the strain tensor.

Figure. 1 Components of force stress and couple stress tensor.

The governing equations become:

σβα,β + qα = 0, (2a)
µβ3,β + ε3αβσαβ = 0 . (2b)
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where µβ3 is the couple stress tensor, and ε3αβ is the permutation tensor (Levi-Civita), qα the body force.
The generalized force stress tensor is:

σβα = λeγγδαβ + 2µeαβ − 2ηε3βα∇2u3 (3)

where λ and µ are the usual classical Lamé elastic constants (µ is the shear modulus ), in which λ = 2µν
1−2ν ,

where ν is Poisson’s ratio. The symbol η is the modulus of isotropic couple stress theory.
The generalized strain tensor and rotation vector are:

eαβ =
1

2
(uα,β + uβ,α) , (4a)

u3 =
1

2
(u2,1 − u1,2) . (4b)

Substitute from Eqn. (4) into Eqn. (3), gives

σβα = λuγ,γδαβ + µ (uα,β + uβ,α)− 2η∇2

[
1

2
(uα,β − uβ,α)

]
(5)

Differentiate Eqn. (5) with respect to the spatial coordinate xβ gives:

σβα,β =
(
λ+ µ+ η∇2

)
uβ,αβ +

(
µ− η∇2

)
uα,ββ (6)

Substitute Eqn. (6) into Eqn. (2) and neglecting the body force, gives:(
λ+ µ+ η∇2

)
uβ,αβ +

(
µ− η∇2

)
uα,ββ = 0 (7)

The above equation can be rewritten as
Lαβuβ = 0 (8)

where the differential operator Lαβ is given by

Lαβ =

[ (
µ− η∇2

)
∇2 +

(
λ+ µ+ η∇2

)
∂1∂1

(
λ+ µ+ η∇2

)
∂1∂2(

λ+ µ+ η∇2
)
∂1∂2

(
µ− η∇2

)
∇2 +

(
λ+ µ+ η∇2

)
∂2∂2

]
(9)

where ∂α = ∂
∂xα

and ∇2 = ∂
∂xα

∂
∂xα

implies two-dimensional Laplacian.

3. Hörmander technique
Hörmander technique [17] is the method used here to derive the fundamental solution as it is a general
technique.
The fundamental solution for displacement uαβ(x, ξ) is defined as follows:

L
adj
γβ uαβ(x, ξ) = −δ(x, ξ)δγα (10)

where L
adj
αβ is the adjoint operator of the Lαβ operator, δ(x, ξ) is Dirac delta distribution, x is the field point, ξ

is the source point, and δγα is Kronecker delta. Following Hörmander [17] the fundamental solution is defined
as:

uαβ(x, ξ) =CO L
adj
αβΦ(x, ξ) (11)

knowing that

Ladj−1
αβ =

CO L
adj
αβ

det [Ladj ]
(12)

where det
[
Ladj

]
is the determinate of Ladj , and Φ(x, ξ) is an unknown scalar potential.

Substitute by Eqn. (12) and Eqn. (11) in Eqn. (10)

L
adj
γβ L

adj−1
αβ det

[
Ladj

]
Φ(x, ξ) = −δ(x, ξ)δγα (13)

then simplify, to give:
δγα det

[
Ladj

]
Φ(x, ξ) = −δ(x, ξ)δγα (14)

Finally the scalar potential Φ(x, ξ) could be computed from:

det
[
Ladj

]
Φ(x, ξ) = −δ(x, ξ) (15)
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4. The proposed derivation
The fundamental solution for couple stress problem is derived as follows, the det

[
Ladj

]
could be obtained

from Eqn. (9) as follows:
det

[
Ladj

]
=

(
µ− η∇2

)
(2µ+ λ)∇4 (16)

Substitute into Eqn. (15), gives:

Φ(x, ξ) =
−1

2µ+ λ

{
1

∇4 (µ− η∇2)

}
δ(x, ξ) (17)

Using the partial fraction
1

∇4 (µ− η∇2)
=

a1
∇2

+
b1
∇4

+
c1

µ− η∇2
(18)

where a1 = l2

µ , b1 = 1
µ , and c1 = l4, where l is the basic component of the small deformation size-dependent

elasticity theory, which is known as the characteristic length of material, and l2 = η
µ .

Substitute Eqn. (18)into Eqn. (17) gives:

Φ(x, ξ) =
−1

2µ+ λ

{(
l2/µ

)
∇2

+
(1/µ)

∇4
+

l4

µ− η∇2

}
δ(x, ξ) (19)

From [18], the following potentials could be computed:

∇2Φ1(x, ξ) = −δ(x, ξ) (20)

∇4Φ2(x, ξ) = −δ(x, ξ) (21)

(
1

l2
−∇2)Φ3(x, ξ) = −δ(x, ξ) (22)

Φ(x, ξ) =
1

2µ+ λ

{
l2

µ
(Φ1(x, ξ)) +

1

µ
(Φ2(x, ξ)) +

l4

η
(Φ3(x, ξ))

}
(23)

Therefore, the unknown scalar potential for the couple stress theory is:

Φ(x, ξ) =
1

2µ+ λ

{
l2

µ

(
−1

2π
ln r

)
+

1

µ

(
−1

8π
r2 ln r

)
+
l4

η

(
−1

2π
K0

(r
l

))}
(24)

It has to be noted that Φ(x, ξ) represents the generalized Galerkin tensor for the couple stress theory, and r
is the distance between x, and ξ, and Kn(x) is the modified Bessel function of second kind of order n.
The co-factor matrix of the adjoint operator in Eqn. (11) can be written in an indicial notation as follows:

CO L
adj
αβ = (2µ+ λ)∇2δαβ −

(
µ+ λ+ η∇2

)
∂α∂β (25)

Substitute by Eqn. (25) in Eqn. (11), the generalized fundamental solution of displacement can be written
as follows:

uαβ(x, ξ) =
[
(2µ+ λ)∇2δαβ −

(
µ+ λ+ η∇2

)
∂α∂β

]
Φ(x, ξ) (26)

Or
uαβ(x, ξ) = (2µ+ λ)δαβ∇2Φ(x, ξ)− (µ+ λ)Φ,αβ(x, ξ)− η∇2Φ,αβ(x, ξ) (27)

From Eqn. (24) , Φ(x, ξ) can be written as:

Φ(x, ξ) = a ln r + b r2lnr + c K0

(r
l

)
(28)

where

a =
−l2

2πµ(2µ+ λ)
, (29a)

b =
−1

8πµ(2µ+ λ)
, (29b)

c =
−l4

2πη(2µ+ λ)
. (29c)
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Differentiating Eqn. (28) with respect to xα, gives:

Φ,α(x, ξ) = a
r,α
r

+ b
[
r2

r,α
r

+ 2rr,α ln r
]
+ c

[
−K1

(r
l

)
· r,α

l

]
, (30a)

=
ar,α
r

+ b [rr,α + 2rr,α ln r]−
c

l

[
r,αK1

(r
l

)]
. (30b)

Differentiate Eqn. (30) with respect to xβ , gives:

Φ,αβ(x, ξ) = a
rr,αβ − r,αr,β

r2
+ brr,αβ[1 + 2 ln r] + br,βr,α[1 + 2 ln r]

+brr,α

[
2r,β
r

]
− c

l

[
r,αr,β

l

(
−K0

(r
l

)
− l

r
K1

(r
l

))
+K1

(r
l

)
r,αβ

] (31)

where
r,αβ =

δαβ − r,αr,β
r

(32)

Simplifying Eqn. (31)

Φ,αβ(x, ξ) =
aδαβ
r2

−
2ar,αr,β

r2
+ 2br,αr,β + b[1 + 2 ln r]δαβ +

c

l2
r,αr,βK0

(r
l

)
− c

rl
K1

(r
l

)
δαβ +

2c

rl
K1

(r
l

)
r,αr,β

(33)

Put α = β the Laplacian of Φ(x, ξ) could be written as follows:

∇2Φ(x, ξ) = Φ,αα(x, ξ) = 4b[1 + ln r] +
c

l2
K0

(r
l

)
(34)

Differentiating Eqn. (34) with respect to xα, gives:

∇2Φ,α(x, ξ) = 4b
r,α
r

− c

l2
K1

(r
l

)
· r,α

l
= 4b

r,α
r

− c

l3
r,αK1

(r
l

)
(35)

Differentiating Eqn. (35) with respect to xβ , gives:

∇2Φ,αβ(x, ξ) = 4b
rr,αβ − r,αr,β

r2
− c

l3

[
r,αr,β

l

(
−K0

(r
l

)
− l

r
K1

(r
l

))
+K1

(r
l

)
r,αβ

]
(36)

Substituting Eqn. (30) to (36) into Eqn. (27) , gives:

uαβ(x, ξ) = (2µ+ λ)δαβ

[
4b(1 + ln r) +

c

l2
K0

(r
l

)]
− (µ+ λ)

[
aδαβ
r2

−
2ar,αr,β

r2
+ 2br,αr,β + b(1 + 2 ln r)δαβ

+
c

l2
r,αr,βK0

(r
l

)
− c

rl
K1

(r
l

)
δαβ +

2c

rl
K1

(r
l

)
r,αr,β

]
− η

[
4bδαβ
r2

−
8br,αr,β

r2
+

cr,αr,β
l4

K0

(r
l

)
−

cK1

(
r
l

)
l3r

δαβ +
2c

l3r
K1

(r
l

)
r,αr,β

]
(37)

Then the final expression for the fundamental solution of displacement is:

uαβ(x, ξ) =δαβ

[
−1

2πµ
K0

(r
l

)
− l

2πµ

1

r
K1

(r
l

)
+

l2

2πµ

1

r2
− 3− 4ν

8πµ(1− ν)
ln r − 7− 8ν

16πµ(1− ν)

]
+ r,αr,β

[
1

2πµ
K0

(r
l

)
+

l

πµ

1

r
K1

(r
l

)
− l2

πµ

1

r2
+

1

8πµ(1− ν)

] (38)
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Substitute by Eqn. (38) in Eqn. (5), then the stress kernel is:

σαγβ(x, ξ) =
δγβr,α
4π

[
4K0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
− 1− 2ν

(1− ν)r

]

+
δαγr,β
4π

[
4K1

(
r
l

)
l

+
4k0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
− 1− 2ν

(1− ν)r

]

+
δαβr,γ
4π

[
4K0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
+

1− 2ν

(1− ν)r

]

+
r,αr,βr,γ

4π

[
−16K0

(
r
l

)
r

−
32lK1

(
r
l

)
r2

−
4K1

(
r
l

)
l

+
32l2

r3
− 2

(1− ν)r

]
(39)

The traction kernel is:
Tγβ(x, ξ) = σαγβ(x, ξ)nα(x) (40)

Substitute by Eqn. (39) into Eqn. (40), then the fundamental solution for the traction is given by:

Tγβ(x, ξ) =
δγβr,n
4π

[
4K0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
− 1− 2ν

(1− ν)r

]

+
r,βnγ

4π

[
4K1

(
r
l

)
l

+
4k0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
− 1− 2ν

(1− ν)r

]

+
r,γnβ

4π

[
4K0

(
r
l

)
r

+
8lK1

(
r
l

)
r2

− 8l2

r3
+

1− 2ν

(1− ν)r

]

+
r,nr,βr,γ

4π

[
−16K0

(
r
l

)
r

−
32lK1

(
r
l

)
r2

−
4K1

(
r
l

)
l

+
32l2

r3
− 2

(1− ν)r

]
(41)

5. Conclusions
The couple stress theory was derived to treat failures in classical theory of elasticity, which appeared in
composite materials, and crack problems. The fundamental solution for the couple stress theory was derived
by other techniques, which sometimes have long-way derivations. This paper derived the fundamental solution
for the couple stress theory in another way by using the Hörmander technique. The main advantage of this
derivation is that the desired kernels are computed in terms of a generalized Galerkin tensor, which is made
available for further use in many engineering fields, for example using the generalized Galerkin tensor when
transferring the domain integral to the boundary.
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