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Abstract. A longitudinal autopilot system for flying vehicles, such as missiles and drones, is 

crucial for enhancing stability, reducing the risk of errors, improving efficiency, and providing 

better control in unpredictable situations. The advancement of such a system is imperative for 

advancing the aviation industry and ensuring successful missions carried out by these flying 

vehicles. The necessity for a reliable flight controller in agile missile applications motivates the 

design of this system. A state-space formulation was utilized to integrate a linear-quadratic 

regulator (LQR) method, a Luenberger observer, and proportional navigation algorithms. The 

design methodology aimed at minimizing a quadratic cost function while meeting performance 

objectives. The system was simulated using MATLAB, and the results demonstrate the 

autopilot's effectiveness in compensating for in-flight disturbances and noise caused by 

parametric uncertainties, environmental disturbances, and system non-linearities. The versatility 

of LQR optimization methods and the importance of robust control for stable and reliable missile 

systems in changing environments are emphasized in this observational study. Simulations and 

numerical analysis revealed a reduction in the miss distance, indicating the autopilot system's 

proficiency and robustness. 

1. Introduction 

An aerospace vehicle's longitudinal autopilot system is a crucial design step in accomplishing the 

terminal performance goals of eliminating a possible target. When agile missiles are used to engage a 

precise target, the task becomes significantly more challenging. Designing a multiple variables missile 

longitudinal autopilot for agile missile applications can be complicated due to various factors such as 

environmental variability, uncertain parameters, and system nonlinearity. A significant challenge is the 

lack of sensor data caused by defective signals and complete data loss in real flight, making feedback 

loops contesting. Given that inaccurate plant, and the sensor is noisy, these concerns become more 

significant, and the control system must cope with additional burdens. If the controller exceeds its limits, 

particularly in tactical missiles, it can cause design malfunctions and mission failure. An outstanding 

controller design for the missile's longitudinal dynamics can effectively compensate for in-flight 

disturbances and noise caused by scalar disturbances and Gaussian noise. This design technique allows 

the controller to integrate all disturbances during real flight, including internal noises and external 

system disturbances, and efficiently minimize a prescribed quadratic index [1]. Using the LQR method 

for controller design and incorporating the Linear-Quadratic Estimation (LQE) method to account for 

real flight disturbances, this study addressed a quadratic-cost function reduction problem while meeting 
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the desired performance objectives. The result was developing a system that produced optimal results 

with minimal effort required. 

Aerospace vehicles experience various external perturbations and noise during real test flights, and if 

these factors are not considered, they can gradually propagate and cause system instability [2]. Several 

studies have been implemented to address this issue, and appreciable amount of relevant literature is 

available on this topic. In [3], LQR for stabilizing anti-aircraft pursuer’s performance was analyzed. 

They proposed a new technique for selecting weighting factors in feedback loop's gain matrix, which 

was evaluated using the V-parameter-based method of LQR tuning. Additionally, in [4], the authors 

demonstrated the LQR applications in missile autopilot to control the roll angle of the system. They 

compared the results of LQR control with fuzzy logic control (FLC) and sliding mode control (SMC) 

using a second-order time-domain system to represent the rolling angle controllers. Authors in [5] used 

LQR to create a guidance law for tracking the target projectile's trajectory, with weight matrices 

optimized through an evolutionary algorithm to minimize the ITSE index and improve regulator 

efficiency. [6] Applies SMC to stabilize an anti-aircraft pursuer by decoupling the control process from 

the missile's airframe dynamics. The LQR method is employed in conjunction with an analytical 

approach to select the weighting components of the gain matrix. 

Improved computer systems and numerical computation have facilitated the development of various 

LQR optimization techniques, enabling control of complex, multidimensional systems. LQR control has 

been successfully implemented in challenging applications, such as double-inverted pendulums, aircraft, 

and systems of fuel cell [7]. [8] Uses a combination of feed-forward and LQG feedback control to keep 

a ship model on a maneuvering trajectory, systematically selecting variances for the weighting 

coefficients of the LQG controller. Unlike fuzzy regulators or artificial neural networks, LQR requires 

a mathematical model of the system. However, LQR optimization techniques have been successful in 

various applications. 

The authors in [9] utilized LQR to enhance the composite material production process through infusion. 

The study validated the potential for energy absorption with LQR in manufacturing composite materials 

using vacuum bagging. The focus is now on optimizing layer thickness selection to increase energy 

absorption. Furthermore [10], the author reviews most of LQR's techniques, which finally use it with 

the thrust vectoring control model of a missile. Top of Form 

Bottom of Form 

The selection of a control method for a system [11] begins with an analysis of the dynamic behavior of 

the plant. This involves understanding the rate of change of the system's state variables, which can be 

represented through a set of differential equations known as the flying object motion equations, which 

describe the relationship between the state variables and the fin deflections.  

LQR is a modern control theory that analyzes the system's state space model, enabling state space 

techniques for complex systems. Control methods fall into two main categories: model-based, like LQG, 

which adopts a mathematical model, and model-less, like fuzzy regulators and artificial neural network-

based control systems, which do not require a mathematical model. Motivated by the imperative to find 

a practical, reliable flight computer for applications involving agile missiles that will address this 

problem. The state-space formulation has been used in this study to conduct it inside a contemporary 

framework for control design. 

This paper reveals a novel feedback control system design methodology to trace the vertical acceleration 

of a Medium-Range Air-to-Air Missile (MRAAM) and integrate it with a True Proportional Navigation 

Guidance Law. The methodology relies on robust servomechanism theory and Luenberger observer 

design and is divided into two parts. In the first one, the closed-loop system is designed with the required 

specifications using full-state feedback, then with acceleration and pitch rate as outputs. In the second 

part, the closed-loop system is integrated into the guidance law, and the minimum miss distance is 

evaluated, making any necessary changes to the design. To assist in the design process, design charts 

are created at crucial points. 

The main contribution of this paper is the development of a systematic design process with detailed 

design charts, which aids in the implementation of the closed-loop system with the required 

specifications. This methodology is successfully applied to the MRAAM short-period dynamics, leading 

to an optimal realization of the missile's behavior and improved performance. 
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Figure 1. The proposed algorithm architecture design 

Through extensive performance simulations, the paper demonstrates the potential of the design approach 

to handle the uncertain nature of the plant. Extensive performance simulations were conducted to 

evaluate the performance due to the plant's uncertain nature, validating the proposed approach's 

effectiveness. 

This approach can be applied to other missile or aerospace systems with similar short-period dynamics. 

The structure of this paper is organized as follows: Section 2 presents the methodology for designing 

the missile control longitudinal autopilot, including the engagement dynamics and requirements. In 

Section 3, the design process is detailed with full-state feedback and observer design, and it is integrated 

with the guidance loop, in which the paper contribution is highlighted. Section 4 provides a simulation 

and analysis of the interception scenario. Finally, Section 5 concludes the work and provides directions 

and ideas for future areas of study. 

2. Methodology 

The conventional approach to guidance and control typically employs a hierarchical structure, where in 

guidance loop serves as the outer loop and is primarily responsible for generating the desired overload 

command. On the other hand, the control loop is responsible for tracking this overload command, 

ultimately achieving the missile's guidance toward its target. However, designing the control loop or 

autopilot with improved dynamic capability is often desirable. Despite this, practical limitations, such 

as delays and attenuations in the controller, can result in errors in following the overload command, 

contributing to a miss of the target. 

To manage these issues, an integrated guidance and control algorithm has been developed that combines 

the guidance and control loops into a single loop, thus avoiding the delays and attenuations precipitated 

by their separation. The framework of this approach is illustrated in figure 1. 

The states available for feedback include pitch rate and vertical acceleration (𝐴𝑧). The actuator that 

provides inputs to the plant is a second-order under-damped system with unit steady state gain, albeit its 

dynamics are not characterized. 

The control goal is to create an autopilot (controller and observer) that satisfies the problem statement's 

frequency and time domain requirements while ensuring that the closed-loop compensator's output    

(𝐴𝑧) follows the intended (𝐴𝑧𝑐𝑚𝑑
). In addition, the last stage of (𝐴𝑧) tracking (𝐴𝑧𝑐𝑚𝑑

) generated by the 

guidance issue must satisfy the actuator saturation requirements. 

In order to decrease Miss Distance in the integrated autopilot-guidance system, all while fulfilling the 

other design requirements, the LQ Controller and Observer Penalty matrices must be tuned. 

2.1. The Engagement Dynamics 

The integrated guidance and control approach differs from other control methods in that it considers the 

dynamic attributes of the missile airframe. Thus, the derivation incorporates the missile's pitch angle, 

pitch rate, and angle of attack. 

The missile's longitudinal motion is described by the following equations [12]: 

𝑉̇𝑀 =
1

𝑚
(𝐹𝑡 𝑐𝑜𝑠 𝛼 − 𝐹𝑥 − 𝑚 𝑔 𝑠𝑖𝑛 𝜃𝑀)      (1) 
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𝜃̇𝑀 =
1

𝑚 𝑉𝑀
(𝐹𝑡 𝑠𝑖𝑛 𝛼 + 𝐹𝑦 − 𝑚 𝑔 𝑐𝑜𝑠 𝜃𝑀)    (2) 

 𝑥̇𝑀 = 𝑉𝑀𝑐𝑜𝑠 𝜃𝑀           (3) 
𝑦̇𝑀 = 𝑉𝑀𝑠𝑖𝑛 𝜃𝑀       (4) 

𝜔̇𝑍𝑀
=

𝑀𝑍

𝐽𝑍
            (5) 

 𝜃̇  = 𝜔𝑍              (6) 

Where (𝑥𝑀 , 𝑦𝑀) is the missile position, 𝑚 is the mass, 𝐹𝑥  , 𝐹𝑦 is the forces, 𝐹𝑡 is the thrust force, the 

missile's velocity is ( 𝑉𝑀), and its flight path angle is (𝜃𝑀), 𝛼 is the attack angle and 𝜃 is the pitch angle. 

The motion equations of the target are as follows: 

𝑥̇𝑇 = −𝑉𝑇cos 𝜃𝑇       (7) 

 𝑦̇𝑇 = 𝑉𝑇𝑠𝑖𝑛 𝜃𝑇          (8) 

 𝜃̇𝑇 =
𝑎𝑇𝑁

𝑉𝑇
       (9) 

The interception of a target is described by two parameters: the target range and the line-of-sight (LOS) 

angle. The following relationships represent the kinematic equations associated with this process: 

   𝑟̇ = −𝑉𝑀cos (𝜃𝑀 − 𝑞) − 𝑉𝑇cos (𝜃𝑇 + 𝑞)    (10) 

𝑟𝑞̇ = −𝑉𝑀sin (𝜃𝑀 − 𝑞) + 𝑉𝑇sin (𝜃𝑇 + 𝑞)   (11) 

Where (𝑥𝑇 , 𝑦𝑇)the target position, and LOS angle between the missile and its target is 𝑞, the relative 

range from the missile to its target is 𝑟, the velocity of the target is 𝑉𝑇, and its flight path angle 

is 𝜃𝑇 , 𝑎𝑛𝑑 𝑔 is the gravity force.    

State-space equations represent the MIMO systems in contemporary control systems is; 

𝑋̇ = 𝐴 𝑋 + 𝐵𝑈
𝑦 = 𝐶 𝑋 + 𝐷𝑈

     (12) 

The vector of time derivatives of the state variables is 𝑋̇, 𝑋 is the vector of state variables, 𝑈 is 

the vector of control inputs, the vector of outputs is 𝑦, and 𝐴, 𝐵, 𝐶, 𝐷 is the state, input, output 

and the direct transmission matrices respectively. 
Here, the longitudinal dynamics are linearized about the trim condition and represented in state_space 

form as given in the following, 

[

𝑢̇
𝑤̇
𝑞̇

𝜃̇

] = [

𝑥𝑢 𝑥𝑤 𝑥𝑞 𝑥𝜃

𝑧𝑢 𝑧𝑤 𝑧𝑞 𝑧𝜃

𝑚𝑢 𝑚𝑤 𝑚𝑞 𝑚𝜃

0 0 1 0

] [

𝑢
𝑤
𝑞
𝜃

] + [

𝑥𝑐𝜂

𝑧𝜂

𝑚𝜂

0

] 𝛿𝑒   (13) 

Where[𝑢̇ 𝑤̇ 𝑞̇ 𝜃̇]𝑇  represent the rates of change of the longitudinal state variables velocity, 

altitude, pitch rate, and pitch angle, respectively.[𝑢 𝑤 𝑞 𝜃]𝑇 are the longitudinal state variables.  

The matrix elements(𝑥𝑖, 𝑧𝑖  and 𝑚𝑖), and 𝑖 is (𝑢 𝑤 𝑞 𝜃) are the longitudinal stability derivatives, 

which represents the system dynamics.[𝑥𝑐𝜂 𝑧𝜂 𝑚𝜂 ]𝑇 represents the control derivatives, which 

relate the control input 𝛿𝑒 to changes in the state variables, and 𝛿𝑒 is the elevator deflection. 
According to recent control theory, if the plant's system dynamics, i.e., matrices 𝐴 and 𝐵, are 

controllable, the closed-loop system's eigenvalues can be manipulated.[𝐴 − 𝐵𝐾𝑟] by selecting the 

formulation of full-state feedback controller  𝑢 = −𝐾𝑟𝑥. This method assume that the full state 

measurements to be available, i.e., 𝐶 = 𝐼 and 𝐷 = 0, in which 𝑦 = 𝑥. The issue occurs as the system 

dimension develops and full-state controllability and observability become more challenging to 

implement. The sensor measurement data can be used to create a full-state estimation if the system is 

observable [13]. 

2.2. The Controller Requirements  

The design requirements for the control system are as follows: the compensator must provide a 

minimum gain of 6 dB, ensuring that the system has enough amplification to meet the desired 
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performance specifications. A phase margin of 35 degrees guarantees that the system is stable 

and does not oscillate excessively. The maximum fin displacement and rate were also 

constrained to 35 degrees and 350 degrees per second, respectively, vouching that the system 

operates within the physical limits of the hardware. Then, the loop gain at the input crossover 

frequency was required to be less than One-third of the actuator's natural frequency to maintain 

that the actuator could keep up with the system's dynamics and not become a limiting factor, 

and the percentage undershoot and overshoot is both limited to 10 percent.  

The sensitivity and co-sensitivity of the compensator were required to be less than 6 dB over 

the frequency range of 1e-1 to 1e3 rad/s, ensuring that the compensator does not introduce 

excessive noise or distortion in the system, as in figures 3 and 4. Furthermore, the real part of 

the closed-loop compensator eigenvalues had to be greater than -400 to know that the system 

is stable and has a fast response. Finally, the compensating loop gain had to be within 0.3 Hz 

of the LQR loop gain at the model, maintaining the input so the control system could track the 

desired trajectory accurately. These requirements were used as the basis for the simulation and 

evaluation of the control system. 
3. Autopilot Design 

While adhering to the design specifications, the LQ Controller and Observer Penalty matrices must be 

optimized to reduce Miss Distance in the integrated autopilot-guidance system. Despite plant 

uncertainties or specific external disturbances, the robust servomechanism is a tracking controller that 

can track broad reference signals asymptotically. For usage in the LQR state feedback law, the whole 

state is estimated using a Leuenberger observer. 

3.1.  Full state feedback design 

The full-state-feedback controller is constructed, and a step reference is monitored through robust 

servomechanism design. Since actuator state feedback is unavailable, it is not included in the design 

model. 

The design model formulation is as follows: 

[
𝑒̇
𝜉̇

] = [
0 𝐶𝐴𝑧

0 𝐴
] [

𝑒
𝜉] + [

𝐷𝐴𝑧

𝐵
] 𝜇    (14) 

Where 𝜉 is 𝑥̇, 𝜇 is 𝑈̇ and 𝑒 is 𝐴𝑧 − 𝐴𝑧reg  Comparing the above equation with 

𝑧̇ = 𝐴̃𝑧 + 𝐵̃𝜇      (15) 

One uses the 𝐴̃  and  𝐵̃ matrices above in Matlab's "lqr" solver and gets the gains. Those gains regulate 

the above plant. Those gains are used to formulate our control law as follows. 

𝑈 = −𝐾𝑒𝑖 ∫  (𝐴𝑧 − 𝐴𝑧𝑟𝑒𝑔) − 𝐾𝛼𝛼 − 𝐾𝑞𝑞    (16) 

After realizing the gains, design the analysis model, incorporating actuator dynamics, and produce the 

closed-loop model to monitor the reference. The lack of consideration for actuator dynamics in 

calculating the gain may result in deviation from the ideal LQR properties. However, the integrator will 

still allow for asymptotic tracking of the reference. Creating design charts for design parameters was 

necessary, which involved evaluating a range of penalty values for the (𝑒𝐼) term in the design model. 

This helps in deciding the design point and allows us to develop more intuition about the effects of 

penalties. 

3.2. Dynamic compensator with observer 

The design of an observer was performed using the extended design model dynamics: 

[
𝑒̇𝐼

𝐴𝑧

𝛼̇
𝑞̇

] = [
0 𝐶sp

𝐴𝑧
 

0 𝐴𝑝

] [
𝑒𝐼

𝐴𝑧

𝛼
𝑞

] + [
𝐷sp

𝐴𝑧

𝐵𝑝
] 𝑈 + [

−1
0
0

] 𝑟𝑒𝑓     (17) 
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y = [
1 0 0
0 0 1

] [
𝑒𝐼

𝐴𝑧

𝛼
𝑞

]       (18) 

where: 𝑒̇𝐼
𝐴𝑧 is the rate of change of angle of attack error in the inertial frame, 𝛼̇ 𝑎𝑛𝑑 𝑞̇ is the rate 

of change of angle of attack and pitch rate respectively, U is the control input, 𝑟𝑒𝑓 is the 

reference input, 𝐴𝑝 is the pitch damping coefficient, 𝐵𝑝 is the control effectiveness coefficient 

for pitch rate, 𝐶sp
𝐴𝑧

 
 is the static stability coefficient for angle of attack, 𝐷sp

𝐴𝑧 is the control 

effectiveness coefficient for angle of attack in the Short Period dynamics of the missile. 

𝐴̃ = [
0 𝐶sp

𝐴𝑧
 

0 𝐴𝑠𝑝

]

𝐵̃ = [
𝐷sp

𝐴𝑧
 

𝐵𝑠𝑝

]

𝐶̃ = [
1 0 0
0 0 1

]

     (19) 

The design process utilizes the property of duality between controllability and observability by 

employing the 𝐴̃𝑇 and 𝐶̃𝑇in the LQR solver in MATLAB to obtain the L gains. [14]. 

3.3. Integrating the Autopilot with Guidance 

The Autopilot takes 𝐴𝑧𝑐𝑚𝑑
 as the input and creates 𝐴𝑧 (the actual vertical acceleration). 𝐴𝑧 is fed in as 

the acceleration of the Missile perpendicular to the LOS vector into the ProNav dynamics. The ProNav 

Guidance law, in turn, generates 𝐴𝑧𝑐𝑚𝑑
 based on the current positions and velocities of the missile and 

the target. 

An assumption made: It should be noted that 𝐴𝑧 is assumed to be aligned with the perpendicular to the 

LOS direction of the guidance problem. This assumption, that 𝐴𝑧  is the vertical acceleration in the 

inertial frame, only makes sense when dealing with modest LOS angles. 

 

Figure 2.Output FB - Observer Design  𝐴𝑧𝑐𝑚𝑑
 tracking and Nyquist iterates through test values of 𝜌  

The analysis of the design requirements and the contribution of the 𝑒𝐼 conviction to each of them is 

given prior. It can be simplified that increasing the penalty results in higher LQR gains, leading to an 

improvement in closed-loop response, but it also affects robustness. Hence, the robustness and the 

quality of time domain responses are critical factors that distinguish the system. 
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4. Simulation and Results 

The control gains are computed using LQR with full-state feedback assumption. The LQR penalties are 

tuned to control the closed-loop system's time and frequency response characteristics. The system's 

performance is evaluated through simulations and plotted onto design charts to identify the best design 

that satisfies the requirements with a 10% safety margin. The tuning process is automated using 

MATLAB code to select the best design. 

The Observer Gain Matrix is calculated by applying the LQR method to the Observer Design Model 

Matrices. The equation determines the penalties for LQR:  

𝑄𝑒 = 𝑄𝑜 +
1

𝜌
(𝐵̃𝐵̃𝑇)       (20) 

The equation provided is the formula for the augmented covariance matrix 𝑄𝑒 used in the LTR 

design method, hence 𝑄𝑜 is the initial covariance matrix and 𝜌 is a scaling parameter that 

controls the trade-off between the input and output error. The term 
1

𝜌
(𝐵̃𝐵̃𝑇)is added to increase 

the penalty on the control input, 𝐵̃ is the matrix relating the input to the output error, and 𝐵 is 

the input matrix. In (20), 𝑄𝑜 is chosen to be a 3x3 identity matrix, and 𝜌 is varied logarithmically 

between 1 and 0.01 (corresponding to log space (0,-2,30) in MATLAB), indicating a range of 

LTR parameter values. Lower values of 𝜌 lead to higher control effort penalties, resulting in 

better loop recovery. However, it is important to ensure that the penalty is not too low, or the 

closed-loop poles may not meet the design requirements. 
  

 

Figure 3. Sensitivity Vs Frequency for final 

design 

Figure 4. Co-sensitivity Vs Frequency for final 

design 

4.1. Interception scenario  

At the height of 42,000 feet, the target is detected by the operator. The target is flying at 400 ft/s with a 

flight path angle equal to zero, directly overhead the manned aircraft and aiming the nose on the x-axis 

of the target body coordinate system. Missile is launched from its carrier with a heading error of -20 

degrees. After launching the missile, the target performs an avoidance 3 g accelerating maneuver that is 

orthogonal on its course. Proportional navigation law has the potential to simulate the scenario 

mentioned above, integrating the pursuer autopilot into the guidance loop and establishing the lowest 

miss distance to the target. However, the missile's structural limitations only accommodate an 

acceleration of up to 21g.  

ASAT-20 Special Issue doi: 10.1088/ASAT.2023.344376



 

 

 

 

 

 

Table 1.The values for the computation of the state space model 

Parameter Value  Parameter Value 

𝑍𝛼 Asp(1,1) ∗  V0 𝑉𝑀 856.499 m/Sec 

𝑀𝛼 Asp(2,1) 𝑉𝑇 100 m/Sec 

𝑀𝑞 Asp(2,2) 𝑔 9.81 

𝑍𝛿𝑒
 Bsp(1,1) ∗  V0 𝜁𝑎 0.71 

𝑀𝛿𝑒
 Bsp(2,1) 𝐶sp

𝐴𝑧 [𝑍𝛼  , 0] 

𝜔𝑎 35*2*pi 𝐷sp
𝐴𝑧 𝑍𝛿𝑒

 

ρ 0.4454 𝐷𝑎 0 

 

The following steps demonstrated the design and implementation of a control system that meets the 

specified requirements, as shown in figures 2, 3, and 4. 

Defining the open loop plant and extracting its short period dynamics, defining the actuator state space 

model, performing a full state feedback analysis iterating over different penalty values to find the 

optimal design point, and creating design charts. 

Subsequently, designing an observer and identifying necessary matrices for finding observer gains, 

identifying the design point through gain crossover frequency, defining a dynamic compensator and pre-

allocating design parameters, closing the loop with the actuator and compensator, collecting sensitivity 

and co-sensitivity data, finding the loop gain and creating design charts. 

  

Figure 5. Tracking of 𝐴𝑧𝑐𝑚𝑑
 by Missile's 

𝐴𝑧𝑎𝑐𝑡𝑢𝑎𝑙
 final design 

Figure 6. Observer design Nyquist plot  

 

Then, plotting the design point's response and showing that design parameters are met, collecting step 

response data, finding the loop gain, integrating the guidance for the design point, and defining the 

closed-loop matrices. Table 1 from the designed plant provides the values for some variables.  

The stability of the closed-loop system is determined by the number of encirclements of the critical point 

(-1+0j) in the Nyquist plot figure 6. A closed-loop system is considered stable if the Nyquist plot has 

zero encirclements of the critical point. The "margin" command in MATLAB gives the phase margin, 

but it may not be the gain margin critical to stability if the Nyquist plot has multiple phase cross-over 

frequencies. In this case, a custom algorithm should determine the gain margin that impacts stability 

[15]. 
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Figure 7. 𝐴z of the missile with 3g target 

maneuver 

Figure 8. Missile Target engagement scenario 

with 0.006 m miss distance 

 

4.2. Result analysis 

Dutch Roll mode is represented by(−1.2895 + 21.8316𝑖, −1.2895 − 21.8316𝑖), Short Period mode 

is represented in (−1.0795 + 9.0780𝑖, −1.0795 − 9.0780𝑖)), and Roll Subsidence mode is represented 

by (0.5815), the true pole. 

The Dutch Roll Mode (highest negative real component of poles) is the fastest for the system in 

operation, indicating oscillations in the rolling-yawing motion dissipate more quickly than oscillations 

in the longitudinal motion (i.e., A.O.A and Pitch Rate: Short Period Mode) [16]. 

  
Figure 9. Elevator deflection rate of change Figure 10. Elevator deflection excitation  

The three modes are all steady; the poles of the extracted short-period dynamics state-space 

model(𝐴𝑠𝑝, 𝐵𝑠𝑝, 𝐶𝑠𝑝, 𝐷𝑠𝑝) are almost the same as the poles of the original short period mode and are as 

follows: [
−1.0800 + 9.0843𝑖
−1.0800 − 9.0843𝑖

]. 
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Figure 11. Observer estimates tracking actual states and integral error in longitudinal dynamics 

In this study, the scalar-weighting factor utilized in the LQR design, the parameter R_LQR is set to one. 

The design also utilized Pro-Nav parameters, set (𝑛𝑃 = 3.5), equal to 3 times 9.81, for evasive maneuver 

was defined as a 3g acceleration normal to the velocity vector, with a heading error of -20 degrees in 

radians as shown in figures 5,7, and 8. The design of the control system utilized these parameters to 

ensure that the specified requirements are met and the desired performance is achieved. This is 

demonstrated by analyzing the deflection excitation and its rate figures 9, 10 that can quickly resolve 

the missile actuator by tracking actual states and integral error in magnificent track as in figure 11. 

After introducing the observer in the design process, the values of the design factors need to be adjusted. 

While the full-state-feedback closed-loop system's behavior can be restored using LTR, increasing the 

observer gains is not recommended to maintain the same stability and performance specifications as it 

could lead to other problems, such as increased sensor noise. To ensure that the control system meets 

the desired performance and specified requirements, the LQR is tuned with a great approach to satisfy 

each design criterion with a 10 percent safety margin of the original design criteria using an integral cost 

function. This tuning process avoids over-tuning the observer gains, which could provoke drawbacks 

such as boosting sensor noise. The deflection excitation and its rate demonstrate the desired performance 

of the control system designed using these parameters. 

5. Conclusion 

Designing a longitudinal autopilot system for flying vehicles is crucial to enhancing stability 

and improving control in unpredictable situations. The use of state-space formulation and 

integration of the LQR method, a Luenberger observer, and proportional navigation algorithms 

have shown promising results in compensating for in-flight disturbances and noise. The 

numerical simulations demonstrated a decrease in miss distance, highlighting the effectiveness 

and robustness of the autopilot system; hence, implementation in practical applications is 

recommended. Future work could involve testing and optimizing the system in a real-life 

environment to validate its performance. Additionally, integrating other advanced control 

techniques, such as model predictive control, could further enhance the system's capabilities. 

The versatility and robustness of LQR optimization methods in changing environments make 

them valuable tools for future advancements in the aviation industry. 
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