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PRACTICAL IMPLEMENTATION OF ll:AENTRALIZED STABILIZERS 
FOR AN INTERCONNECTED POWER SYSTEM 

r 

ABSTRACT 

This paper teals with aproblem of dynalaic instability facing 
a real power system .Evidence of a problem arose in studies 
of a proposed generationexpansion of the system using a com-
prehensive nonlinear dynamic simulation for the system. 

The procedure followed to stabilize such non-linear system 
was to linearize the system into state space form and to use 
modal control approach and an optimization approach to design 
the stabilizers.Two alternative solutions are illustrated ; 
the first is based on the centralized approach in which a single 
stabilizer controlling the whole system is designedo and the 
second is based on a decentralized approach in which local-
controllers are designed for the individual machines. 

Dynamic simulation tests,again on the non-linear dynamic simula-
tion confirm the effectiveness of the alternative approaches. 
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I. INT ROD UCT ION 

Stability is still one of the major problems encountered in 
power system operation.Several basic system design and control 
methodsclahave been developed to cope with these problems ;however 
they still remain in many systems and new methods nay prove useful. 
In practice auxiliary stabilizing signals based on shaft speed 
or rotor angle measurements working into the excitation systems 
are emoployed to enhance the stability of individual machines. 
The successful application of the stabilization methods available 
has been somewhat "ad hoc".1,:odern optimal control and state 
feedback methods have been suggested[2.37but have not been adopted 
by the industry largly due to the computaional problems associated 
with handling multi-machine systems on-line and the reliability 
problems associated with the communication of estate variables 
and control signals between individual machines and the centralized 
controller. 

These difficulties imposed by centralized controller concept 
can be alleviated by treatinf7 the entire large system in terms 
of several interconnected subsystems in which the stabilization 
and interaction effects are considered sucoesively for each 
subsystem. 

The stabilization techniques for large scale systems can be 
classified into two groups[4]termed the hierarchical approach 
and the decentralized aproach,respectively. 

A.Hierarchical(multilevel) Stabilization Approach 

The main function of the hierarchical control approach iii to 
generate two signals; the first is to I:eep each subsystem as 
independent as possiblel and the second is to stabilize each 
local subsystem using a decentralized controller.This appraach 
reouires the transmission of state variables of each subsystem 
to the higher level controller howevcri so has the attendant dia!- 
advantages.These problems can be overcome using the completely 
decentraliged stabilization approach. 

B.Decentralized Stabilization Approach 

The main idea behind the decentralized approach is to implement 
several decentralized(or lOcal)controllers4each utilizing only 
locally measured states and applying control locally. 

In this paper the decentralized stabilization problem for a 
real five plants infinite bus power system is Presented and 
solved by formulating the stabilization problem into a functional 
minimization problem. 

II. PROBLEM STATEMENT 

2.1 Real Network Configuration 

FLigure 1 shows the essential feactured of a real 30 KV-multi-• 
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}- 
machine power system,Load flow results indicate that most of the 
power delivered to the loads(8-14) is coming through the double-
circuit underground cable(7-8).This is a weak link in the system 
and subject to frequent faults. 

The generating units at all plants are identical and their 
excitation systems have the same voltage-response-ratios.The 
turbiness governors,'and boilers are not modelled because of relatively 
large time constants associated with their dynamic responses. 
All of the power plants are equiped with rotating type excitation 
systems treuresented by IEEE type l,shown in Fig.2. 

Fig. 1 Five Plants/Infinite bus 30 KV-Real Systeti Fig. 2 IEEE Type 1 Rotating Excitation System 

Data for the machines and their exciters are given in Tables ILII 
Table 11 	Machine Data (In P.U. Based on 100 MUM 

Plant i H Ra R X 	X 	X. 	X 	X' 
_4 f 	td 

410 
9 

T' 	n 	A 
do 90 	_4 

$10 

L 

7 
1 	 - 	- 	- 	- 	- 	- 	- 	- 
2 4.0 16 10 1.0 1.1 0.1221 1.4360 0.2363 1.4021 0.9611 6.60 0.20 2.0 4.92 7.1792 
3 2.5 25 10 1.0 1.1 0.0550 0.8105 0.1428 0.7565 0.2779 6.10 0.30 2.0 1.12 7.30 
4 	1.13 32 10 1.0 1.1 0.3103 2.8946 0.5372 28251 1.6557 4.750 1.50 20 7.32 6.6891 
5 	1.10 23 10 1.0 1.1 0.070 	1,20 	0.20 	1.20 	0.30 	6.30 0.250 2.0 2.0 	7.20 

6 	2.80 27 10 1.0 1.1 0.1027 1.0533 0.180 	1.0 	0.18 	4,40 1.50 2.0 2.346 6.0610 

Table 111 Excitation System Parameters (In P.U.1 

Plant t K 	K 	K 	I 	T 	I 	V 	V 	A 

A 	E 	F 	A E F 002 lax 

1 	- 	- 	- 	- 	- 	- 	- 	- 	- 
2 57.14 -0.0445 0.080 0.05 0,05 1.0 -1.0 1.0 0.0012 1.2096 
3 	25.0 -0.0582 0.105 0.20 0.6544 0.35 -1.0 1.0 0.0015 1.5833 
4 400.0 	1.0 	0.030 0.02 0.253 1.0 0.0 7.30 0.0983 0.2972 
5 400.0 	1.0 	0.030 0.02 0.253 1.0 0.0 7,30 0.0983 0.2972 

6 225.0 	1.0 	0,75 0.05 0.952 0.02 -3.84 3.04 0.0322 0.8514 _J 
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f2.2 Network Reduction of System 

To simulate the system dynamicallylit is required to represent 
the power network by an equivalent admittance matrix seen by 
the generating units.Kron's technique was applied to elinnate 
all the interior buses and keep only the generator buses as 
shown. in Fig.3.The equivalent admittance matrix is given in 
Table III. 
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Table III 
Equivalent Generator Bus Admittance Matrix 

1.5583 -0.1429 -0.3828 -0.0933 -0.2549 -0.411 

-311.0398 +30.6976 +34.0486 +30.3891 +31.5058 +34.3504 

-0.1429 0.4080 0.0059 0.1945 -0.2026 0.0064 

+30.6876 -33.1117 +70.2459 +31.2456 +30.6252 +30.264 

-0.3828 0.0059 0.2040 -0.0009 0.0327 0.2192 

+34.0486 +30.2459 -37.0337 +30.1401 +10.5339 +32.1489 

-0.0933 0.1945 -0.0009 0.1845 -0.1263 -0.0010 

+J0.3891 +31.2456 +30.1401 -32.2813 +30.3525 +30.1506 

-0.2549 -0.2026 0.0327 -0.1263 0.9278 0.0352 

+31.5058 +30.6252 +30.5339 +30.3525 -33.7439 +30.5737 

-0.4113 0.0064 0.2192 -0.0010 0.0352 0.2355 

+34.3504 +30.2642 +J2.1489 +30.1506 +30.5737 -37.5919 

--- -------- -------- ------------------ 

(110.00, 68.20) 
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Y33 
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Planc No. 4 P1atac ::do. 5 
Yii  • Nit: are the elements of the Bus - 

admittance Matrix. 

-Fig. 3 Five Plants/Infinite-bus Reduced 

The system is subject to a three-phase-to-ground fault at bus 
no. 8,for a. time duration of three cycles(.05 sec.). 

2.3 Simulation Results Without Supplementary Stabilizing signals• 
4.1 

Admulatioa program has been develonedt53to study the effects 
of generators, excitation systems and turbine-governors on power 
system dynamic stability.Although the fault clearing time was 
relatively shortI simulation results show that large swings in the 
rotating messes were developed,(Fig.4),and synchronism between 
the power plants was lost. 

III PROD= SOLUTION 

Developing stabilizing signals for the non-linear system is a 
very difficult taskI therefore the dynamic performance of the 
system is approximated by a linearized model.The validity of 
the controller design based on the linearized model is checked 
by using it in the non-•linear simulation. 

The system dynamics is represented in the state-space form as 

L 	kmAX+DU 	Y=CY: 
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Figure 4 Dynamic Responses to 
Three-Cycle Fault 
(without Stabilizing 
Signals). 

T TT 
where X.IX ...X] is nil state vectorl the state vctor for machine 

2 	6 	T 
i is X=1.(1,  o w, y 1. E.1 .The matrices A,Bnc are of dimensions nxn, 

nxm &lxn respectiVely.The vectors U;Y are of dimensions me:1 resp. 

The nomenclature of the machine 7;arRmeters have adequately been 
described in the referenced papers so that details will not be 
repeated here. 

3.1 implementation of a Centralized Controller 

The necessary and sufficient condition for findinL; a state-
feedback matrix# C4to assicn the cienvalucs, of the cioL,Da loop 
(A-4- To, is that system(1) be controllahle.Tho state feedback 
G is chosen to have the dyadic form C =fd. . The desired poles 
L.re: 	 _J 
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r" -1.21j28.61-1x j17.6,-1.7.tj10.1,-.91±jC.91-1ti4.9,-2.9ij1.21 

and the ”G"matri:: has been obtained, using modt11 control thoorygsl  

such that the controller feeds one stabilizing signal to plant 2. 

185.2,5.4,129.4132.6,-.66.Cs-.1.81-32.55,61 

To check the effectiveness of this procedure,this stabilising 
signal was applied in the nonlinear simulation model.Simnlation 
results (Fig.5)indicate that the controlThr is Quite effective 
in pushing  the dominant eigenvalues to the desired location 
with a degree of stability .7 . 
Although the centralised controller was effectivp in dam7ing 
the system oscill,ationse there. .•re some difficulties(cost,. 
reliability)which stand against its anplicatien in the field. 
Therefore, it is essential to look for an alternative solution 
to overcome these difficulties. 

3.2 Designing of a Decentralized Controller 

The systen described by (1) can be decomposed 
d. connectesubsystems as fellows: 

[A A .0 
11 12 1N1 

A. A ..A 
in 	N2 	NN j 

The problem is to design decentralized state 

into N inter- 

U 7 

(2) 

feedback controller 

U = K X 	i=1...1I 	(3) 
i 	i i 

Such that the overall system i= (At BK)X is stable.Where 
K = block diag [K ..K 	 (4) 

1 N 
The necessary and sufficient condiction for solving such problem 
is that the system must be free from unstable decentralized 
fixed polesI71. 

3.2.:1 Minimisation Algorithm 

From18],the negativity of the functional(see nomenclature) 
J. Ha+ A -tBK 	for PO 	(5) 

E 
represents a sufficient condition for stability, of system(1). 
If the functional (5) can be reduced below zero,then the closed-
loop system is stable.However,the eigen-value theorem indicates 
that : 	(AtBK)t(AtBOT 

max [Re 	BK)) < 	 (6) 
2 i 	i  max  

i. 
Thus the system degree of stability canbe improved by reformulating 
equation(5) as follows;  
L_ 	

_J 
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T 
(114,13K)t (A*BK) 

J-_,.. 0 xi+ - 	11-Y 	for 170 	(7) 
2 	E 

Hence,the stabilization problem can be formulated as follows; 
find the matrix K of the controller parameters which minimizes 
the fuectional(7).This is an optimization problem the solution 
of which yields the required design. 

For the sake of accuracy and speed,a minimization algorithm 
which utilizes the functional J and its gradient was used 
The functional J is given by(7) and its gradient with respect 
to the gain K is computed as follows 
Define Dm VI* ((A-1-Bk)-t (At BK7)/2 	(8a) 

J= 011_4= F7;3'7 —a 	(8b) 
B 

thus aJn tr (I• D ) /2'E(7T•(1).1Tr) 

or 	A J=  tr(Dr.D.AKte (B.40 )/4 itr(Dlir  ) 	(9) 

Hence, aJ/bK.= g (Di.g )/ 44tr(Dj) 	(10) 

The negativity of the functional(7) is a sufficient condition 
for stability,consequently it gives unnecessarily high gains 
for the matrix K.To overcome this difficultyl the functional 
is reduced iteratively and in each iterations fAability is 
checked by a standerd subroutine. 

Executing the above optimization probleml a full matrix K ,is 
obtained,not a block diagonal form(4) as required decentraliza-
tion. 

To satisfy this constrain-L e -the metla ,1 of feasible directions [0 
was used as follows: 
a) Sta:ct the minimization iteratively with K of the form(4), 

(called a feasible form).Arrange K column-wise containing 
non-zero elements corresponding to that of the block diagonal 
matrices(4) and zeros elsewhere. 
b) The direction. d ( gradient(10) arranged column-wise)needed 

for minimization has to be modified to the feasible form. 
This can be done by premultiplying d by a matrix H,where 
H is a diagonal matrix of entries either l's or 0's so as to 
reflect the block diagonal constraint in the minimization 
algorithm. 

A proof given inMshows that if d is replaced by Hd ,this 
minimizes J also0..e. the algorithm still works. 

3.3 Implementation of a Decentralized Control'.er 

The control strategy described above was applied to stabilize 
the five plants/infinite bus system of Fig.l.The stability 
check was satisfied after seven iterations.and the closed Loop 
eigenvalues with th.e decentralized control are: 
-541.4.-535.9.-1.2tj28.6.7.2sj17.6,-14.4,-11.91-1.7±j10,7. 
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&e diagonal row, ; in the controller matrix were found to 
K m C-47.991 5.4,58.61-2.41 
2 

K 	j -1.8-4- 3, 9.3E-.6,-1.1E-3, 2. 961 
3 
K4 = [2.5E-41 4.9E-(2.8E-2,-9.026-21 

K = [2.4E-2,5.7E-441.98E-21 -8.61 
5 
K 
6 
The dynamic responses from the non-linear simulation,for the same 
fault,with imnlementation of the obtained decentralized signals 
are shown in Fig.6. Figure 6 illustrates the success of the 
designed controllers in improving the damping of the multi-machine 
system.. 

IV, CONCL US ION 

A simple algorithm has been developed for solving the problem 
of constructing static decentralized controllers to stabilize an 
interconnected power system.The degree of stability which can be 
achieved and the speed of soluts!.on of the problem depend mainly 
upon the number of iterations and on the chosen initial condition. 
Besides the advantage o' applicability,decentralized controllers 
are more reliable and 1 3S costly than the centralized onese since 
they don't require extra installations for information exchange . 
It is obvious from Fig. 6,that the decentralized controllers 
have imposed additional damping by reducing the amplitude of the 
first swings and the fast decay of the low frequency oscillations. 

V. NOMENCLATURE 

A (1) 0 	the Euclidean norm of the matrix (.),which is the square 
E 	root of the sum of the squares of the elements of(,.). 

N.) 	the spectral radius of (.) i.e. the eigenvalue of (0) 
having the largest s,1.7solute value. 

tr(.) 	the trace of (.)i.e, the sum of its diagonal elements. 
T. 	Superscript denoting matrix transpose. 
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