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ABSTRACT 

In designing controllers for large-scale systems such as spread power 
systems, three issues need be considered. Firstly, because there may be 
lack of.global information shared by all substations, large-scale power 
systems are modelled as interconnections of low order subsystems. Hence, 
decentralized control becomes a feasible approach. Secondly, because 
system models are usually approximations to the actual process and because 
of the uncertainties associated with environmental conditions, robust 
controllers are desired. Finally, the control strategies must be based 
solely upon output information, i.e., in many cases, the entire static 
information is not known. Hence output feedback structures are required 
in the control strategy. 

This paper presents a method for designing decentralized robustly stable 
output feedback controllers for power. system. The approach is based upon 
a state-space formulation of each subsystem and the associated interconnec-
tions. An example of a four-generator, four-load system is presented to 
illustrate the approach. 
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I. INTRODUCTION 

A variety of procedures for designing feedback control systems and analyz-
ing such strategies have been developed. For large-scale systems such as 
spread power systems, one can not always assume centrality. Therefore, 
large-scale power systems are modelled as interconnections of low-order 
subsystems. The decomposition approach is a natural modelling scheme for 
large-scale power systems since one can usually identify the subsystems. 

When using a control theory to stabilize large-scale power systems, decent-
ralization is one of the important tools that can be used [1,2]. Stabiliz-
ing the large-scale system may not be enough unless it is:robust, i.e., 
the system retains its stability in the face of certain uncertainties. These 
uncertainties may come from many sources. For example; in developing a 
model for the power network, one may assume a certain range of frequencies 
or bounded inputs under which the model is constructed. If the system goes 
out of this range, the behavior of the actual system may be drastically 
different from that predicted by the model. 

The robustness issue is not new in control system design. In single input-
output systems, robustness can be specified in terms of gain and phase 
margins. For multivariable systems, similar measures for robustness are 
not an easy task and their interpretation must be handled carefully[5]. 

Many existing decentralized control schemes for large-scale interconnected 
power systems are designed using static controllers with local state feed-
back [3,4]. Usually, the entire states of the subsystem are not accessible 
for control; thus, the control objective has to be achieved by using local 
outputs. Therefore, it is reasonable to use dynamic output feedback in 
designing the decentralized controllers for large-scale power systems. The 
feedback variables which are used in designing the local decentralized 
controllers are measurable and need not be transmitted from distance away 
from the subsystem being controlled. 

In this paper, then, a decentralized robustly stable output feedback 
control approach is developed. The system model is briefly discussed in 
Section II. Once  the model is formulated, the decentralized robustly stable 
controller can be designed. The robustness measure is based upon a singular 
value decomposition test on a function of the system matrices. This is 
presented in Section III. 

An example of a four-generator, four-load power system is presented in 
Section IV to illustrate typical results when applying this methodology. 

II.THE DECENTRALIZED POWER SYSTEM MODEL 

An interconnected power system can be described by the linearized model 
equations [11]: 

X = Ax + Bu + Fd 

= Cx + Du 
	 (1) 

where x(t)eR
n
, u(t)ER

m 
, d(t)cR , and y(t)eR

r 
are state, input, disturb-

Lance, and output vectors respectively; A,B,C,F and D are constant 
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matrices of appropriate dimensions, and x(tn) = x(0) is the initial state 

at tn. The model is composed of q area mode's and also associated tie-lines' 
mode's that can be given in the following decomposed form: 

= A,x. + aAP 	+ B.u. + F.d. 
1-1 -ti ei 1-1 1-1 

q 	T 
= al. 	

E 	(rn..x. 
-13-I 

j=1 
j/i 

Y. 	= C.x. 	+ D.u. 
-a 1-1 	1-1

m. 
 

x.(t)ER 1, u.(t)ER 1, 
-a 	-a 

input, the disturbance, the output 
total power exchange corresponding 

q 
AP
ei 	

a
li 

E AP
ij' 

i = 1,2,...,q 
j=1 
jai 

AP is the power exchange between area i and area j 
constant coupling vectors and a = (P10 

 /P.0 
 ) is the 

_1 
Assume that xi(t0)= 0 and APei

tt
0
) = U. The properties 

implies the following : 
q 	q 	q 

n = E n i 	1 
+c1-1,m=Em.,r = E 

i=1 	i=1 	i=1 

q 	AP .- 
el 

E 	= 0 
i=1 	

a.. 
=-1. 	13 

where 	P
i0 

a.. = 	is the ratio coefficient. 
13 	P

i0 

Equation (2) represents the decentralized power system model used here. 
It is desired to design a robustly stable output feedback controller 
u.(t) for each subsystem i. 
-a 

One can further describe (2) to include dynamic behavior of the damping 
winding, the exciter or governor actions or to. define the disturbance 
d(t) more explicitly in terms of input and output interactions. That is, 
let the model (1) be composed of q area models (q is arbitrary) and 
associated tie-line models which can be given in the following decomposed 

form : 
x. = A.x. + B.u. + a 	AP 	+ P.v. 

1-1 1-1 -ti ei 1-1 
= C.X.ii  + D.u. 

w. = Q•x• , 	i = 1,2,...,q 
-a 1-1 

whereP.and.Q.are constant matrices of appropriate dimensions. 

Here 17.. (t) and 	 (t) are the interaction inputs and outputs associated 

th with the i subsystem, respectively, which represent the 
subsystems on the ii subsystem and the effect of the ig2.- 
the effect of the J.LLI  subsystem on the other subsystems. 
w.(t) are related to each other by : 
-a 
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xi  

AP ea 

T 	„ 
_ m..x.), 	+ = -31-D 

1,2,...,q (2) 

where 

the 
the 

R.  
d. (t) 	1, 

r
i 

.(t)ER 	and APei 
are the state, 

and the variation tespectively, of 
to the ith area. . 

( 3 ) 

, a 	and m. are 
norm
taalizatiL factor. 
of the above model 

and 

r. 
1 

(4)  

(5) • 

(6)  

effect of 
subsystem 
Note v.(t) 

-1 

other 
and 
and 

L 



To increase 
assume that 
subsystem is 

tion, i.e. 

value of the designing technique, one 
structure is restricted in such a way that each 
by its own outputs only. Considering this assump-

q 
omitting power exchange, the term a. E P.. can be deleted i=1  13 

the 
the 

practicability 
control 

controlled 

-B.R. 

 
1 	
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1 

= 	

Qi  = (Qi  
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0), i=1,2,..,q (13) 
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A. . = 
K.C. 
1 1 

FIRST A.S.A.T. CONFERENCE 

GC-6 1962 14-16 May ].985 r CAIRO 

v.(t) = f.(w) 	i = 1,2,...,q 
-a 	-1 - 

where f.(w) is a nonlinear continuous function vector in w satisfying the 
-71 - 	

- 

following condition : 

7) 

lif.a(w) Ila.ilw11 ,  - 	1 - 
where a. is a positive number. 

1 

i = 1,2,...,q (8) 

III.A ROBUSTLY DECENTRALIZED CONTROLLER FOR THE LARGE-SCALE POWER 
SYSTEM MODEL USING OUTPUT FEEDBACK 

In this section, it is desired to find a control strategy to stabilize each 
decoupled subsystem in (6) using local dynamic output feedback taking the 
interconnections into consideration. Making the gains of the loops of the 
interconnected system sufficiently small is useful in. retaining the stabi-
lity in the presence of the interconnections. 
Now, consider the decoupled form of (6) as : 

q 
x. = A.x. + B,u. + a(1 	E AP 	+ P,v• 
-a 1-1 I-1 -ti 	ij 1-1 

j=1 

= C. 	(D
i 
assumed zerojAre) 	 (9) 

Z'i
w, = Q.x. , i = 1,2,...,q 

1-1 

Apply the following decentralized control to the interconnected system 

under investigation: 

z. = G.z, + K.Y. ; 	u. = -R•z. - E.Y. , i = 1,2,...,q 	(10) • 
-a I-1 1-1 -a 1-1 1-1 

where z.eR
li is the state of the decentralized controller and G.,K.,R. 

and E. rare constants of appropriate dimensions. The compensatea system 

becomes: q 

x
d 

= A.x. + B (-R.z - i 1-1 i 1-1 

y = C.x ; w. = Q x •  
-1 1-1 -a 1-1 

Simplifying (11) gives : 
q 

	

x, = A.x. +a. 	E AP.. 
1 	I-1 -1 	1J j=1 

jai 
T 	T T 

where : - 
x.
a  

= (xi  , z.) -a  

E.y ) + a a 	E API + P.v. 
1-i -ti 	ij 	1-I 

j=1 

i=1,2,...,q 

=  ati a . 
- 

+  P.V. ; 	w. = Q.x. , i=1,2,...,q 
- 	-1 	1-1 

a. 

(12) 

L 
	

jai 



of appropriate 

as : G1
(s)=a

o 

dimentions. 

[N1
( s) /D

1
( s) ] • 

(25)  

(26)  
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from (12) and the subsystem model can be rewritten as : 

x. = A.X. 	—1 + P.v, 	; 	w = Q•x• , i = 1,2,...,q 
a 	a-a 	a-a 	a-a 

Note that each open-loop subsystem, can be written as : 

Z. = A. 	+ B.u. + P.v. 	; yi  = Cixi  ; w. = Q.x, 

G,(s) 
a 

andbetweeritheoutputY.and theinteractioninputv'1 as : 1  
G
2(s).„C.(si_11.

1
)-1 

P, 

	

1 	1 	
(17) T 

	

Correspondingly, 	
d the input 

1 
u. is : 
a 	12 

0
3(5)=.(si_Aj

a
-1 

B. 

	

a 	
(18) T 

and between the output w. andthe disturbanceinputv'1 as : 

	

a 	a G4(s) = Q.(sI - A.)
-1  Pa 
	

(19) 

From (14), i.e., after applying output 
function between input v. and output 

.. 	,., a 
G
5 
 (s) = Q.(sI - A.) 	P. 

1 	
1-1 
 1 

For the decentralized controller in (10), the transfer function 

outputu,andinPutli.can be written as : 
a 	a 

-1 
G
6
(s) = E.1 
	1 
+ R,(sI - F.) 	K. 

a 
Assuming that P.=B. in 

a 
G
5
(s) = G3

(s) [I 

assuming that Qi  = Ci  in equation (18),(19) and (20) gives: 

= G
2 
 (s) [I + G

1 
 (s) G

6
(s)]

-1 

and (23) are similar with the assumption that 
and P. have, generally the following relations: Qi   

(14)  

(15)  

From (15) then, one can find the frequency response transfer function, 

between the output yi  and the input ui  in a straight forward manner as: 

(16)  
= C.(sI 	A.)

-1 
 B. 

feedback control the transfer 
w. can be written as : 

(20) 

Similarly, 

G
5
(s) 

equations (17), (19) and (20) gives : 

+ G
1 
 (s) G

6
(s)]

-1 

between 

(21)  

(22)  

(23)  

Note that equations (22) 
P.-B. and Q.=C.; however 
1 1 	1 a 

P =B.P.
T  
for i 	r ; 

i 	a 
Q=Q

i
C
i 
for i e q-r ; 	i=1,2,...,q (24) 

where 0< r < q and Pi 
and Q

i 
are matrices 

Let the transfer function G1
(s) be written 

G
3 
 (s) and G

6
(s) can also be written as : 

G
3
(s) = G

1
(s) = a

o 
[N

1
(s)/D

1
(s)] ; 

G6 (s) = 5
o 
 [1\1

6 
 (s) /D6 (s) 

From Equations (24),(25) and (26), one can rwerite 

G
5
(s) = [ao

N
1
(s)D

6(s)1/[1)1
(s)D6

(s)+ a
o
R
o
N
6
(s)] 

Note that G
5
(s) is the transfer function of the subsystem after applying 

the output robust decentralized controller. 

(23) as : 

(27) 



L 

I GC-6 1964 
FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 f CAIRO 

Hence, the parameters of the controller can be chosen as follows 
Algorithm : 
(i ) The coefficients of the desired polynomial N(s), for each of 

subsystems, are chosen such that the zeros o N,(s) are in the CiCE ,, 
left half plane. 

(ii) The coefficients of the desired polynomial D
6
- (s), for each of the 

subsystems, are chosen as : 
1q1 	- 2 q- 

+ 
2 

D
6
- (s) = sq  + d

1
y s 	+ d

2
y s 	+  dgyq 	(28) 

The actural polynomial D
6
(s) can be extracted from (26) in the form of : 

D
6
(s) = sq  + d

1
s
q-1 

+ d
2
s
q-2 

+ 	+ d 	 (29) 

and a 8 is chosen such that a 6 = d y
g+1 
 where y>0 is a parameter to to 

0 0 	 o o 	q+1 
specified, and d,, i = 1,...,q are chosen in such a way that all of zeros 
D
6
(s) are in the1closed left half plane. 

Assuming the selection of (i) and (ii), one can form the following leum.a. 

Lemma 1  

For any c>0 there exists y>0 such that the following conditions are 
satisfied, whenever y>y , : 
a] IG,(s) I <u for all s in the closed right half plane. 

b] A has all of its eigenvalues in the left half plane. The proof is 
given in [6]. 

A small gain version of the circle criterion in [7] can be developed any 
is to be used as a fundamental criterion to achieve robust stability [8]: 
This is provided in Lemma 2. 
Consider the compensated interconnected system made up of q subsystems[9]. 

x = Ax + Pf(w) 	; w = Qx 	 (30) 

Lemma 2 

Assume that the matrix A. of (14) has all of its eigenvalues in the clo52M 
left half plane. Then the system of (30) is robustly stable if : 

sup 0
K
(G
6
(s))

< 
 1 (31) 

'where (3
K
( ) is the maximum singular value of (.). Using Lemma 1 and 

Lemma 2, the following theorem can be stated. 

Theorem 

For each of the subsystems of (14) there exist a set of controllers such 
that the overall interconnected system is robustly stable if all of the 
following conditions hold 
i] All of the eigenvalues of the matrix A. are in the left half glans. 
ii] The rtiple (A,, B., C ) is controllable and observable. A 

iii] The pair (P., Q.) satisfies (24). 

The proof is given in [9]. 

Hence, using the decentralized controller algorithm guarantees overall 
stabilization from this Theorem. _he selection of N

6
(s) and D

6
(s) to 
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1 

achieve robustness can be accomplished by applying performance measures, 
such as graphical or singular value decompensation methods as in [6]. 

IV.Example 

A four-machine four-load configuration used in this example is shown in 
Figure 1. The four machines are assumed to be thermal machines in steady 
state The parameters of the machines are given in Table 1; the transmiss-
ion lines and load flow results are provided in the plot.To check dynamic 
stability, one of the methodologies is. to calculate the system eigenvalues; 
if they have negative real parts, then the system is dynamically stable. 

The operating point terminal voltage Vt' 
direct and quadrature component 

voltages Vo and Vo along with direct and quadrature current components for 

the four machinesclare listed in Table 2. 

The eigenvalues for the system shown in Figure 1 are also listed in Table 
3 for the four machines. Notice that the first set of eigenvalues are 
associated with rotor oscillation and the second set of the modes that 
damp rapidly are associated with armature circuit; the last set of modes 
are associated with the governers and they are damping slowly. 

In designing the robust controllers for this example, it is assumed that 
the control structure is restricted in such a way that each machine is 
controlled by its output only i.e. equation (14) is applicable. 

It is clear from the system eigenvalues that the overall system is stable. 
Now, apply the decentralized controllers of (10) sequentially (one at a 

time). 

Then, the resultant feedback system with state coefficient matrices of A. 
of (13) is robustly stable; one also can see this by observing the system 
eigenvalues after applying the decentralized controllers (Table 3). 

For example, the coefficient matrix of the third machine is obtained after 
applying the decentralized controller and is : 

	

--0.00362 0.0429 1.58 -3.52 -2.251 0 	0 

	

-0.127 -0.0798 1.342 0.982 0.811 0 	0 	
-0.0052- 
0.0081 

0.261 	0.0052 -0.089 	2.63 	-1.77 	0 0 	0 
3.621 -0.0471 0.092 2.42 0 A3 	. 	. 	. 	. . 	4.52 	 0 	0 	x 102 

	

-3.87 -2.876 1.0331 1.132 -2.53 	0 	0 	0 
0 	0 	0 	0 	1.0 	-0.0041 -0.00084 0.0072 
0.031 	0.0431 0.0541 0.0621 0.0291 -2.31 	-0.0058 	0 
0 	0 	0 	0 	0 	0 	0.057 -0.0095- 

The eigenvalues obtained for this subsystem are 

X1=3.61+j 99.75 ; X2=-3.61-j 99.75 , X3= -26.51 , X4= -5.51 , X5= -0.369, 

X
6
=-0.149+j 3.0 , X

7
=-0.149-j3.0 , X8

= -13.11. 

Note that the third subsystem is made stable under the constraint that the 
overall system is kept stable. One can apply the same procedures in 
designing the controller for the second subsystem. 

Suppose one chooses machine 1 to apply the second decentralized controller. 

It is recognized that the oscillations of 46 should be well-damped for an 
impulse disturbance applied to the system and the excursions of the 
terminal voltage VT 

should also be reasonable. 

After applying the decentralized controller to ith area, i=1,2,3,4; the 

Lresponse is checked. An examination of the results shown in Figures 2 & 3 
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Nachisa 
No. 

Ti, IR pv VEttlax V Rely 
TE 

1, 
Pe 

SE  l'E  1(E. 
pp 5. 

0 
90  

E 
P. 

6 
( 443.) 

Xd 
P. 

20 
P. 

2d'
P. 

8 
P. 

1 0.02 1.0 8t- 0.S -0.06 0.27 0.5 0.02 3 1.0 1.5 20 1.6 1.4 0.25 0.01 

2 0.06 1.0 8 -1 0.6 -0.08 0.29 0.6 0.03 5 1.0 1.5 -7 1.8 1.5 0.27 0.008 

0.03 0.9 7 -1 0.3 -0.04 0,31 0.8 0.05 10 1.0 1 0 1.5 1.61 0.3 0.031 

4   0.04 0.05 7 -1 0.6 0.04 0.1 0.7 0.08 8 1.0 1 28 1.95 1.7 0.23 0.012 

Table 1: Machine data of the system shown in Figure 1 	
Time constants are in seconds • 

Machine 
No. 

V° T 
pu 

vo 
d 
pu 

V°  

pd 
$° E 
pu 

E° FD 
pu 

io 
d 
pu 

io 

Pa 

1 1.293 0.52 1.184 0.25 2.5 -1.62 0.72 

2 1.163 0.34 1.112 0.25 2.6 -1.62 0.72 

3 0.805 0.36 0.72 0.25 2.5 -1.62 0.72 

4 0.909 0.45 0.79 0.25 2.7 -1.62 0.71 

Table 2: Operating point. 

System Eigenvalnes 
Before applying 	the 

decentralized controllers 
After 	applying 	the 

decentralized controllers 

11  = -23.81 11  = -43.21 
12  = -13.62 

12  = -24.71 
13 = -18.28 %3 	= -28.17 
X4 = -19.23 

X 4 = 
-34.18 

15 = -16.21 
15 = -24.23 

16 = -90.11 + j 	9.22 
16 	- -90.11 

	+ j 9.22 
17 	=--90.11 - j 	

9.22 17 = 
90.11 - 	j 9.22 

18 = 
X 
	
= 

	

-0.36 	+ j 

	

-0.36 	- j 
6.98 
6.98 

18 = 
X9 = 

	

-2.11 	+ j 

	

-2.11 	- 	j 
8.72 
8.72 

A.1
9  
0 = -2.13 	+ j 	

65.21 110 = -7.14 + j 
65.21 

111 = -2.13 	- j 	65.21 
111 = -7.14 - j 

65.21 
112  = -1.51 	+ j 	59.21 

112 = -1.73 	+ j 
59.92 

113 = -1.51 - j 	59.21 
113 = -1.73 	- j 

59.92 
114 = -275.81 + j 	202.12 

114  = -275.81 	+ j 	202.12 
115 = -275.81 - j 	202.12 115 = -275.81 	- 

j 	202.12 
116 = -29.23 

116 = -29.95 
117 = -44.62 

117 = -45.42 
118 = -29.24 + j 	50.31 

118 = -29.81 	
+ j 	50.92 

119 = -29.24 - j 	50.31 
119 = -29.81 - 

j 	50.92 
120 = -397.91 + j 	870.21 

120 = -398.21 	+ 
j 	870.52 

121 = -397.91 - j 	870.21 
121 = -398.21 - 

j 	870.52 
122 = -441.31 + j 	1690.25 1 22 = -441.31 	+ 

j 	1690.25 
123 = -441131 - j 	1690.25 

123 = -441.31 - 
j 	1690.25 

124 = -1.32 
124 = -2.0 	+ j 

0.152 
125  = -0.35 

125 = -2.0 - j 
0.152 

126 = -0.31 	+ j 	0.61 
126 = -1.21 	+ j 0.74 

127 = -0.31 - 
j 	0.61 127 = -1.21 - j 0.74 

128 = -0.97 + j 	1.27 
128 = -1.81 	+ j 

1.51 

129 = -0.97 - j 	
1.27 129  = -1.81 	- j 

1.51 
130 = -0.0167 

130 = -0.0187 
131 = -0.972 

131 = -0.972 
132 

= -0.01491 132 = -0.079 

L 
	Table 3: Four-machine system eigenvalues. 
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Figure 1: Four-machine four-load power system 	Fiore ,3: Response of machine No. 3 to a small 

disturbance 

(c) closed loop response after connecting 
the second controller 

Figure 4: Robustness for Multiplicative Perturbation 
for the Power System Shown in Figure 1. 
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indicates the improvement of the response when using the decentralized 

controllers. 

Remark: Figure 4 demonstrates the norm approach to measure the stability 
margins. It is clear that the system is robust after applying the decent-
ralized controllers. However, Figure 4 illustrates the singular values 
approach [6] which in this case provides a better measure of robustness for 
the four-machine four-load power system of Figure 1. 

V. CONCULSIONS 

A decentralized power system model has been formulated in designing robust 
controllers. Each subsystem can be independently controlled and the inter-
connections can be taken into account through the design of the robust 

controller. 

The technique applied here uses a state-space description for each sub-
system; the robust controller is designed based upon a singular value 
decompansation performance measure. The controllers are applied sequent-

ially so as to provide as much robust stability of the overall system as 

possible. 

Currently, this technique is being applied to robotic problems whereby it 
is desired to have each joint be controlled independently. 
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