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A STUDY OF PLANE FLOWS USING MICROCOMPUTERS 

By A.O.Sherif & I.M.Shabaka 

ABSTRACT 

This paper is a part of a plan to explore the 

possibility of utilizing the economic, yet powerful, 

microcomputers for the analysis and education of numerical 

fliud dynamics' techniques. 

The stream function equation has been discretized and 

solved with a simple line (tri-diagonal) solver using an 

S.O.R. iteration scheme. The solution Algorithm was 

programmed in FORTRAN77 for the IBM PC equipped with the 

Intel 8087 math-coprocessor. Some results are presented to 

illustrate some limitations and tips in the use of such 

numerical devices and machinesin the Computational Fluid 

Dynamics. 
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1. Introduction: 

Computational Fluid Dynamics' research studies and 

education is known to be regretably lagging in Egypt. In 

spite of its importance, it seems that efforts have been 

failing in deriving our educational institutions to catch 

up with the continuous progress in this field. Few efforts 

were successful in understanding and performing useful 

work, but no systematic local policy has been agreed upon 

in this field yet. The most important reason for this was 

the unavailability of computing facilities in our 

institutions. Some of the institutions do not have in-house 

computers. Others have them, but the demand is so high that 

their practical availability is not high enough to allow 

for serious CFD work to be performed. In addition, its know 

how that is laking. We know some of the theory but the 

local practical know how is questionable. The low cost, 

powerful micro-computers of today, we thought, should help 

alleviate this shortcoming. 

A plan was put in the Department of Aeronautics in 

Cairo University to explore the feasibilty and limitations 

of utilizing micro- computers in serious CFD computatioin. 

The plan agreed upon covers the different types of flow and 

can be summaraized in the three well known types of flow, 

namely: 

1. One dimensional flows. 

2. Two dimensional flows under the following flow 

conditions: 

a) Incompressible conditions. 

b) Compressible conditions. 

c) Transonic conditions. 

3. Three dimensional flows. 

r 
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The present paper falls within the scope of the 

second stage of the plan. The plane flow stream function 

equation has been used in the study. Its solution was 

investigated using a conservative finite difference scheme 

on an IBM PC. 

2. Problem Formulation: 

The stream function equation is a powerful tool in 

computing plane flows. Over the potential function 

equation, it has the advantage of capability tohandel 

rotational flow effects. The equation has been successfuly 

solved in transonic flow applications by Hafez & Lovell 

[1]. It has been extended to solve three-dimensional 

transonic flows over wings, and wing-body combinations by 

Sherif & Hafez [2]. The extension to solve viscous flows 

has been described by Sherif [3]. 

The governing equation for the stream function is 

obtained from the definition of vorticity. The obtained 

equation automatically satisfies the continuity equation. 

Using Einestien notation [4], the equation may be written 

in generalized coordinates as: 

g11 11, 2 	g12 	
N/ 

2 
4) 	

g12 	911 
1  ) 	( 	4,   /1)1) 1 = -.1& (1) 

pJ Y 	
y 	pJ Y  pJ Y 
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where, 

	

act 
	

3xa 

	

g13
., = 

ayi 
	

3y3 
	 i,j=1,2 	(2) 

defines the metric of the transformation 

between the computaional plane xiand the 
physical plane y3 , 

J = g = I gii i 
	

(3) 
is the Jacobian of transformation, 

p 	is the fluid density, 

is the stream function, 

is the vorticity, and 

i denotes 	/ aYi. 

Similar expressions apply for xi,s. 

The contravariant velocity components are defined by: 

1P y1 = -J V2  

(4) 

1) 2 = -J V 1  

Using a system of orthogonal coordinates, thus: 

gij =0 for i xj, the equations simplifies to: 

Y 2 )y  2 + 	( 222$y  )y  = - J C 	(5) 
pJ 	 P 

and in Cartesian coordinates it is: 

$y1 

p yl 

IP 2 

( 	) 0 y2 
(6) 
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with 
	

W = - Pv 	& 	2 = 	Pu 	(7) 

In compressible flow computation, the density is 

variable and is determined using the energy equation. For 

details of the process see [1 & 2). 

3. Discretization of the Equation: 

Equation (6) is in conservative form. The standard 

method for discretizing conservative forms is to use 

central differencing. The discretized form may be written 
as: 

6 	n+1 6 2 	n+1 
—Z--- ) 

Yi 
	Yp 	)

Y
2 	( 	

1
= -E 	(8) 

1-2 	 -  
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where: 

6 1 - tPi,j )I ■,}71 11)i+1,j 

(9) 

6 1 	
)I

.
i-1 1,3 	 ,j  

With similar expressions for the y2  direction. 

The scheme described by (8) is second order accurate, 

and the resulting system of equations is benta-diagonal. 

In the following section a simple line over relaxation 

scheme for solving the equations is described. 

4. The Iteration Scheme: 

A typical point relaxation scheme may be described 

by: 

L [ It)
n+1

] = 
	 (10) 

Let 

n+1 	tpn 	Cn 

Therefore: 

L [ Cn] 
	n 	- L [ 111] 

L [ C
n
] 	- R

n (11) 
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where: 

Rn is the residual at the nth. iteration, and 

C
n 

is the correction to the solution at the nth. 

iteration. 

In general, the operator L, operating on the nth. 

correction C , can be replaced by the appropriate operator 

N defined as: 

N = 
	( a - A 621) 

	
a - B 622, 
	

(12) 

where: 

A = 
	( 1 
	U2 	

B = ( 1 
	V2 

u2+V2 	 U2+ V2 

and 	is selected in such a way to ensure the 

stability of the scheme. (For more details on this 

point see [5].) 

In the line scheme used in this work the y2-term has 

been evaluated from the values of the stream function at 

iteration number n. Only a tri-diagonal system of 

difference equation is left to solve. This has to be solved 

along the y' -directionfor each y2 -level. 

The values of the stream function is then corrected 

using: 
	*11+1 = *n 	Cn 

	
(13) 

where: w is an over relaxation factor 1 <w < 2. 
L _J 
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The spectral radius of convergence for the scheme may 

be expressed as: 

r = 1 - 	a h
o 	 (14) 

where: 

a 	is a constant, 

h 	is a characteristic mesh size, and, 

a 	is a constant. 

It is known that 0= 2 for Jaccobi and Gauss-Seidel 

methods, 0=1 for S.O.R. iterations using optimum relaxation 

parameter,wopt  
. w<1 for the Zebra schemeused.in[1, 2 & 5). 

The values for a & a are sensitive to: 

- the step size h, 

- the aspect ratio of the mesh Axi/ Lx 
z
, 

- the variation of the mesh aspect ratio in the 

field of computation, and, 

- the location of the outer boundary. 

5. Results and Conclusions: 

The first part of the plan, of which the present paper 

is but a first step is to investigate the performance of 

the simple solver described in the previous section when 

operated on micro-computers. It is well known that the 

L_
convergence of such scheme, when applied to incompressible 
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flows depends on: 

- The size of the mesh and the mesh aspect ratio. 
- The relaxation factor. 

- The used level of precision (whether single or 
double). 

- The amount of stretching to which the mesh is 
subjected (if any). 

A set of computational experiments were performed to 

study the first three of these factors. The effect of the 

forth item is still under investigation. Incompressible 

flow over a cylinder in a uniform stream was selected as a 

test case. It was decided to perform the following sequence 
of runs: 

1. For w .1.0 , under both single and double precision 

arithmetic, nine grid configurations (17x17, 33x17, 
65x17, 	33x33, 
were tested. 

65x33, 	65x65, 	17x33, 17x65, 33x65) 

2.  Grids 	33x33, and 	65x33 were then selected to test 
the effect of a sequence of relaxation factors: 
w = 1.1, 1-.2, 1.3, 1.4, 1.5, and 1.7. 

Some of the important features were presented in three 

figures. Fig.(1) shows the convergernce histories for the 

first set of runs using single precision arithmetic and a 

relaxation factor of one (Jaccobi-scheme). The fastest 
convergence rate being for grid 17x17 and the convergence 
rate detoeriorates as the mesh size increases, something 

which is expected. Convergent solutions showed oscillatory 

behaviour after the first few iterations. It was not 

possible, to have converged solutions for the cases where 

the mesh aspect ratio (Ax/Ay) were greater than one (i.e., 
for grids 17x33, 33x65, and 17x65). This is due to the very 
elementary used solver. A cure is possible by introducing a 

L_ corrective cycle between iterations or by using a more 
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sophesticated solver. 

Fig.(2) depicts the convergence histories for the same 

set computed using double precision arithmetic and with no 

relaxation. The undesirable oscillations are now smoothed 

out. Again, the grid 17x17 has the highest convergence rate 

and the rate of convergence deteriorates with decrease in 

mesh size. 

Fig.(3) shows the effect of varying the relaxation 

parameter on the rate of convergence for the 33x33 grid. 

Increasing the relaxation factor increases the rate of 

convergence until w>1.5, where oscillations start to appear 

and then the rate of convergence deteriorates. This value 

of the relaxation parameter is lower than the values used 

with potential flow solvers (w=1.85). 

Similar results were obtained using a 65x65 grid, but 

in this case the residuals were reduced to lower values of 

the order of 1011  

In all cases, the average computing time was about 

0.01 sec/point/iteration using an IBM PC equipped with the 

Intel 8087 math-coprocessor, and a Microsoft FORTRAN77 

Compiler. This is an indication of a reasonably acceptable 

computaion rate and an ecomomical computer cost. 

L 
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