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ABSTRACT 

A convenient simple model for a high velocity fluid line, connecting a 
hydraulic actuator to a 4/3 zero lapped valve, is presented. The conditions 
under which the proposed model is valid, are deduced. The system mathema-
tical model, in case of constant supply pressure operation and pure inertial 
external load, shows that the actuator response to step opening of the valve 
depends on two parameters; the system dimensionless inertial resistance and 
its dimensionless capacitance. The former equals the ratio between the fluid 
line inertial resistance and that of the load, while the latter accounts for 
the system capacitance, valve resistance, load inertial resistance, and the 
supply pressure. Numerical solution of the system governing equations 
verifies that at small values of the dimensionless capacitance, cavitation 
occurs at certain values of the dimensionless inertial resistance, a 
phenomenon that can not be predicted when the fluid line inertial resistance 
is ignored. At small dimensionless capacitances, the fluid line inertial 
resistance is shown to have considerable effect on the transient response, 
and can be made use of to improve the system performance. Ale combination of 
dimensionless capacitance and inertial resistance, at which minimum settling 
time and reasonable values of overshoot and delay and rise times occur, 

is determined. 

INTRODUCTION 

Modern developments in materials and sealing technology allowed using high 
pressures in hydraulic control systems. Pressures up to 40 MPa are now 
frequently used in order to reduce the required flow rate for a certain 
power transmitted. With smaller flow rates, systems are more compact, and 
are of less weight and initial costs. 

At high pressures, flow velocities in the connecting pipes can be increased, 
since the resulting higher pressure losses within the pipes can be tolerated. 
A 12 m/s flow velocity is now allowed in many cases, a value that is about 
four times the maximum permissible value in the past. With small flow rates 
and high flow velocity, the connecting pipes cross sectional areas are 
considerably reduced. A small diameter fluid line has high inertial resista- 

nce and small compliance. 

Most of the previous investigations of valve-controlled hydraulic actuators 
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dynamics [1 - 7] dealt with systems in which the fluid lines are of large 
diameters. In these cases, the fluid lines inertial resistances are negli-
gibly small and the lines compressibility effects can be accounted for by 
adding the volume of the fluid line to the volume of the actuator cavity 
connected to it. Arafa and Kassem [8] verified that the resulting model, in 
this case, would not yield accurate prediction of the system performance 
when the fluid lines inertial resistances are high. They derived the set of 
equations governing the system dynamics and reduced it to a linear form. 
Solving the obtained set of linearized equations, using Laplace transforma-
tion, they showed that the fluid lines inertial resistances might improve 
the system step response. They showed also that the fluid lines frictional 
resistances are of minor effect on the response, since their values in 
practice are much smaller than those of the control valve. Results obtained 
in [8] are qualitative since the analysis is based on a linearized model 
and is made for a system with certain physical parameters. 

In this paper, a generalized analysis for the response of hydraulic actua-
tors to step openings of the control valves is carried out when both of 
the fluid line inertial resistance and the compressibility of fluid filling 
the actuator are considered. 

SYSTEM MODELS 

The investigated system is shown in Fig. 1 . It consists of a rotary actua-
tor, of geometric volume vo  and fluid filling volume va  , which drives a 
load of moment of inertia I. The actuator is connected to a 4/3 zero-
lapped control valve by means of two symmetrical fluid lines, each of 
length 1p  and cross sectional area a . 

Line ( 1 I 	p , q 	 p , q 	Line( 21  

U 

Fig. 1 Inertially Loaded Valve-controlled Actuator 

The proper treatment of the fluid line is to consider it as a system with 
distributed parameters.In this case, the system shown above can be represe-
nted by the circuit shown in Fig. 2 , where each line is represented by an 
infinite number of infinitesimal capacitances and inertial resistances; 
dc and dh respectively. 
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Fig. 2 	System Equivolem Circuit 

The equations governing this circuit are : 

where r is the valve resistance which equals 0.5 52/(4
2
u
2
) . 

ps  - pi  = rq l  
2 	 (1) 

q
2 
- q = c

a 
dp
2
/dt 	 (2) 

where c
a 

is the capacitance of one actuator cavity, and equals 0.5va
/fl 

p2  - p3  = hi  dql/dt 	 (3) 

where h is the load inertial resistance which equals 4x21/v2  , and 

ql  = von [9] . 

qe  - q3  = ca  dp3/dt 
2 

P4 = r q4 

a
2
P/at

2 
= (W/9)

2
p/ex

2 	 (6) 

2
q/Ot

2 
= (pm a2q/ex2 
	

(7) 

The last two equations are combined with the boundary conditions : 

q(0,t) = 	, p(O,t) = p
l  , q(lp  ,t) = q2  , and p(lp  ,t) = p2  

when dealing with line (1). 

Equations (6) and (7) also govern the variation of pressure and flow rate 
along the other line; i.e. line (2). The boundary conditions in this case 
are q(0,t)=q

3 ' 
p(0,0=p

3 , 
q(1

p
,t)=q

4 , 
and p(Ip'

t)=p4 
 

It is worthy noting that if the rotary actuator is replaced by an equal 
area linear actuator; i.e. a synchronizing cylinder, the foregoing 
equivalent circuit . .and governing equations still hold. The parameters 
of the circuit in this case are the same, except that he m/a2  and graw , 

where m is the load mass, a is the cylinder effective cross sectional 
area , and w is the load speed. 

For any input signal u(t), the system response can be obtained by solving 
the foregoing set of equations with the relevant initial conditions. 
However, the solution of this set is quite tedious, if ever possible, 
since it contains partial differential equations beside the nonlinear 

(4)  

(5)  



Fig. 3 Equivalent Circuit with Fluid 
Lines Inertial Resistances 
Added to the Load 
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and ordinary differential equations. 

The system model can be simplified when the fluid lines inertial resistances 
are very small. In this case, the infinitesimal inertial resistances dh are 
either ignored, or summed up together and added to the load inertial resis-
tance h2  , to yield ht  . The capacitances dc of each fluid line are now 
connected in parallel, together with the actuator cavity capacitance ca  , and their equivalent capacitance ct  is the sum of all of them. The circuit 
representing the system in this case is shown in Fig. 3 . 

U -1=1 

hi 

Fig 4 Equivalent Circuit for Systems with h 
Fluid Lines of High Inertial Resistance 

and Small Compressibility 

The values of ct  and ht  are given by 

ct  = ca  + cp  = ca  + l_Pa /13 P 
ht  = h + 2h 	p  = hi  + 2 S. l/ap  

When the fluid line inertial resistance is of considerable value while its 
capacitance is small, the case prevailing for a high velocity short fluid 
line, the line infinitesimal capacitances can be neglected, or summed up 
together with the actuator cavity capacitance, to yield the system equiva- 
lent circuit shown in Fig. 4 

The equations describing the circuit shown in Fig. 4 are eqs.(1) to (5), 
with ca  replaced by ct  in eqs. (2) and (4), beside the following equations, 

q1 = q2 	q3  = q4  , p1-p2  = hp  dql/dt , and p3-p4  = hp  dq4/dt . 

This set of nonlinear ordinary differential equations can be solved numeri-
cally to predict the system response to the various input signals. 

For the analysis of the system response to step opening of the control 
valve to be general, the set of the governing equations is reduced to a 
dimensionless form. It is to be noted that the valve resistance decreases 
suddenly from infinity to a constant value ro  which equals 0.55/(Cdbuo)2  
when the valve is suddenly opened uo  . Using the reference quantities, 

qr  = (0.5ps/r0)0.5,h
r =h' Cr =h r /(2ro 

 p 
r  ) , and tr  = h r  q /p y r r 

it can be shown that the governing equations, in a dimensionless formore: 

Pr  = P 
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2 
Q2 
1  = 2(1 - PI) , Q1  - Of  = C dP2/dT , P2  - P3  = dOi/dT , Q

3  = 2P4  , 

Of  - 03  = C dP3/dT , PI  - P2  = H dOl/dT , and P3  - P4  = H dQ3/dT 

where P 

	

	 q 
1,2,... P  = 	1,2,.../Pr 	' 	Q1,2,... 	1,2,.../qr 	• 	T = t/tr  , 

C = ct 
/cr , H = hp/hr  

SYSTEM. RESPONSE 

Solving the foregoing set of dimensionless equations, the variation of the 
load flow rate with time can be obtained. These equations show that the 
response depends on the two dimensionless parameters C and H. The first 

p 	meter C depends on the system capacitance ct  , valve resistance ro  

lo i inertial resistance hi , and the supply pressure ps  . It increases 

linearly with the increase of either ct  , ro  , or ps  , while it is inver-

sely proportional to ht . The second dimensionless parameter H equals the 
ratio between the inertial resistances of the fluid line and the load. 

The effect of these two parameters on the system response is shown by 
solving the set of governing equations numerically, for different combi-
nations of C and H. The initial conditions are 01(0) = Qt(0) = Q3(0) = 0 , 

P1(0) = 1 , P2(0) = P3(0) = 0.5 , and P4(0) = 0 . These are the relevant 
initial conditions for this case, as shown in [8] ..A sample of the 
obtained results is shown in Fig. 5 , which shows that the load flow 
exhibits some oscillations during a transient period, before reaching the 

steady state constant value. 

When H is zero, which means that the fluid line inertial resistance is 
either neglected or added to the load , the different pressures in the 
system were found not to attain zero during the transient of steady states, 
whatever the value of C is. At the values of H other than zero, and at 

certain values of C, the pressure P2  was found to attain zero during the 

transient period, indicating occurrence of cavitation. The combinations of 
C and H at which cavitation occurs, as detected from the computer runs, 
are shown in Fig. 6 . Occurrence of cavitation at these combinations is 
explained as follows. The inertial resistance of the fluid line connecting 
the actuator to the supply pressure line via the control valve, is 
expacted to limit the flow rate that can reach the actuator, at some 
instances during the transient period. During these periods of limited 
supply flow to the actuator, the supply flow rate might be less than the 
load flow rate. The pressure P2 consequently decreases due to the actuator 
cavity capacitance. At those combinations of C and H at which cavitation 
occurs, the difference between the load flow and the actuator supply flow 
is high, and lasts a period enough to let P2 drop to zero or negative 
values. Cavitation was not detected when H is assumed zero, and this can 
be referred to that the drop of the pressure P2 causes an immediate higher 
pressure difference across the control valve, which causes an instantaneous 
increase in the flow rate passing through the valve and reaching the 
actuator cavity. Thus the increase of the load flow than the actuator 
supply flow gets smaller and lasts a shorter period such that cavitation 

is eleminated. 

The effect of C and H on the system response is shown in terms of the 
transient response specifications. Figure 7 depicts the variation of the 
maximum percentage overshoot with C and H. The lower limit of C at each 
value of H is determined from the cavitation limit. The maximum percentage 
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overshoot is seen to increase with the increase of C and decrease of H. 

The variation of delay, rise, and settling times with C and H are shown in 
Fig. 8 . The 	time axis in this figure represents the relative dimen- 
sionless time; T*  , rather than the dimensionless time T. This is because 
the variation of C is accdmpanied by variations in the reference time tr  
[7] , which can be explained as follows. If it is required to rotate a 
certain mass of moment of inertia I at a steady state speed n, when the 
supply pressure is ps  , then the reference time can be shown to ec!ttal 
Y/(vgf-r-o) P  and the capacitance C equals Svor0  , where ?! and S 	c_onstaats 
given by : 

= 47c21/p°.5  , and S =o< ps
/(27eA I) , 

0C being the ratio between the actuator cavities volume va  and its geometric 
volume vo and is assumed to be constant. The steady state rotational 
speed n equalsin{0.5psgre(i)} , and in order to be constant irrespective 
to the variations in the system physical parameters, rovg should be kept 
constant. If the actuator geometric volume is changed from vol  to vo2 
such that v01 = kv02 , the valve resistance should be changed from r 	to 
rol/k2 in order to keep the speed n unchanged. With these variations

°I 
 , 

the dimensionless capacitance varies from CI to kCI while the reference 
time varies from trl to tri/k . This means that increasing C by a certain 
factor means the decrease of the reference time by the same factor. Taking 
tr  at C = 0.2 as a reference, the scale of mcasurilg the ttm- at 	valve 
CI is changed by multiplying the dimensionless time by 0.2/C1  . This is 
used for the scale of the time axis in Fig. 8 , which shows that H has a 
slight effect on both the delay and rise times. With the increase of C the 
delay and rise times decrease. The effect of C on these times is notable 
when C < 1.2 . The settling time is seen to depend on both C and H. The 
minimum possible settling time is found to occur at the combination C = 0.7 
and H = 0.18 , and equals 0.4 . The curves at this value ofi H are not prese-
nted since they are very close to the curves of H = 0.2.. At the mentioned 
combination, reasonable values of maximum overshoot and delay and rise times 
result. With H kept constant at 0.18 , any slight increase in the value of 
C above 0.7 increases the settling time considerably. At H = 0.2 , which 
means that the inertial resistance of the two fluid lines is 40% of the 
load inertial resistance, the value of C is preferably to be taken in the 
range 0.6 - 0.7 to obtain small values for both the settling time and 
maximum overshoot, beside reasonable values for the delay and rise times. 

A comparison between the case of H = 0 and any other case reveals that the 
fluid line inertial resistance can be made use of to improve the system 
transient response. Figure 8 shows that the minimum settling time at H = 0 
is 0.73 , and occurs at C = 0.4 , while it is 0.41 only at the combination 
H = 0.2 and C = 0.72 . At the former combination, the maximum percentage 
overshoot and the delay and rise times are 5% , 0.33 , and o.53 respective-
ly , while they are 5.3% , 0.27 , and 0.29 for the latter combination. 
This shows that the fluid line inertial resistance, when properly combined 
with the other system parameters, improves the system transient response. 

The obtained results can also be used to establish a criterion that deter-
mines the conditions under which the fluid line inertial resistance .can be 
neglected, without introducing much error in predicting the system response. 
Figures 7 and 8 show that when C>1.4 , the variation of the transient 
response specifications with the variation of H is small. Thus when the 
system dimensionless capacitance is greater than 1.4 , the fluid line 
inertial resistance can be either ignored or added to the load inertial 
resistance, which renders the system equivalent circuit as shown in Fig.3. 
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For the values of C less than 1.4 , the system transient response is seen 
to depend strongly on the value of H , and the fluid line inertial 
resistance should be taken into account as shown in Fig. 4 , in order to 
predict with reasonable accuracy the system response. 

On the other hand, it is more convenient to account for both the compressi-
bility and inertial resistance of a relatively long, small diameter fluid 
line, by representing the line by two inertial resistances center-tapped 
by a capacitance. Each inertial resistance equals half that of the fluid 
line, and the capacitance equals the fluid line capacitance. The mathema-
tical model obtained for this case showed that the response depends on the 
ratio between the volume of the two fluid lines and the actuator volume; 
V = 2aP  1p /va'  

• beside the dimensionless capacitance C and the dimensionless 
inertial resistance H . When the system, in this case, was simulated on a 
digital computer, the results proved that the foregoing model/shown in 
Fig. 4,as well as the conclusions,are valid so long as V4:0.3 . 

Consequently, if the ratio between the volumes of the two fluid lines and 
the actuator; V , is less than 0.3 , and the system dimensionless capaci-
tance C is greater than 1.4 , the fluid line inertial resistance can be 
ignored or accounted for by adding it to the load. In this case the system 
mathematical model is to be based on the equivalent circuit shown in Fig. 3. 
When V is less than 0.3 , and C is less than 1.4 , the fluid line should 
be represented by an inertial resistance and a capacitance which is to be 
added to the capacitance of the actuator cavity connected to the line, to 
get the system equivalent circuit as shown in Fig. 4 . 

CONCLUSION 

Analysis of the step response of an inertially loaded hydraulic actuator 
to step opening of the control valve, when the volume of ale fluid lines 
is less than 30% of the actuator volume, shows that the response depends 
on the ratio between the inertial resistances of the fluid line and the 
load; H, and on the system dimensionless capacitance C which is directly 
proportional to the system capacitance, valve resistance, and supply pressure, 
and is inversely proportional to the load inertial resistance. 

It is verified that when C is greater than 1.4 , the fluid line inertial 
resistance can be neglected or added to the external load, without introduc-
ing much error in predicting the system response. The system model in this 
case is the conventional simple model, at which the fluid line compressibi-
lity effects only are considered by adding the volume of each fluid line to 
the volume of the actuator cavity connected to it. 

When C is less than 1.4 it is verified that the conventional simple model 
is inaccurate, since the fluid line inertial resistance, whatever small is 
its value , affects strongly the system performance. The fluid line in this 
case should be represented by an inertial resistance, while its capacitance 
is to be added to the capacitance of the actuator cavity connected to it. 
In this case, and at certain combinations of C and H , cavitation occurs, 
a phenomenon that can not be predicted when H is assumed zero. Further, the 
transient response specifications show to depend on the value of H. By the 
proper choice of the values of C and H, the system transient response can 
be improved , and the minimum possible settling time can be obtained. 

Charts are presented, that can be used to choose the values of C and H that 
”inld the reauired transient response. 
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NOMENCLATURE 

a 	cross sectional area of fluid line 

b
P valve port width 

ca 	capacitance of one actuator cavity 

ct 	total capacitance of a fluid line and actuator cavity connected to it 

cp 	fluid line capacitance 

Cd 	Coefficient of discharge 

dc 	capacitance of an infinitesimal elemant of length dx of ke fluid 

line, dc = an  dx/P 

hf 	load inertial resistance 

hp 	
fluid line inertial resistance 

ht 	
total inertial resistance of load and two fluid lines 

dh 	inertial resistance of an infinitesimal element of length dx of the 

fluid line, dh =- 8'dx/ap  

I 	mass moment of inertia of load 

1p 	length of fluid line 

n rotational speed 

P'cl 	
pressure, and flow rate at any section of the fluid line 

p pressure and flow rate at locations 1,.., 4 
.. ..4 1 	' ql ...,

4 
 

Ps 	supply pressure 

qt 	load flow 
✓ , ra  valve resistance, valve resistance at a constant 
t 	time 
u , ur, valve opening , valve step opening 

va, vo 
volume of fluid filling actuator , actuator geome 

x 	coordinate along fluid line axis 

Cr , hI' , pr  , ... , etc 	
reference quantities 

C , H , P , ... , etc 	dimensionless quantities 
fluid bulk modulus , and density , respectively 

Dc,X,S constants 
, 

opening uo  

tric volume 
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