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DEVELOPMENT OF BODY-FITTED COORDINATE TRANSFORMATION IN FLUID 
MECHANICS REVIEW AND MODIFICATIONS 

* 
M. M. El-REFAEE 

ABSTRACT 

This paper reviews the development of body-fitted coordinate 
systems for a wide variety of two-dimensional flows. The 
author classifies the techniques used in the body fitted 
transformation as: (1) algebriaic techniques ( simple stret-
ching and shearing), (2) partial differential equation techni-
ques, and (3) conformal mapping techniques. 

The conformal mapping is widely used in fluid Mechanics. It 
automatically stresses the regions of interest near the lead-
ing and trailing edges of airfoils. In addition, conformal 
mapping simplifies the kinematics aspect of the fluid mecha- 
nics problem. 	For these reasons, a new modified conformal 
mapping technique is initiatedand presented in the second part 
of this paper. In appendix, a computer code based on this 
technique is listed and some few results are plotted. 

1.. INTRODUCTION 

In the first part of the present paper, the research works of 
the body-fitted coordinate systems for a wide variety of two-
dimensional flows were reviewed. Specifically, the following 
categories are considered: (i) Internal Flow (ii) External 
flow around a single-element airfoil (iii) flow over a multi-
element airfoil system. There are, of course, other categories 
of flows that are important. Examples are airfoil in a wind 
tunnel or near ground, hydrofoil in the vicinity of a free 
surface etc. These additional problems can be readily tackled 
once the basic principles involved in the first three catego-
ries are well understood. 

In each of the above three categories , 	there is already an exten- 
sive body of literature dealing with coordinate system genera-
tion. The author classifies the different techniques into 
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three major techniques: (1) Algebraic techniques-simple stret-
ching, shearing etc, (2) Partial differential equation techni-
ques where the coordinates are obtained as part of a solution of 
a second or fourth order partial differential equation system ,and 
(3) Conformal mapping techniques. 

In the present work, the earlier works will be briefly quoted 
or described according to the above classification. For each of 
the three categories, at least one technique for generating cur-
vilinear coordinates will be presented in sufficient details, 
so that the reader may develop his own code from these details. 

In the second part of this paper, a modified conformal body-
fitted coordinate system around a single-element airfoil will 
be presented. This present approach transform the region 
exterior of an airfoil onto the interior of a unit circle. 
Fast Fourier transformation combined with the use cubic splin 
techniques give fast and accurate body-fitted coordinate trans-
formation. 

A computer code based on the present procedure is developed and 
presented in the appendix. This code will be useful in solv-
ing various fluid mechanics problems for which no analytical 
transformation is available. 

2. INTERNAL FLOW PROBLEMS 

Internal flow problems are of interest in such different fields 
as turbomachinery, bio-fluid mechanics, nuclear engineering 
design etc. In turbo-machinery, the flow between the blade 
passages is three-dimensional. This three dimensional problem 
is usually broken up into two two-dimensional problems[ll : (i) 
Flow in the blade to blade surface (ii) Flow in the hub to 
shroud plane. These problems may be studied as internal flow 
problems[2,3] . In bio-fluid mechanics, there are problems re-
lated to flow of blood through elastic, flexible blood vessels 
and through constructed vessels. In nuclear engineering, flow 
of plasma and other fluids through old-shaped vessels is an 
important problem. In aircraft industry the design of nacelles 
requires an understanding of internal flows. Thus, it is clear 
that an efficient grid generation technique will greatly aid in 
the numerical study of these and other important problems. 

2.1 	Algebraic Techniques 

Two-dimensional internal flow regions can be easily treated by 
algebraic techniques such as simple polynomial interpolation, 
shearing or stretching technique. Two simple techniques, one 
due to Eiseman [4,5,5, &7] and the other due to McNally[8]will 
be chosen for detailed study here. These techniques typically 
take just a few seconds of CPU time to generate body-fitted co-
ordinate systems. 

2.1.1 	Eiseman's technique: 

LWe consider the region ABCD (Figure 1). Divide the curve AB asi 
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as CD into equal number of subregions as shown in the Fig.TEW, 
length of the curve in each interval need not be the same. Let 
PI be a representative point on AB, and P2  a representative 
point on CD. 

Assume that a parameter t, 4t<1 varies smoothly from P1  to P2  

along the specific line. Along P1  P2, we can assume a polynomi- 

al for x and y. For example let: x = at + b, y = bt + d. The 
four unknowns a, b,c and d may be evaluated from x and y at P1  
and P2. At intermediate stations between PI  and P2.x and y maybe 

computed by varying t in a user specified fashion. 

The line from P
1 

to P
2 

is then called 	line .lines at inter- 

mediate points that correspond to t = const are called n lines. 
For the above case, it is clear that P1  P2  is a straight line, 

since a first order polynomial is used. We can, however, use 
higher order polynomials also. For example, let 

x = at
2 
+ bt + c , 	y = dt + e 	OEt0 

The four values at the four corners give four conditions. The 
extra boundary condition needed is specified by setting (dy/dx) 
for the n line at any one of the end points to be such that Ti 
line and 	lines are orthogonal at that point. 

It is possible to increase the order of the polynomial indefi-
nitely. However, very high order polynomials may have several 
inflexion points, and result in a wiggly E line. Eiseman[6], 
therefore considers the division of regions into subregions. 

In figure(2) the given master region Al  B
1 
- G

1 
H
1 

is divided 

into a number of subregions, with user specified lines C1 
D
1, 

E
1 

F
1 

etc. In each of the subregions a polynomial technique, is 

applied as shown above. By matching the slopes of the E line 
at the subregion boundaries a smooth curvillinear grid is gene-
rated. When Eiseman's technique is applied in the above manner, 
Eiseman calls it a multi-surface technique. Despite the simpli-
city of the above technique, there are certain precautions to 
be taken in the above technique. There is a possibility that 
n lines may intersect unless the aspect ratio of each mesh 
(AE /An)is large. In the vicinity of concave corners, n lines 
are likely to intersect even when the aspect ratios are fairly 
large. Eiseman[6,7] used his coordinate generation technique, 
with a first order polynomial to construct a body-fitted coor-
dinate system around a turbine blade . Turbine blades are highly 
curved in practice, and there is a substantial region where the 
turbine blade is concave (Figure 3). Eiseman estimates the line 
BC beyond which the n lines may intersect, by drawing a tangen-
tial (or osculating) circle at each point on the blade, and 
joining the centers of the circleS. Then he restricts the grid 
to a line well above line BC. Since the grid is periodic it is 

Lallowed. The region in the neighbourhood of BC will describe 
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re grid that originates from the next, lower, blade's upper surf 
face. Further applications of Eiseman's approach will be des- 
cribed in the sections on isolated and multi-element airfoils 
systems. 

2.1.2 	McNally's Technique: 

A numerical technique for constructing nearly orthogonal coor-
dinates was developed by Kastanis and McNally[10]as a part of 
their treatment of two-dimensional transonic potential flow 
through turbine cascades. Their procedure attempts to solve 
V 	.pp =0 numerically. This'procedure is also a very rapid 
technique for constructing curvillinear coordinates like 
Eiseman's approach. The procedure is vulnerable near concave 
Corners[9]. In addition, this procedure, at present is strictly 
applicable only for two-dimensional problems. 

In axial-flow turbo-machinery, the flow is predominantly in the 
direction of the machine axis x. At each x-station the dis-
tance between the upper boundary and lower boundary (along y 
axis) is divided into equal parts (Figure 4). Joining the 
partitions at each x station. The streamline-like lines shown 
above are obtained. These are the 	lines for the transfor- 
mation. An iterative method is used to construct the n lines. 
This method is a two-iteration predictor corrector technique 
(Figure 5). 

Predictor: Assume that we desire to draw an n lines from a 
point A on~n to the adjacent line n+1. From A draw a normal 

to E
n. Let it intersect E 	on B. B is the "predicted" value. 

n+1 
Corrector: At B , draw a tangent to En+1 • Draw a normal to 

this tangent from A. Let this normal intersect En+1 on C . 

Average positions A and B to get a new position D on En+1. 
is the corrected value, and AD is the desired n 	line. By 
marching from the lower boundary towards the upper boundary 
step by step, the entire region may be covered by a rearly 
orthogonal 	curvillinear grid. The above predictor- cor- 
rector technique requires less than 10 operations per point, 
and requires very little CPU time. It is clear that McNally's 
technique requires that the spacing be very small so that the 
trunction errors do not accumulate as we march from one level 
to the next. It may also be necessary to keep the aspect 
ratio (AVAn) large enough to avoid intersection of n lines 
particularly in 	concave regions. 

2.2 Partial Differential Equation Techniques 

Partial differential equation approach includes the solution of 

second order (or fourth order) differential equations for the 
variables x and yin terms of a and Q. This technique has been 
applied widely by Thompson and his co-workers[10, 11 & 12]for 
a variety of configurations. Ghia et al[13, 14]applied a 
similar procedure to construct a set of body-fitted co-ordina-
Ltes for a turbine cascade flow. A detailed discussion of this —I 
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method, its merits and drawbacks are postponed until the next —1 
section, where we deal with coordinate systems for isolated 
airfoils. 

2.3 	Conformal Mapping Techniques 

Body fitted coordinate systems have been constructed by several 
workers using conformal mapping techniques to transform the 
internal flow region into a rectangular polygon. Thom and 
Apelt[15]used -tp lines as n - 	coordinates. Barfield[16]used 
the complex Green's function to map an irregular flow region 
into the unit circle, and then to the edges of a rectangular 
polygon through Schwarz christoffel transformation. The inte-
rior points were determined by point successive over-relaxation 
of the inverse laplace equations. In the work of Thom and 
Apelt, theq)  and tp lines were determined as follows. Laplace 
equation was first solved iteratively to determine the value of 
one coordinate x both in the interior and along the boundaries 
of the transformed region. The conjugate coordinate variable 
y was then constructed by integration using Cauchy-Riemann 
condition. With square mesh in the transformed plane, they 
found that for some geomerties, it was not always possible to 
obtain a mesh properly fitted to the physical region with 
their approach. Hung and Brown[17]obtained an exact fit bet-
ween the physical region and the transformed region using a 
dual iterative procedure which was an extension of Thom and 
Apellt's basic approach. In order to obtain an understanding 
of how conformal mapping techniques may be used to map inter-
val flow regions onto rectangles, we briefly describe the pro-
cedure due to Hung and Brown here. Region ABCD is the flow 
region that is mapped onto Al 

B
1 

C
I 

D
1 
in the conformal - n 

plane (Figure 6). For convenience, at downstream boundary, the 
grid is assumed parallel to the x axis. The iterative proce-

dure for conformal mapping involves the following steps: (i) At 
AD, x = x

1 
. At BC, x = x2

. On AB assume an x distribution. 

Laplace equation is applied in the region AI  B1  C1  DI  including 

nodes on D
I 

C
I 
where one-sided differences are used to approxi- 

mate x 	. The values of x on AB are updated using the values 
nn 

at the adjoining nodes and symmetry conditions.Laplace equation 
is solved again. This procedure is repeated a number of times 
till x values converge every wherej(ii) values of y on the wall 
are obtained from the geometry of the wall. New inlet and out-
let values of y along Al D1 

and B1 
C
I 

are determined from the 

fact that x and y are conjugate functions in the regions consi-
der,ed i.e, 

and 	-y, = x 	and X = y 

j+1 

Y1,j+1 = YI,j 	f ( 
a 

) 
a 

	do 

Hung and Brown used fourth-order accurate numerical integration 
formulas to evaluate y along AI  D1  and B1  CI. Because of acculj 
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r 
mulate numerical errors, the integrated values of y for the wall 
at the inlet and outlet may not coincide with those obtained from 
the wall geometry. In such a case the difference is distribu-
ted proportionately over the inlet and outlet sections with 
these adjusted values of y on the boundary, at the interior 
nodes, y is determined by solving 

Y 	Y 	= 0 	in the region A
l 
 B

1 Cl D1 

(iii) the x field is now determined from the formula 

iI,j 
x
i+1,3 

	

. - x 	. = - f
an 

dE 

for all nodes in the flow field including those on the boundary. 
The x field thus obtained will not be compatible with the x 
field obtained from step(O.In fact x

IMAX,j may be less than x2 
for all 14j0MAX or ximAx,i may exceed x2  for all 144JMAX. In 

such a case adjust IMAX, so that IMAX
new 

= IMAX + 1)(iv) With 

the newly defined IMAX, and the boundary values for x, stepsW 
through (III) are repeated until the distribution of y on either 
end has converged , (v) When the x,y fields have converged, 
the main iteration loop (i-iv) is exited. At I = IMAX and 
100max, we have in general: 

x
IMAX-1,j 

< X
2  < XIMAX+1,j and  

EMAX = (IMAX-I)AE 	at IMAX. We determine an average 

aIMAX so that, on an average, at a= a 
-IMAX,x  = x2 for all j. 

new 	old 
i.e. 	

= 	
Aa 	[x

IMAX-1j 

[ IMAX-1,j 

-x23  Let a
Imax,j 	ctImax-1,j 	+ 

x-x 	

,  

IMAX,j] 

1 	JMAX 	new  Then 	a
IMAX x 

= 	E 	a JMAX 

Also 
ActNew 
	a IMAX/(IMAX-1) 

with Aanew  and Ax, and with the boundary condition x= xl  at 

+ = 1 and x = x
2 at I = IMAX, the Laplace equation for x is 

solved to get a final solution for x. 

lt,is clear that the above procedure of Hung and Brown although 
very accurate, may prove to be time consuming since it invol-
ves repeated solution of Laplace equation in a rectangular 
grid. A 	new 	approach for conformal coordinates generation 
discussed in the last section of this report may be consider-
ably faster than the procedure outlined above, particularly 
when no starting (guess) solution is available for x and y. 
Conformal mapping techniques have been used by other workers 
[to study internal flows. Ives [18] develops a solution proce- 

j=1 	IMAX,j 
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Uure for studying transonic cascade flow. Jameson[19] and 
Chen[20]studied a conformal mapping technique for the transonic 
macelle problem (axi-symmetric). Caughey[21] extended the 
conformal mapping to include a central body as well. In these 
cases a simple shearing transformation has applied together 
with a series of conformal transformations. The shearing 
transformation made the transformed coordinates slightly non-
orthogonal, but greatly simplified the subsequent analysis. 

3. FLOW AROUND SINGLE-ELEMENT AIRFOILS 

As in the case of internal flow problems, the various techni-
ques for generation of body-fitted coordinate system around 
isolated airfoils may be broadly classified as (i) Algebraic 
techniques, 	(ii) Elleptic differential equation techniques and 
(iii) conformal mapping techniques. 

3.1 	Algebraic Techniques: 

As the name implies, this approach makes use of simple, algeb-
raic stretching and shearing relationships to construct the 
curvillinear coordinate grid. The CPU time required to cons-
truct a grid using algebraic relationships is very negligible 
therefore, in problems involving repeated computation of the 
curvillinear network e.g. free surface flow[22]aileron Buzz[23] 
etc. Algebraic techniques are the most practical ones. Some 
of the common methods that utilize algebraic relationships are 
described here. 

(i) Shearing transformation 

The simple shearing transformation is given by;  

C= x , 0 = y - ys(x) where ys  is the equation that des-
cribes the surface. 

Shearing transformations are not usually advised for thick air-
foils and blunt nosed airfoils because of the abrupt change in 
the slope of the C lines. For thin airfoils shearing airfoil 
provides a rapid method for generation of body fitted grid. 
Shearing transformations have been used also for compression 
corner 	problems by Carter[24] , Hung and McCormark[ 25] , 
Hankey 	and others, 

(ii) Eiseman's multi-surface technique: 

Eiseman's multi-surface technique was introduced in the previ-
ous section on internal flows. The grid system for the shock-
blunt body problem may be thought of as an outcome of Eiseman's 
scheme when the interpolation functions are chosen to be linear. 
For the single-element airfoil system, two types of grids-the 0 
grid and the C grid-are possible (Figure 7). In his work on 
aileron buzz, Steger[23] discusses the relative merits of the 
two grids. For viscous flow problems that use vorticity as a 
dependent variable, the 0 type of grid wastes a lot of nodes in_j 
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the non-vortical region while the C type of grid efficiently 
packs the nodes in the vortical region. Of course, in order to 
specify the far field boundary condition reasonably accurately, 
the boundary of C grid must still be far away from the body un-
less some explicit relationships such as the integral relation-
ship used by Wu[26] and his co-workers, is used to specify the 
far field boundary condition accurately. If such an integral 
relationship is used, 	the outer boundary of the C type of 
grid may be placed just outside the edge of the vortical region. 

Eiseman's approach may be used on both 	kind of grids bet- 
ween a point PI  and P2  , both x and y are taken as polynomials 

in t, where t various smoothly from 0 to 1. By imposing edge 
condition at P1  and P2, and slope conditions if necessary, the 
shape of the line P1  P2  is uniquely defined. The 	lines are 

obtained by joining all the points that have a constant t. If 
necessary, user may specify additional intermediate surfaces. 

As in the two-dimensional internal flow case, Eiseman's app-
roach can cause difficulties if the mesh aspect ratio is not 
large enough or if the body is concave in some regions. 

3.2 Elliptic Differential Equation Techniques 

The idea of generating curvillinear coordinate systems as a 
results of solving elliptic partial differential equations was 
first proposed by Winslow [271, Chu[28] and other workers. In 
recent years, this idea has been developed into a powerful 
technique for body-fitted coordinates generation by Thompson, 
[10,12] and others[29] . This technique is powerful because it 
can be applied with minor modifications to internal flows, sin-
gle and multiple element airfoil systems, and even to three 
dimensional flows[23]. This technique is discussed here in some 
detail. The merits as well as the drawbacks of this technique 
are presented. 

In principle, the numerical transformation procedure consists 
of determining the boundary-oriented coordinates 	and n  as 
the solution of the following equations 

3c3( 	= Q 	0 = y for 2-D case 

=r6. for axi-symmetric cases 

nXX 	n
00 	

= R 

The functions Q and R are called forcing function and they are 
introduced in order to concentrate or spread out coordinate 
lides at desired locations. In the E-n plane it may be shown 
that the above equations take on the following form: 

a0 
nn 

 + 2b0
En 

+ e0 
EE 
 + J

2 
 (Q0 n+ 120 ) = 0 

a x
nn 
 + 2bx

En 
+ cx

CE 
 + J

2 
(Qx + Rx 	) = 0 

2 
[where a = Oc  + xc  ; b = - (0cOn  + xc  xn  ) 
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2 
c 	

Ti + x

2 
and J = 	x - (1) 	x 

The above equations are non-linear, but elliptic. Therefore it 
should be possible to apply relaxation procedures, such as those 
used in subsonic potential flow problems, to solve these equa-
tions. The forcing functions R and Q are chosen to be of the 
following form: 

MMAX 
R 	a

ml 	 m 1E5l;l  exp _ Cm' - 2.,  

NMAX 
- E 	b   exp 	- do 

	
E n ) 2  + 01 - n  n=1 n lc-cni 

MMAX 
Q = - 

m= 
E 
 1 	am  In-n i 
	 exp [- Cm  1,- nml] 

m  

NMAX 
- E 

n=1 

  

n-nn 

bn In n
n

i 
exp [-dnVE- E n ) 2  + (Ti-  n n ) 2

n  

a
m
, b

n
, c

m 
and d

o are arbitrary coefficients. P and Q usually 

increase in magnitude with the concentration of the grid. For 
high Reynolds number flows, P and Q will be very high. 

The second order and fourth order elliptic equations are the 
popular candidates because they obey what is known as a maximum 
or minimum principle. If Laplace equation for E , for example, 
is solved subject to some specified boundary conditions, the 
maximum principle ensures that c will attain its maximum value 
only on the boundaries of the region and not in the interior. 
Thus maximum principle prevents cross-oyez of like-c ordinate 
lines everywhere, even when concave regions and similar critical 
regions are present. 

Both 0 type of grid and C type of grid may be generated by the 
partial differential equation technique. At the cuts,periodic 
conditions may be employed (Figure 8). The advantages of the 
partial differential equation approach are: 

(1) Its simple logic. The theory behind this approch is not 
overly complex. It is easy to code the above approach, and apply 
the procedure to a variety of internal and external flow pro-
blems. 
(2) Its provision for grid control. If R and Q are not exces-
sively large, they provide the desired control over grid spacing 
in critical regions. 
(3) Availability of a wide body of literature and computer 
codes that apply this approach to a variety of problems 

The disadvantages are: 

(1) The resulting grid is non-orthogonal, and in some cases 
hIghlywarped. 
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(2) Very slow convergence. Particularly at high Reynolds 
numbers. As the magnitudes of Q and R increase, the partial 
differential equations become very stiff and converge very 
slowly. In some cases the final solution contains a number of 
wiggles. It may be shown that these wiggly solutions are the 
correct solutions for the difference equations. 
(3) Boundary conditions: If P and Q are very large, the 
Dirichlet boundary conditions on the solid must, in a sense be 
consistent with the forcing function. Some authors try to get 
around the specification of consistent Dirichlet conditions, 
by specifying Neumanon type of boundary conditions. Mit in 
some cases the Neumann condition, together with large P and Q, 
violates the maximum principle at least numerically and permits 
cross over of E lines or n lines. 

3 .3 
	

Conformal Mapping Techniques 

Conformal mapping of an arbitrary airfoil onto a unit circle 
or to the lower part of half plane has been a topic of great 
interest to research workers for several years. Historically, 
Theoderson[30] studied the numerical transformation of single 
and multi-element airfoil. The well-known Karman-Trefftz trans-
formation maps a biconvex airfoil onto a unit circle[31J. In 
1966, Skulsky[32] presented a numerical mapping procedure for 
arbitrary airplane cross sections and applied this technique to 
study the cross flow past a slender body. 

In recent years, transonic flow calculations have given a new 
momentum to be search for a rapid, accurate conformal mapping 
procedure. The viscous displacement effects are important in 
transonic flows. Many transonic potential flow codes [33,34] 
include viscous displacement effects to improve the reliabi-
lity of the numerical solution. The displacement thickness is 
calculated every few iterations using a simple integral proce-
dure such as the Nash-McDonald procedure,[ 35]and a new body 
shape is calculated. Thus every few iterations, it is neces-
sary to conformally map a new body onto a circle. This calls 
for highly efficient, rapid numerical techniques. 

Jameson [36] used a sheared parabolic coordinate system to 
sutdy flow over airfoils and wings. His transformation is a 
very rapid mapping procedure. While Jameson's procedure is 
rapid and well-suited for three dimensional flow problems, for 
two-dimensional problems, a slower but accurate numerical 
conformal mapping onto a unit circle is preferred. Both Ives 
[37], Bauer et al[38]and Eriksson[391have developed procedures 
for mapping airfoils onto unit circles. The code generated by 
Bauer et al has the additional feature of treating airfoils 
open at the trailing edge. 

4. MULTI-ELEMENT AIRFOIL COORDINATE SYSTEM 

4.1 Algebraic Techniques 

Simple shearing techniques and algebraic techniques tend to 
become increasingly complex for multi-element coordinate sys-__J 
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r 
tems. Eiseman applied his multi-surface method to generate a 
curvillinear coordinate system. The blending of coordinates 
around the two airfoils was accomplished through an interme-
diate cartesian coordinate system. It is clear that such 
algebraic techniques can be used to generate curvilinear coor-
dinates only through a considerably amount of trial and error. 
Thus the low CPU requirements of algebraic techniques are more 
than offset by the increased amount of man-hours spent in 
algebraic approaches. 

	

4.2 	Partial Differential Equations Approach 

The code TOMCAT[10,11] developed by Thompson is capable of 
analysing a number of airfoils in the flow field. Through the 
introduction of cuts in the computational field, and the speci-
fication of appropriate periodic or coordinate continuity con-
ditions, the grid generation equations may be solved on a rec-
tangular transform. For a typical two-body airfoil problems 
the boundaries in the physical and transformed planes are shown 
in Figure (9). In solid boundaries BC, DDl'

and CC1, Derichlet 

boundary conditions are usually specified. At the branch cut 
DC, AB periodic conditions are imposed. 

	

4.3 	Conformal Mapping Techniques 

Theoderson[30] was one of the first workers to study conformal 
representation of multiple element airfoils. Ives work on con-
formal mapping of single element airfoils[37]also contains ex-
tensions to two-and multi-element airfoil systems. In Ives 
approach for two-element airfoils the point at infinity is 
mapped into a singular point inside the computational region. 
Caution may be required when differencing the flow variables 
in the neighbourhood of this singular point. Ives also has 
developed a conformal mapping procedure for a cascade of air- 
foils. 

5. MODIFIED BODY-FITTED COORDINATE SYSTEM 
(FOR A SINGLE ELEMENT AIRFOIL) 

Let us consider the transformation of the region exterior of 
an airfoil onto the interior of a unit circle. Let z = x+iy 

and a= 1 e
-10 

be the corresponding points exterior to the 
profiler and the unit circle. Let H = [dz/dai be the desired 
transformation factor. If c is the includea angle at the 
trailing edge, using a series of N terms one can set, 

dz 	, 	1, 	exp [ E = ( 1- a 	 crn n=0 
This method of representing the transformation has the advan-
tage that it allows a profile with an open tail to be mapped 
to a closed circle. Expanding the above series, it may be 
shown that the coefficient of the term 1/0 is 

L -c-  = [ c1  - 1 + 76r- ]'exp (co) 

1- 'rr 
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Then, according to the Cagely integral theorem; integration of 
dz/da around any closed curve exterior to the unit circle in 
the a plane results in a fixed gap 

Z2  - Z1  = 	27 i 

This gap can be used to set a desired wake gap. 

The mapping coefficients may be calculated using a simple ite-
rative procedure (Figure 10). Let S  and s be the tangent 
angle and the arc length of the profile. Let 

Cn = an 
- ib

n 

a is available as a function of s 

Taking the Logarithm of the series for dz/da , and separating 
it into real and imaginary parts, for r = llone obtains, 

dg
-)log log de = +(1- —)log (2 sin -2-) + E a

n 
cosne+ b

n 
sinne (A) 

n=0 

	

f3+ e+ I 	2 -(1 - L) 	- E 	a
n 

sinen 	bn cosne 

	

2 	7  
n=0 

(B) 

Given an estimate for s(e), the one length of the airfoil pro-
file as a function of the angle e in the circleplane, we can 
calculate the coefficients an 

and b
n 
from equation B. Since an 

and b are known, the conjugate Fourier series in equation A 
may be

n 
  constructed, and log (ds/de) evaluated. The resulting 

value of(ds/de) may be integrated to give a new estimate ofs(e). 

The iterations converge quite rapidly. It is convenient to use 
a series with K terms to represent the mapping function at 2K 
equally spaced mesh points around the circle. The use of fast 
Fourier transform allows the number of operations in the eva-
luation of Fourier series to be 0 (K log K), whereas conventio-
nal techniques would require 0(K2) operations. The use of 
cubic spline techniques to curve fit and interpolate s(e),a (s) 
etc. is also desirable. 

A computer code based on the above procedure is included at the 
end of the appendix. A number of flow calculations performed 
by the workers at Georgia Tech. have demonstrated the advanta-
ges of a conformal mapping systems for incompressible and com-
pressible calculations[26]. It is hoped that this code will aid 
the workers in treating problems for which no analytical trans-
formation is available. 

APPENDIX 

In the following pages, a computer program for numerically per-
forming the conformal transformation of any airfoil (both open 
and closed trailing edge) onto a circle is described. The 

Ltheory behind the conformal transformation was already described 
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r in the section 5. 
The present program contains many subroutines such as a succes-
sive over-relaxation subroutine for computing x and y coordina-
tes in the interior of the computational domain, several cal-
comp plotter instructions to display then - lines in the phy-
sical domain, and a subroutine for numerically computing the 
apparent mass properties of the airfoil. The following sub-
routines are used in the above computer program. 

MAIN: The main program controls the flow of information bet-
ween subroutines. The data is also read in the main program. 
The final grid is also written on TAPE3, through FORTRAN state-
ments in the main program. The main program also executes the 
iterative procedure, and plots the final output. 

Subroutine MAP: The MAP subroutine computes H = Idz/del on a 
120x30 grid analytically, by evaluating the series for(dz/d0. 
The MAP subroutine also calls the subroutine APMASS. 

In viscous flow calculations, one may compute H either through 
MAP subroutine or numerically from the final (x-y) grid. Since 
the final (x-y) grid is tailored to user's needs, and because 
numerical evaluation of H from x and y involves very few ari-
thmetic operations, the numerical evaluation of H is recommen- 

ded. 

Subroutine APMASS: Subroutine APMASS computes the apparent 
mass properties of the airfoil, following the numerical confor- 
mal transformation. The six coefficients m 	9m ,m 	, m 

xx xy,  xw yw 

and m 	are evaluated through a numerical integration in the 
ww 

E plane. 

Subroutine RELAX: This subroutine computes the (x-y) grid in 
the circular plane through a point by point successive over 
relaxation technique, with a relaxation factor of 1.8. 

The subroutine RELAX: Solves the equation 

a+ 1 	
1 
 ° 	 = 0 	subject to Dirichlet boundary 

ar2 T at r2 ae2 
conditions, 4, may be x or y. In this subroutine, I assure 

1-1 
r - 	n = /-n 	j

max 

Thus r varies from 1 to co as n varies from 0 to 1. 

After applying central differences, one obtains 

+ 1301.44,j  + C41,j4.1  + 	+ 41.,1  = 0 

The user may specify his own variations of r as a function of n. 

In this case, one only needs to replace the A, B,C, and E co-
efficients in the RELAX subroutine by working out the finite 

difference expression. 

Subroutine CONJ: Evaluates the conjugate component of an ana-

L
lytical function (4+ 4), i.e. given (I) on a unit circle tp is 
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Fevaluated, and vice versa. 
Subroutine FFORM: This subroutine performs the fast Fourier 
transform operations to determine the Fourier coefficients of 
a complex function. 

Subroutine FOUCF: Determines the Fourier coefficients of a 
complex function. Though the bulk of the arithmetic work is 
performed in subroutine FFORM, the subroutine FOUCF feeds the 
input to FFORM, and also unscrambles 	the output from FFORM. 

Subroutine SPLIF: Given F(s) where S is a monotonically 
increasing independent variable, SPLIF constructs a cubic 
spline fit, satisfying specified end conditions. 

Subroutine INTPL: Given F(s) as a function of s (and the 
derivatives F (s) , F (s) and F "(s) usually obtained from a 
call to SPLIF), the subroutine INTPL interpolates to find F(si) 
at any user specified sl  value. 

Program Input: 

Card 1: 	Title : 	FORMAT (lx, 16A4, 14) 
Card 2: 	FUN,FNL,EPSIL,FORMAT (5F 10.7) 

FNU: Total no of points on the upper surface including nose 
and tail 

FNL: Total no. of points on the lower surface including nose 
and tail. 

EPSIL: Trailing edge angle divided by if known. Otherwise 
set to zero. 

Card 3: Coordinates at the nose x,y FORMAT (2F 10.7) 

Card 4: Coordinates of points on upper surface 

Card 5: 

Card 6: 	11  

Card FNO + 2 Coordinates at trailing edge 

Card FNO + 3 Coordinates at nose 

Card FNU + 4 " 

Card FNU + FNL + 2 Coordinates at trailing edge 

Card FNU + FNL + 3 IMAX , JMAX, DETA FORMAT (21 

where: Imax, Jmax are grid dimensions set to zero and DETA set 
to zero in r-O plane. 

Output 

The output from the program falls into three categories: 

1- Paper output: The paper output consists of the following: 

(1) The input data is printed out to check and correct 
errors in input data 
(2) The convergence history of the iterative procedure is 
printed out. After convergence, the coefficients of the 
Fourier series in the analytical expression forldz/dalare 
also printed out 
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(3) The apparent mass properties of the airfoil are printed-1  

out. In addition, the coefficients E,n , in the series 

Z = 	+ 

are printed out. 

(4) IMAX, JMAX - the dimensions of the grid that is finally 
obtained in the program. IMAX and JMAX are also printed out. 

2- Plotter Output  

The computational grid is plOtted using calcomp subroutines to 
obtain a visual display of the final grid. 

3- Disk output 

The final grid (x,y) is written on TAPE3 for later use accord-
ing to the following FORMAT: 

WRITE (3, 590) ((X(I,J), J = 1, JMAX), I = 1, IMAX) 

WRITE (3, 590) ((Y(I,J), J=1, JMAX), I = 1, IMAX) 
590 FORMAT (10 F12.8) 
Suggestions and Modifications: 

Some of the suggestions and modifications are already pointed 
out on the program listing. In addition, the following modifi- 
cations are desirable. 

(i) If x and y are calculated a number of times;replace the slow 
RELAX subroutine with some faster poisson slover. 
(ii) The final output is on a (60x30) or (40x30) or (30x30) 
grid. In some cases, the user may desire a grid (48x40) for 
example. In such a case, 

Run the program as it is, on a (60x30) grid 
Post-process the solution on TAPE 3. 

Using SPLIF and INTPL subroutines, the solution on TAPE3 can be 
interpolated to get data on any grid with no determination of 

data. 
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