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DEVELOPMENT OF BODY-FITTED COORDINATE TRANSFORMATION IN FLUID
' MECHANICS REVIEW AND MODIFICATIONS

M. M. E1-REFAEE

ABSTRACT

This paper reviews the development of body-fitted coordinate
systems for a wide variety of two-dimensional flows. The
author classifies the techniques used in the body fitted
transformation as: (1) algebriaic techniques ( simple stret-
ching and shearing), (2) partial differential equation techni-

ques, and (3) conformal mapping techniques.

The conformal mapping is widely used in fluid Mechanics. It
automatically stresses the regions of interest near the lead-
ing and trailing edges of airfoils. 1In addition, conformal
mapping simplifies the kinematics aspect of the fluid mecha-
nics problem. For these reasons, a new modified conformal
mapping technique is initiatedand presented in the second part
of this paper. In appendix, a computer code based on this
technique is listed and some few results are plotted.

1.. INTRODUCTION

fn the first part of the present paper, the research works of
the body-fitted coordinate systems for a wide variety of two-
dimensional flows were reviewed. Specifically, the following
categories are considered: (i) Internal Flow (ii) External
flow around a single-element airfoil (iii) flow over a multi-
element airfoil system. There are, of course, other categories
of flows that are important. Examples are airfoil in a wind
tunnel or near ground, hydrofoil in the vicinity of a free
surface etc. These additional problems can be readily tackled
once the basic principles involved in the first three catego-

ries are well understood.

In each of the above three categories, there is already an exten-
sive body of literature dealing with coordinate system genera-
tion. The author classifies the different techniques into
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three major techniques: (1) Algebraic techniques-simple stret-
ching, shearing etc, (2) Partial differential equation techni-
ques where the coordinates are obtained as part of a solution of

a second or fourth order partial differential equation system ,and
(3) Conformal mapping techniques.

In the present work, the earlier works will be briefly quoted
or described according to the above classification. For each of
the three categories, at least one technique for generating cur-
vilinear coordinates will be presented in sufficient details,

so that the reader may develop his own code from these details.

In the second part of this paper, a modified conformal body-
fitted coordinate system around a single-element airfoil will
be presented. This present approach transform the region
exterior of an airfoil onto the interior of a unit circle.

Fast Fourier transformation combined with the use cubic splin
techniques give fast and accurate body-fitted coordinate trans-
formation.

A computer code based on the present procedure is developed and
presented in the appendix. This code will be useful in solv-
ing various fluid mechanics problems for which no analytical
transformation is available.

2. INTERNAL FLOW PROBLEMS

Internal flow problems are of interest in such different fields
as turbomachinery, bio-fluid mechanics, nuclear engineering
design etc. In turbo-machinery, the flow between the blade
passages i1s three-dimensional. This three dimensional problem
is usually broken up into two two-dimensional problems[ 1] : (i)
Flow in the blade to blade surface (ii) Flow in the hub to
shroud plane. These problems may be studied as internal flow
problems[ 2,3] . In bio-fluid mechanics, there are problems re-
lated to flow of blood through elastic, flexible blood vessels
and through constructed vessels. 1In nuclear engineering, flow
of plasma and other fluids through old-shaped vessels is an
important problem. In aircraft industry the design of nacelles
requires an understanding of internal flows. Thus, it is clear
that an efficient grid generation technique will greatly aid in
the numerical study of these and other important problems.

2.1 Algebraic Techniques

Two-dimensional internal flow regions can be easily treated by
algebraic techniques such as simple polynomial interpolation,
shearing or stretching technique. Two simple techniques, one
due to Eiseman [4,5,5, &7 ] and the other due to McNally[8] will
be chosen for detailed study here. These techniques typically
take just a few seconds of CPU time to generate body-fitted co-

ordinate systems.

2.,1.1 Eiseman's technique:
LWe consider the region ABCD (Figure 1). Divide the curve AB as|
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E;11 as CD into equal number of subregions as shown in the Fig.The
length of the curve in each interval need not be the same. Let
Py be a representative point on AB, and P2 a representative
point on CD.

Assume that a parameter t, 0gtgl varies smoothly from P1 to P2

along the specific line. Along Pl P2, we can assume a polynomi-

al for x and y. For example let: x = at + b, y = bt + d. The
four unknowns a, b,c and d may be evaluated from x and y at P

and P2' At intermediate stations between P1 and onx and y maybe

computed by varying t in a user specified fashion.
The line from P1

mediate points that correspond to t = const are called n 1lines.
For the above case, it is clear that P1 P2 is a straight line,

to P2 is then called €& 1line .lines at inter-

since a first order polynomial is used. We can, however, use
higher order polynomials also. For eXample, let

2
Xx = at + bt + ¢ , y = dt + e 0gtgl

The four values at the four corners give four conditions. The
extra boundary condition needed is specified by setting (dy/dx)
for the n line at any one of the end points to be such that n
line and £ lines are orthogonal at that point.

It is possible to increase the order of the polynomial indefi-
nitely. However, very high order polynomials may have several
inflexion points, and result in a wiggly £ 1line. Eiseman[6],
therefore considers the division of regions into subregions.

In figure(2) the given master region A1 B1 - G1 H1 is divided
into a number of subregions, with user specified lines C1 Dl’

E1 F1 etc. In each of the subregions a polynomial technique, is

applied as shown above. By matching the slopes of the £ 1line
at the subregion boundaries a smooth curvillinear grid is gene-
rated. When Eiseman's technique is applied in the above manner,
Eiseman calls it a multi-surface technique. Despite the simpli-
city of the above technique, there are certain precautions to

be taken in the above technique. There is a possibility that

n lines may intersect unless the aspect ratio of each mesh

(AE /An)is large. In the vicinity of concave corners, T lines
are likely to intersect even when the aspect ratios are fairly
large. Eiseman[6,7)] used his coordinate generation technique,
with a first order polynomial to construct a body-fitted coor-
dinate system around a turbine blade . Turbine blades are highly
curved in practice, and there is a substantial region where the
turbine blade is concave (Figure 3). Eiseman estimates the line
BC beyond which the n 1lines may intersect, by drawing a tangen-
tial (or osculating) circle at each point on the blade, and
joining the centers of the circles. Then he restricts the grid
to a line well above line BC. Since the grid is periodic it is

Lgllowed. The region in the neighbourhood of BC will describe
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r: grid that originates from the next, lower, blade's upper sJ;l
face. Further applications of Eiseman's approach will be des-

cribed in the sections on isolated and multi-element airfoils
sgstems.

2.1.2 McNally's Technique:

A numerical technique for constructing nearly orthogonal coor-
dinates was developed by Kastanis and McNally[10]as a part of
their treatment of two-dimensional transonic potential flow
through turbine cascades. Their procedure attempts to solve
VE .Vn =0 numerically. This procedure is also a very rapid
technique for constructing curvillinear coordinates like
Eiseman's approach. The procedure is vulnerable near concave
Corners[9]. 1In addition, this procedure, at present is strictly
applicable only for two-dimensional problems.

In axial-flow turbo-machinery, the flow is predominantly in the
direction of the machine axis x. At each Xx-station the dis-
tance between the upper boundary and lower boundary (along y
axis) is divided into equal parts (Figure 4). Joining the
partitions at each x station. The streamline-like lines shown
above are obtained. These are the & lines for the transfor-
mation. An iterative method is used to construct the n lines.
This method is a two-iteration predictor corrector technique
(Figure 5).

Predictor: Assume that we desire to draw an n lines from a
point A on g to the adjacent line ¢ +1° From A draw a normal
n

n
to g . Let it intersect £ on B. B is the "predicted" wvalue.
n n+l

Corrector: At B , draw a tangent togn+1 . Draw a normal to
this tangent from A. Let this normal intersect Eh+1 ©0 C .
Average positions A and B to get a new position D on gn+1. D

is the corrected value, and AD is the desired n line. By
marching from the lower boundary towards the upper boundary
step by step, the entire region may be covered by a rearly
orthogonal g-n curvillinear grid. The above predictor- cor-
rector technique requires less than 10 operations per point,
and requires very little CPU time. It is clear that McNally's
technique requires that the spacing be very small so that the
trunction errors do not accumulate as we march from one level
to the next. It may also be necessary to keep the aspect
ratio (Ag/An) large enough to avoid intersection of n lines
particularly in concave regions.

2.2 Partial Differential Equation Techniques

Partial differential equation approach includes the solution of
second order (or fourth order) differential equations for the
variables x and y in terms of o and RB. This technique has been
applied widely by Thompson and his co-workers[10, 11 & 12] for

a variety of configurations. Ghia et al[l3, l4Japplied a
similar procedure to construct a set of body-fitted co-ordina-
l;es for a turbine cascade flow. A detailed discussion of this__]
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method, its merits and drawbacks are postponed until the next
section, where we deal with coordinate systems for isolated
airfoils.

23 Conformal Mapping Techniques

Body fitted coordinate systems have been constructed by several
workers using conformal mapping techniques to transform the
internal flow region into a rectangular polygon. Thom and
Apelt[15]used ¢ lines as n- § coordinates. Barfield[16]used
the complex Green's function to map an irregular flow region
into the unit circle, and then to the edges of a rectangular
polygon through Schwarz christoffel transformation. The inte-
rior points were determined by point successive over-relaxation
of the inverse laplace equations. In the work of Thom and
Apelt, the¢ and § lines were determined as follows. Laplace
equation was first solved iteratively to determine the value of
one coordinate x both in the interior and along the boundaries
of the transformed region. The conjugate coordinate variable

vy was then constructed by integration using Cauchy-Riemann
condition. With square mesh in the transformed plane, they
found that for some geomerties, it was not always possible to
obtain a mesh properly fitted to the physical region with

their approach. Hung and Brown[l7]obtained an exact fit bet-
ween the physical region and the transformed region using a
dual iterative procedure which was an extension of Thom and
Apellt's basic approach. 1In order to obtain an understanding
of how conformal mapping techniques may be used to map inter-
val flow regions onto rectangles, we briefly describe the pro-
cedure due to Hung and Brown here. Region ABCD is the flow

region that is mapped onto A; B, C, D, in the conformalf - n

plane (Figure 6). For convenience, at downstream boundary, the
£ grid is assumed parallel to the x axis. The iterative proce-
dure for conformal mapping involves the following steps: (i) At
AD, x = Xy . At BC, x = X On AB assume an x distribution.

Laplace equation is applied in the region A1 B1 C1 D1 including
nodes on D1 C1 where one~sided differences are used to approxi-
mate X . The values of x on AB are updated using the values

at the adjoining nodes and symmetry conditions.Laplace equation
is solved again. This procedure is repeated a number of times
till x values converge every wherej;(ii) values of y on the wall
are obtained from the geometry of the wall. New inlet and out-
let values of y along A1 D1 and B1 C1 are determined from the

fact that x and y are conjugate functions in the regions consi-
dered i.e,

and Ve T X, and xg = Ty
j+l
- 9X
S TSE SV A

Hung and Brown used fourth-order accurate numerical integration
Eormulas to evaluate y along A1 D1 and B1 Cl’ Because of accu:J
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mulate numerical errors, the integrated values of y for the wall
at the inlet and outlet may not coincide with those obtained from
the wall geometry. In such a case the difference is distribu-
ted proportionately over the inlet and outlet sections with
these adjusted values of y on the boundary, at the interior
nodes, y is determined by solving

+ =
YEE_ ynn 0 in the region Al B1 C1 D1
(111) the x field is now determined from the formula
14,3 o
- T 9y
Xi41,9 T 41,3 / ’ G) 4
s

for all nodes in the flow field including those on the boundary.

The x field thus obtained will not be compatible with the x

field obtained from step(ij. In fact X IMAX 3 may be less than x
b

for all lgjgJMAX ar)ﬁMAx,jmay exceed X, for all 1gJEJIMAX. 1In

2

such a case adjust IMAX, so that IMAXnew = IMAX + 15(iv) With

the newly defined IMAX, and the boundary values for x, stequ
through ([ 1) are repeated until the distribution of y on either
end has converged 3% (v) When the x,y fields have converged,
the main iteration loop (i-iv) is exited. At I = IMAX and
l¢J¢Jmax, we have in general:

*IMAX-1,3 € *2 € *rMax+1,y 2nd

EMAX = (IMAX-1)AE at IMAX. We determine an average
Crmax S° th;t, on an average, at g= Ormax?X = %5 for all j.

new old Aa [XIMAX—I,j-XZ]
ek Let “Imax,j -~ %Imax-1,j T -X
il > [ *IMAX-1,3 *IMAX, ;]
JMAX new
Then a = S - z o
IMAX x JMAX 1 IMAX,, i

Also _

BONew = CIMAX/(IMAX-1)

with Aanew and A@, and with the boundary condition x= Xy at

+ =1 and x = x, at I = IMAX, the Laplace equation for x is

solved to get a final solution for x.

It ,is clear that the above procedure of Hung and Brown although
very accurate, may prove to be time consuming since it invol-
ves repeated solution of Laplace equation in a rectangular

grid. A - new approach for conformal coordinates generation
discussed in the last section of this report may be consider-
ably faster than the procedure outlined above, particularly

when no starting (guess) solution is available for x and y.
Conformal mapping techniques have been used by other workers

Eo study internal flows. 1Ives [18] develops a solution proce- 1
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r;hre for studying transonic cascade flow. Jameson([19] and L
Chen [20 ]studied a conformal mapping technique for the transonic
macelle problem (axi-symmetric). Caughey [21 ] extended the

conformal mapping to include a central body as well. 1In these
cases a simple shearing transformation has applied together
with a series of conformal transformations. The shearing

transformation made the transformed coordinates slightly non-
orthogonal, but greatly simplified the subsequent analysis,

3. FLOW AROUND SINGLE-ELEMENT AIRFOILS

As in the case of internal flow problems, the various techni-
ques for generation of body-fitted coordinate system around
isolated airfoils may be broadly classified as (1) Algebraic
techniques, (41i) Elleptic differential equation techniques and
(iii) conformal mapping techniques.

31 Algebraic Techniques:

‘As the name implies, this approach makes use of simple, algeb-
raic stretching and shearing relationships to construct the
curvillinear coordinate grid. The CPU time required to cons-
truct a grid using algebraic relationships 1is very negligible
therefore, in problems involving repeated computation of the
curvillinear network e.g. free surface flowl[22laileron Buzz [23]
etc. Algebraic techniques are the most practical ones. Some
of the common methods that utilize algebraic relationships are
described here.

(i) Shearing transformation
The simple shearing transformation is given by;

E=x , n =y -y (x) where y_1is the equation that des-
s s
cribes the surface.

Shearing transformations are not usually advised for thick air-
foils and blunt nosed airfoils because of the abrupt change in
the slope of the £ lines. For thin airfoils shearing airfoil
provides a rapid method for generation of body fitted grid.
Shearing transformations have been used also for compression
corner problems by Carter[ 24] , Hung and McCormark[ 25] ,
Hankey " and others,

(i1) Eiseman's multi-surface technique:

Eiseman's multi-surface technique was introduced in the previ-
ous section on internal flows. The grid system for the shock-
blunt body problem may be thought of as an outcome of Eiseman's
scheme when the interpolation functions are chosen to be linear.
For the single-element airfoil system, two types of grids-the 0
grid and the C grid-are possible (Figure 7). In his work on
aileron buzz, Steger[23] discusses the relative merits of the

two grids. For viscous flow problems that use vorticity as a
Tfpendent variable, the 0 type of grid wastes a lot of nodes i?_]
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the non-vortical region while the C type of grid efficiently ]
packs the nodes in the vortical region. Of course, Iin order to
specify the far field boundary condition reasonably accurately,
the boundary of C grid must still be far away from the body un-
less some explicit relationships,such as the integral relation-
ship used by Wu[ 26] and his co-workers, is used to specify the
far field boundary condition accurately. If such an integral
relationship is used, the outer boundary of the C type of
grid may be placed just outside the edge of the vortical region.

Eiseman's approach may be used on both kind of grids bet-

ween a point P1 and P2 s both x and y are taken as polynomials

in t, where t various smoothly from 0 to 1. By imposing edge
condition at P, and P,, and slope conditions if necessary, the
shape of the line P1 P, is uniquely defined. The £ lines are

obtained by joining all the points that have a constant t. If
necessary, user may specify additional intermediate surfaces.

As in the two-dimensional internal flow case, Eiseman's app-
roach can cause difficulties if the mesh aspect ratio is not
large enough or if the body 1is concave in some regions.

3.2 Elliptic Differential Equation Techniques

The idea of generating curvillinear coordinate systems as a
results of solving elliptic partial differential equations was
first proposed by Winslow [27], Chul 28] and other workers. 1In
recent years, this idea has been developed into a powerful
technique for body-fitted coordinates generation by Thompson,
[10,12] and others[29] . This technique is powerful because it
can be applied with minor modifications to internal flows, sin-
gle and multiple element airfoil systems, and even to three
dimensional flows[23]. This technique is discussed here in some
detail. The merits as well as the drawbacks of this technique

are presented.

In principle, the numerical transformation procedure consists
of determining the boundary-oriented coordinates € and n as
the solution of the following equations

= s for 2-D case

Exx ¥ Epo Q ¢ =y fo
=16. for axi-symmetric cases

Nyx T Moo =R

The functions Q and R are called forcing function and they are

introduced in order to concentrate or spread out coordinate

lines at desired locations. In the £-n plane it may be shown

that the above equations take on the following form:

2 =
a¢nn+ 2b¢£n s e¢££ + J (Q¢n+ R¢€ ) 0
. 2
=0
a xrm + 2bxgn + CXSE + J (an + RxE )

2 2 B
Ehere a = ¢£ -+ xE : b = - (¢E¢ﬂ + xE xn ) ]
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r_ c = . + x2 and J = X X o
¢ n ¢n I ¢£ n
— The above equations are non-linear, but elliptic. Therefore it

should be possible to apply relaxation procedures, such as those
used in subsonic potential flow problems, to solve these equa-
tions. The forcing functions R and Q are chosen to be of the
following form:

. MMAX E€ . { ]
= - a ———— exp|[ - ¢ -
mil m ,Eﬁ EI mlE Eml
NMAX £E-E
3 n 2 l]
-2 b =P exp [-d VE-£)2+ (-n)
= n Ig-gnl n E- &, n= Ny
MMAX n-n
m
Q = - 71 a ——— exp [-¢C n-n ]
m=1 ml””nm' n | al
NMAX Nn-n '
2 2
- b —L_ exp [-d \x- )" + (n- )< ]
nil n In_nni n E En n r}Il
a s bn' Cn and dn are arbitrary coefficients. P and Q usually

increase in magnitude with the concentration of the grid. For
high Reynolds number flows, P and Q will be very high.

The second order and fourth order elliptic equations are the
popular candidates because they obey what is known as a maximum
or minimum principle. If Laplace equation for § , for example,
is solved subject to some specified boundary conditions, the
‘maximum principle ensures that £ will attain its maximum value
only on the boundaries of the region and not in the interior.

Thus maximum principle prevents cross-over &ike o} ordinage
lines everywhere, even when concave regions an 51m1 ar critical

reglons are present.

Both 0 type of grid and C type of grid may be generated by the
partial differential equation technique. At the cuts,periodic
conditions may be employed (Figure 8). The advantages of the
partial differential equation approach are:

(1) 1Its simple logic. The theory behind this approch is not
‘overly complex. It iseasy to code the above approach, and apply
the procedure to a variety of internal and external flow pro-
blems.

(2) Its provision for grid control. If R and Q are not exces-
sive'ly large, they provide the desired control over grid spacing
in critical regions.

(3) Availability of a wide body of literature and computer
codes that apply this approach to a variety of problems

The disadvantages are:

(1) The resulting grid is non- orthogonal and in some cases
hdghlywarped ]
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(2) Very slow convergence. Particularly at high Reynolds L
numbers. As the magnitudes of Q and R increase, the partial
differential equations become very stiff and converge very
slowly. 1In some cases the final solution contains a number of
wiggles. It may be shown that these wiggly solutions are the
correct solutions for the difference equations.

(3) Boundary conditions: If P and Q are very large, the
Dirichlet boundary conditions on the solid must, in a sense be
consistent with the forcing function. Some authors try to get
around the specification of consistent Dirichlet conditions,

by specifying Neumanon type af boundary conditions. But in
some cases the Neumann condition, together with large P and Q,
violates the maximum principle at least numerically and permits
cross over of £ 1lines or n 1lines.

s 3 Conformal Mapping Techniques

Conformal mapping of an arbitrary airfoil onto a unit circle

or to the lower part of half plane has been a topic of great
-interest to research workers for several years. Historically,
Theoderson[30] studied the numerical transformation of single
and multi-element airfoil. The well-known Karman-Trefftz trans-
formation maps a biconvex airfoil onto a unit circle[31). In
1966, Skulsky[32] presented a numerical mapping procedure for
arbitrary airplane cross sections and applied this technique to
study the cross flow past a slender body.

In recent years, transonic flow calculations have given a new
momentum to be search for a rapid, accurate conformal mapping
procedure. The viscous displacement effects are important in
transonic flows. Many transonic potential flow codes [33,34]
include viscous displacement effects to improve the reliabi-
lity of the numerical solution. The displacement thickness is
calculated every few iterations using a simple integral proce-
dure such as the Nash-McDonald procedure,[ 35 Jand a new body
shape 1s calculated. Thus every few iterations, it is neces-
sary to conformally map a new body onto a circle. This calls
for highly efficient, rapid numerical techniques.

Jameson [36 ] used a sheared parabolic coordinate system to
sutdy flow over airfoils and wings. His transformation is a
very rapid mapping procedure. While Jameson's procedure is
rapid and well-suited for three dimensional flow problems, for
two-dimensional problems, a slower but accurate numerical
conformal mapping onto a unit circle is preferred. Both Ives
[37], Bauer et al[38]and Eriksson[39]have developed procedures
for mapping airfoils onto unit circles. The code generated by
Bauer et al has the additional feature of treating airfoils
open at the trailing edge. .

4. MULTI-ELEMENT AIRFOIL COORDINATE SYSTEM

4.1 Algebraic Techniques

Simple shearing techniques and algebraic techniques tend to
Lbecome increasingly complex for multi-element coordinate sys-__|
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tems. Eiseman applied his multi-surface method to generate a
curvillinear coordinate system. The blending of coordinates
around the two airfoils was accomplished through an interme-
diate cartesian coordinate system. It is clear that such
algebraic techniques can be used to generate curvilinear coor-
dinates only through a considerably amount of trial and error.
Thus the low CPU requirements of algebraic techniques are more
than offset by the increased amount of man-hours spent in
algebraic approaches.

4,2 Partial Differential Equations Approach

The code TOMCAT[10,11] developed by Thompson is capable of
analysing a number of airfoils in the flow field. Through the
introduction of cuts in the computational field, and the speci-
fication of appropriate periodic or coordinate continuity con-
ditions, the grid generation equations may be solved on a rec-
tangular transform. For a typical two-body airfoil problems
the boundaries in the physical and transformed planes are shown
in Figure (9). 1In solid boundaries BC, DDl,and CCl’ Derichlet

boundary conditions are usually specified. At the branch cut
DC, AB periodic conditions are imposed.

4.3 Conformal Mapping Techniques

Theoderson[30] was one of the first workers to study conformal
representation of multiple element airfoils. Ives work on con-
formal mapping of single element airfoils[37]also contains ex-
tensions to two-and multi-element airfoil systems. In Ives
approach for two-element airfoils the point at infinity is
mapped into a singular point inside the computational region.
Caution may be required when differencing the flow variables

in the neighbourhood of this singular point. Ives also has
developed a conformal mapping procedure for a cascade of air-

foils.

5. MODIFIED BODY-FITTED COORDINATE SYSTEM
(FOR A SINGLE ELEMENT AIRFOIL)

Let us consider the transformation of the region exterior of
an airfoil onto the interior of a unit circle. Let z = x+iy

sud om = e—le be the corresponding points exterior to the
profile’and the unit circle. Let H = ldz/do| be the desired
transformation factor. If € is the includea angle at the
trailing edge, using a series of N terms one can set,
1- &

dz (1 1) m [ g °n

2& - - = exp e

dog o n=0 Sn ]
This method of representing the transformation has the advan-
tage that it allows a profile with an open tail to be mapped
to a closed circle. Expanding the above series, it may be
shown that the coefficient of the term l/o is

¢ =le; -1+ %-Texp (c,) 1
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Then, according to the Cagely integral theorem; integration o
dz/do around any closed curve exterior to the unit circle in
the ¢ plane results in a fixed gap

Z2 - Z1 = 2r i ¢

This gap can be used to set a desired wake gap.

The mapping coefficients may be calculated using a simple ite-
rative procedure (Figure 10). Let B and s be the tangent
angle and the arc length of the profile. Let

Cn =a - ibn
B is available as a function of s .,

Taking the Logarithm of the series for dz/dg , and separating

it into real and imaginary parts, for r = lyone obtains,
ds e 6 !
log EE = +(1- E)log (2 sin 7) - nio at1 cosnf+ bn sinne (A)
m €y B-m N =
B+ 06+ 0l -(1 - F) Sy = nio a, sinfn bn cosnb (B)

Given an estimate for sS(p), the onc length of the airfoil pro-
file as a function of the angle ¢ in the circleplane, we can
calculate the coefficients a, and bn from equation B. Since a_

and b_ are known, the conjugate Fourier series in equation A
may be constructed, and log (ds/df) evaluated. The resulting
value of(ds/dg) may be integrated to give a new estimate ofs(6).

The iterations converge quite rapidly. It is convenient to use
a series with K terms to represent the mapping function at 2K
equally spaced mesh points around the circle. The use of fast
Fourier transform allows the number of operations in the eva-
luation of Fourier series to be 0 (K log K), whereas conventio-
nal techniques would require 0(K2) operations. The use of
cubic spline techniques to curve fit and interpolate s(8),8 (s)
etc. is also desirable.

A computer code based on the above procedure is included at the
end of the appendix. A number of flow calculations performed
by the workers at Georgia Tech. have demonstrated the advanta-
ges of a conformal mapping systems for incompressible and com-
pressible calculations[26]. It is hoped that this code will aid
the workers in treating problems for which no analytical trans-

formation is available.

APPENDIX

In the following pages, a computer program for numerically per-

forming the conformal transformation of any airfoil (both open

and closed trailing edge) onto a circle is described. The
Ltheory behind the conformal transformation was already described
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-

in the section 5.-

-

The present program contains many subroutines such as a succes-
sive over-relaxation subroutine for computing x and y coordina-
tes in the interior of the computational domain, several cal-
comp plotter imstructions to display then- € lines in the phy-
sical domain, and a subroutine for numerically computing the
apparent mass properties of the airfoil. The following sub-
routines are used in the above computer program.

MAIN: The main program controls the flow of Iinformation bet-
ween subroutines. The data is also read in the main program.
The final grid is also written on TAPE3, through FORTRAN state-
ments in the main program. The main program also executes the
iterative procedure, and plots the final output.

Subroutine MAP: The MAP subroutine computes H = Idz/dbl on a
120x30 grid analytically, by evaluating the series for(dz/dg) .
The MAP subroutine also calls the subroutine APMASS.

In viscous flow calculations, one may compute H either through
MAP subroutine or numerically from the final (x-y) grid. Since
the final (x-y) grid is tailored to user's needs, and because
numerical evaluation of H from x and y involves very few ari-
thmetic operations, the numerical evaluation of H is recommen-

ded.

Subroutine APMASS: Subroutine APMASS computes the apparent
mass properties of the airfoil, following the numerical confor-

mal transformation. The six coefficients m , m__, m , m
XX Xy Xw yw

and m are evaluated through a numerical integration in the

£ plane.

Subroutine RELAX: This subroutine computes the (x-y) grid in
The circular plane through a point by point successive over
relaxation technique, with a relaxation factor of 1.8.

The subroutine RELAX: Solves the equation

=2 2

3°¢ , 136, 1 3¢ _

. arz+ > 3%+ 7 302 0 subject to Dirichlet boundary
conditions, ¢ may be x or y. In this subroutine, I assure

1 j-1
r=f5 N°
max

Thus r varies from 1 to « as n varies from 0 to 1.

After applying central differences, one obtains

Ady 4y + Boyyy g * COp g1 F POio, g +Edpy 4 =0

The user may specify his own variations of r as a function of n.
In this case, one only needs to replace the A, B,C, and E co-
efficients in the RELAX subroutine by working out the finite

difference expression.

Subroutine CONJ: Evaluates the conjugate component of an ana-
Llytical function (¢+ 1y), i.e. given ¢ on a unit circle ¢ is——l
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evaluated,

and vice versa.

Subroutine FFORM:

transform operations to determine the Fourier coefficients of
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This subroutine performs the fast Fourier

a complex function.

Subroutine FOUCF:

complex function.

performed in subroutine FFORM,
input to FFORM,

Subroutine SPLIF:

increasing independent variahle,

spline fit,
Subroutine INTPL:

derivatives F (s)
call to SPLIF), the subroutine INTPL interpolates to find F(s )
at any user specified Sy value.

Determines the Fourier coefficients of a
Though the bulk of the arithmetic work 1is

and also unscrambles .

the subroutine FOUCF feeds the
the output from FFORM.

Given F(s) where s is a monotonically

SPLIF constructs a cubic

satisfying specified end conditions.

Program Input:

Card 1:
Card 2:
FNU:

and tail
FNL:

and tail.
EPSIL:

Total no. of points on the lower surface including nose

Title :

set to zero.
Coordinates at the nose x,y FORMAT (2F 10.7)

Card
Card
Card
Card
Card
Card
Card
Card
Card

where:

s
4:
5:
6:
FNO
FNO
FNU
FNU
FNU

Given F(s) as a function of s (and the

» F (s) and F " (s)

usually obtained from a

FORMAT (1lx, 16A4, 14)
FUN, FNL, EPSIL,FORMAT (5F 10.7)

Total no of points on the upper surface including nose

Trailing edge angle divided by 1if known. Otherwise

Coordinates of points on upper surface

+ + + +

+

Imax,

"

"

2 Coordinates at trailing edge

3 Coordinates at nose

4 "

FNL + 2 Coordinates at trailing edge
IMAX , JMAX, DETA TFORMAT (21

FNL + 3

Jmax are grid dimensions set to zero

to zero in r-6 plane.

Output

The output from the program falls into three categories:

1-

Paper output:

(1)
(2)

—

and DETA set

The paper output consists of the following:

The input data is printed out to check and correct

errors in input data
The convergence history of the iterative procedure 1is

printed out.

Fourier series in the analytical expression for|dz/do|are

After convergence,

also printed out

the coefficients of the

-
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(3) The apparent mass properties of the airfoil are printed_j
out. In addition, the coefficients £,n , in the series

4 = E+ni + ...

are printed out.

(43 “IMAX, JMAX - the dimensions of the grid that is finally
obtained in the program. IMAX and JMAX are also printed out.

2- Plotter Cutput

The computaﬁional grid is plotted using calcomp subroutines to
obtain a visual display of the final grid.

3- Disk output

The final grid (x,y) is written on TAPE3 for later use accord-
ing to the following FORMAT:

WRITE (3, 590) ((x(1,J), J =1, JMAX), I =1, IMAX)

WRITE (3, 590) ((Y(I,J), J=1, JMAX), I =1, IMAX)

590 FORMAT (10 F12.8)
Suggestions and Modifications:

Some of the suggestions and modifications are already pointed
out on the program listing. In addition, the following modifi-

cations are desirable.

(1) If x and y are calculated a number of times;replace the slow
RELAX subroutine with some faster poisson slover.

(ii) The final output is on a (60x30) or (40x30) or (30x30)
grid. In some cases, the user may desire a grid (48x40) for
example. In such a case, -

(a) Run the program as it is, on a (60x30) grid
(b ) Post-process the solution on TAPE 3.

Using SPLIF and INTPL subroutines, the solution on TAPE3 can be
interpolated to get data on any grid with no determination of

data.
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