
5

I
AV-5 111011

".,r.77j-71LN

Gss

Military technical College

CAIRO - EGYPT

r 	 -3

AN EXPERT SYSTEM TO DISCOVER CAUSE OF FAILURE
FOR IBM MICROCOMPUTER PERIPHERALS INTERFACE

**

Afaf M. Albetar and Dr. Nabil A. Ismail , Senior Member IEEE

ABSTRACT

A knowledge-based system to discover cause of failure for the IBM
microcomputer peripherals interface has been built using a backward-chaining
inferencing expert system framework. A detailed technical reference manuals
are currently used for peripherals interfacing maintenace and failure diag-
nosis. Task complexity limits this method. A set of real-time self-test rou-
tines, database, explanation facility and interactive menus have been built
to compensate for the inadequate man-machine interfaces to this system. The
resulting diagnosis system, we call it MUES (Menoufia University Expert
System) incorporates: (i) databases to store data, control and status regis-
ters contents, I/O ports configuration modes and communication format, (ii)
interactive menus, and (iii) an intelligent rule-based system which takes
its evidence in real-time via a set of assembly modules and provides advice
on the cause of failure to the operator. MUES written in Turbo Prolog and
running on an IBM XT microcomputer, uses if-then production rules to encode
the knowledge and is based on the backward-chaining inference engine that
allows rules to look very much like English. The interaction between the
operator and the knowledge-based diagnosis system has been reduced to a
small number of questions requiring yes/no answers. The explanation facility
requires how/why questions. The remaining input to the diagnosis system is
provided by status.evidence (logic values low/high) as a result of executing
a set of self test routines written in assembly language.

**

Graduate student, 	Associate Professor, Dept. of Computer Engineering &
Science, Faculty of Electronic Engineering, Menoufia University, Menouf
32953, Egypt. L_ 	 _J

Third ASAT Conference:

4-6 April 1909 , CA180 AV-5 11021

PROBLEM DEFINITION

Discovering the cause of failure for a computer-peripheral interface is an
evolutionary process consisting of a series of trial and error operations. A
detailed technical reference manuals are currently the only source available
for solving the problem. Task complexity limits this method. In this paper
we will discuss a case study knowledge-based system program suitable for
discovering the cause of failure for the IBM PC/XT/AT microcomputer-periphe-
rals interfaces.

A knowledge-based system [1],[2] can be de-:ribed as software program that
uses a series of emperical values about a topic coupled with an inference
procedure, to draw conclusions from an input set of facts. Expert systems
(ES) are specific type of intelligent knowledge-based systems concerned with
problem solving applied to a particular domain, and exhibiting a high perfo-
rmance in decision making.

Real world expertise must be structured in a useful form, stored, and effi-
ciently accessed. Many expert systems [3],[4] employ the production rule
representation scheme [5] because it seems natural and easy to express in
IF-THEN statements rules of thumb, hypotheses based on some premises, causa-
lity, and so forth. Rule based expert systems require at least a Rule
Database (RDB) of production (condition-action) rules held in production
memory, as well as a database of currently true assertions, typically refer-
red to as the Working Memory (WM). In addition, some expert systems utilize
a large Fact Database describing the problem domain at hand, this database
may be separate or may be combined with either the Rule Database or Working
Memory, depending upon system architecture, e.g. the Rl/XCON system [4] and
ACE system [6].

The production rules found in expert systems describe consequences of cer-
tain information, and typically in the form that if certain conditions are
true then take certain actions:

P (C C . . . C --> A A . . . A)
i 1 2 	n 	1 2

Conditions are forms that are instantiated by memory elements. Actions add
elements to working memory or modify existing elements or provides advice to
the operator. The working memory can be accessed by all the rules, no part
of it is local to any of them in particular. Rules do not call other rules;
communication between rules occures only through the working memory.

There are two forms of reasoning with production rules: forward-chaining and
backward-chaining [5]. Forward-chaining (also known as data-driven or event-
driven) works from available evidence toward conclusions. In other words, it
looks at the conditions of a rule and if they are confirmed by the evidance
at hand, the actions of the rule are performed. The system therefore is
continually scanning its rules and attempting to match their conditions with
current facts in order to make new inferences. It stops when it finds the
desired solutions or when there are no applicable rules.

Backward-chaining (goal-driven or expectation-driven), on the other hand,
starts with a hypothesized conclusion and works backward towards the suppor-
ting evidence. According to this strategy, the system looks at the action
part of the rules and finds one that would conclude the current goal. It

i then takes the conditions of the applicable rule and seeks other rules whose,
L,actions would satisfy these conditions. The process repeats itself until a11-1

Third ASAT Conference

AV-5 111031 	
4-6 April 1989 , CAIRO

r 	 -1
goals match the known facts or until all applicable rules are exhausted. In
general, a backward-chaining rule has the form

• ••••■•••

conclusion:-premises.

The system discussed in this paper has been using a backward chaining.

SYSTEM DEFINING CHARACTERISTICS

The system under investigation, we call it MUES (Menoufia University Expert
System) is a rule-based diagnosis system that has much in common with other
domain-specific systems that have been published in the literatures over the
past several years [3],[4]. MUES's domain of expertise is discovering the
cause of failure for the IBM PC/XT/AT microcomputer/peripherals interfaces.
IBM microcomputers are the most powerful micros that have been used in the
University for teaching and experimental labs. Its architecture have been
fairly understood by a wide spectrum of specialist staff and students at the
University. The IBM microcomputer uses an appropriate high speed bus inter-
faces that can support a wide variety of peripheral devices [7], [8]. A
typical system contains not very little number of components include perip-
heral devices, drivers for the devices and cables. There are a large number
of rules that dominate the way in which these components work, and hence the
causes of failure may be discovered. The understanding of the IBM microcom-
puter/peripheral interface will lead to diagnostic of possible failure, this
failure may be partially or full distructive to interface. Both cases must
be considered, since a partialy fault will make the system respond to some
activation signals (messages). Fully fault will prevent the system to res-
pond to any signal, this will prevent the system from using the aid of these
signals. Completeing the hardware diagnosing stage leads to the stage of
knowledge abstraction in which we will try to represent the human expert
knowledge in a knowledge model that is acceptable by the computer.

MUES is implemented in Turbo Prolog, which is developed by Borland Interna-
tional [9], linked with assembly language routines. Turbo Prolog supports
the Assembler calling convention by using its associated extension in the
global declarations. It has an efficient deductive reasoning capabilities
and uses a backtracking mechanism [10] which, once one solution has been
found, causes Turbo Prolog to reevaluate any assumptions made to see if some
new variable values will provide new solutions.

Production memory contains all of the MUES's permanent knowledge about how
to discover cause of failure for computer peripheral interface and provides
advice on the cause of failure to the operator. MUES currently has 530 rules
that enable it to perform the task. These rules cover the parallel printer,
RS232, keyboard, VDU display, and disk drives interfaces. MUES's database,
which may be filled by the user through user/system dialog or, as in our
case, by using a simple test routines which will provide us with a periphe-
ral status. These routines have been written in assembly code, they mainly

: • acquire the status of a peripheral or send an activation signal or message

to the peripheral.

SUPPORT ENVIRONMENT

Explanation Facilities

LAn expert system that is capable of explaining its own behaviour and reaso=j

Third ASAI Conference

4-6 April 1989 , CAIRO

AV-5 1104]

r 	 1

ning processes generally improves users'acceptance. We have adopted two
basic types of explanation; why and how. The first is characterized by the
question:

"why are you asking me such question?".
and the second by the question:

"how did you come up with this conclusion?".

The why-type question can be ambiguous at times for it may actually demand a
sequence of justifications leading to the question, in which case there is
no real distinction between why and how.

End-user/system interfaces

The end-user/system interfaces include menu selection, simple question-
answering, short English-phrase input, and user/operating-system communica-
tion. Menu selection is a very popular end-user/system interface in which a
user sees a menu and is asked to make a selection from the displayed op-
tions. A simple question-answering interface is very handy when all we need
from the user is a simple yes-or-no response, or a keyword limited to a
given range of numbers or characters.

System/Outside-system interface

Interactions between an expert system and the outside world are absolutely
necessary for many real-world applications. For example, it is important to
be able to re-use well-tested interface routines written in Assembly lan-
guage, and to have the control accessing an external databases. In light of
this the system enables a knowledge engineer to invoke an external procedure
within a Turbo Prolog rule. Argument passing (status flags, register con-
tents and control ports setup) is done via input and output files allocated
exclusively for this purpose.

Debug facilities

Turbo Prolog provides a very powerful debug package to spy procedures, trace
execution, and step through programs. The debug facility describes the
execution of a Turbo Prolog programs in terms of CALL, EXIT, REDO and FAIL
events [9].

EXAMPLE RULES

Parallel Printer Interfacing Example Rules

Figures (1)-(4) depict the connector, control output signals, status input
signals, and the parallel printer interface timing diagram respectively.
This information has been transferred into IF-THEN production rules for our
diagnosis expert system. The following shows examples of these rules written
in Turbo Prolog.

In this rule the argument of the subgoal 'is' represents the status evidence
(logic values Low/High) which correspond to the contents of the status and

1.-.control ports in the database.

	Page 1
	Page 2
	Page 3
	Page 4

