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Two Adaptive Algorithms for Target Detection in Cluttered Images
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ABSTRACT

Dawction of trgets in mahvaigmlbclmerplmmbem(m)bapmwmdmmmtIn
this paper we present two adaptive elgorithms for the detection of small targets (of the order of one pixel) in
images using reference correlsted frames (the reference frames can be obteined either from frequency bands of
the same scens or from different sequential observation in time) in a low signal © cluter plus noise ratio
(SCNR) eaviromment (of the order of -14.5 dB). They both have the ability © treck the nonstationary image
signals (Wrgets and clutler plus noise) and suppress the clutier plus noise background. Both detectors are based
on time verying avtoregressive models 0 model image background and on comelation canceling concept. The
first one uses an order recursive least squares (ORLS) latiice filwr, whils the sscond one is based on a
povmalized version of the two dimensional least mean squaze (TDLMS) algorithm. The infinencs of the osder of
the dewctors on teir detsction performance is studied. The perfoxrmence of the two elgorituns are evaluated
using an optical satellits image, a3 a cluter background, with computr generaied wrget and noise added © it
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I. INTRODUCTION

Detection of unfriendly trgews is an integral part of the air, ground and sea defense. The area under surveillance
is monitored by a set of receivers, active and/or passive. The receivers (sensors) are intercepting the energy
which i3 reflected from, andfor rediawd by tergew of interest. The received signal, in addition © the desired
information, uwsually contains heavy cluter end background noise. In such environment, target detection
procedures should be able 10 isolate the moving target in signal-to-cluter-plus-noise ratios (SCNR) in the order
of -10 10 -20 dB. Clutter sources themselves are not entirely spatially stationary, even during the relatively short
time spens. Weather cluter is slowly moving due o wind ectivities, and clear air turbulence, among othar
causes. Even ground clutier is verying with the local movement of vegetation. Sea cluter exhibits verious
" statistical charecteristics in different sea states.

Gegliari et. &l [1] have developed an slgorithm for the detecton of optical targets by using correlated reference
scene. However, this algorithm demands & substantal computation time, most of which is used for

the coveriance matix and for celculsting wmstix inverses. Margalit et al (2] have developed a dewction
algorithm which is based on the assumption that the image inensity is spatially Caussian process and that the
covariance matix of opticel snd infrared (IR) images, after subtaction of comect variable meen, is
approximately & constant times an identity matrix. Therefore, the resulting Gaussian image processes are nearly
white. This elgorithm wes shown © save most of the computation time required by the optimum

developed in [1]. In edditon, Chen and Reed (3] have developed an alemate algorithm for the detection of
optical target by using a reference scene. The above algorithms are based on the approximation of the image data
by a white Gaussian process. For real images, this assumption is not necessarily valid in general case.

To remedy the mentoned probleras, we suggest two adaptive elgoritms for clutier plus noise suppression and
opticelfinfrared targets detectdon. The first one is besed on the order recursive least-squares (ORLS) lattice
algorithm [4,5], while the second processor vses a normalized version of the two dimensional least mean square
algorithm (TDLMS) [5,6].

PROBLEM FORMULATION

Let us sssume that we have two M by N images of a specific scens that are taken at different times. Thege
es can be forwand looking infrexed (FLIR), radar echo, remote sensing. The first (primary) tmage, d(m ,
n ), differs from the second (yeference) one, x(m ,n), in that it has a target embedded in a background cluter.
Them (=0,1,.. M-1)andn (=0,1,... N-i)am the spatial coordinaws of the pixel location with respect ©
some prespecified coordinate system, say, with the origin in the upper left comer- The background in the
reference image may be shifted or blwrred ard may be of different brightaess compared 10 the background in the
primary one. The backgrounds, however, mumain spatislly correlated, while independent of target component.

Our objective is 10 design adeptive target dswcior that should have the ability 0 tack the nonsttionary image
signals, suppress the background and efficiently dewct the changes (targets) between two tmages in & sequence
ina Jow signal ©o clutier plus noise xatio (of the order of -14.5 dB). Target image edges should be preserved so
that relatively smell size wrget can be discemed. In the applications where images appear in sequance, both
adaptve elgorithms can be applied 10 & pair consisting of & current frame and a reference one.

General block diagram of the suggested target detectors is shown in Fig 1. Signals and processor paramstars are
given as 1-D functions of spatial coondinats a3 they will be used in the conwxt of the ORLS processor. For the
ofigin in the upper left comar of M by N imsge, the valus of the single spatial coordinaw n is relawd © m and
n as:
fe m'N+n'; n'=0,... N-1,m'=0,... M-
and n runs from 0 © MN-1. Thus, for the “zero®" ww (m'=0), n=n'( =0,...,N-1),for the first oW (m'=1),
L -
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n (= 0,1,...,N-1) are the spatial coordinates of the pixel location with respect © some prespecified coordiname
system, say, with the origin in the upper left comer- The background in the reference image may be shifwed or
blurred and may be of different brightness compared o the background in the primery one. The backgrounds,
however, remsin spatially correlated , while independent of target component.

Our objective is © design adaptive wget detector that should have the ability 10 track the nonstationary image
signals, suppress the background and efficientdy detect the changes (targets) between two imeges in a sequence
in a low signal o chuteer plus noise ratio (of the onder of -14.5 dB). Target image edges should be preserved so
that relatively small size target can be discerned. In the applications where images appear in sequence, both
adaptive algorithms can be applied to a pair consisting of a current frame and a reference one.

General block disgram of the suggested target detectors is shown in Fig.1. Signals and PIOCES30T parameters are
given a3 1-D functions of spatial coordinates a3 they will be used in the context of the ORLS processor. For the
origin in the upper left comer of M by N image, the velve of the single spatial coonlinate n is related 1o m and
n &s:

r=mN+n'; n'=0,... N-1,m'=0,... M-1

and n runs from 0 0 MN-1. Thus, for the "zeroth" row (m'=0), n=n'( =0,... N-1) for the first row {m'=1),
n=N+n'( =N N+1,..2N-1), and so on, untl the (M-1)st row (m'=M-1) where r=(M-1)N+n'
(=MN-N,MN-N+1,... MN-1). The 1-D representation for the ORLS processor is adequate since it converges
rapidly for even the moderst level of 1-D crosscorrelation between horizontl lines in two images. For the
TDLMS algorithm, the block disgram would be the samz, except that all the signals and filer parameters would
be two-dimensional functions of spatial coordinates instesd of one-dimensional. The primary image input d(n)
(recent frame) consists of the desired tget signal {n) embedded in & cluter background s(n) and a colored
noise vi(n). Interms of Wiener filering theory, d(n) represents the desired response. The reference input x(n)
consists of a.cluter (possibly bhurred), s(n), and & colored noise, v(n), which is spatially correlsted with that

of the primary image. The colored noises ¥4(n) and v;(n) can be considered as additional cluter sources.

Defining the L-th order filter cosfficient vector by w = [Wg,Wy,...,w;_JTend theLx1 reference input vector as
x(n) = [x(n) x(n-1),... x(n-L+1)]T, the output of the target detector in Fig 1, at spatial coordinate n, is given by

¥n) = d(n) - 2(n) = d(n) - wTx(n)
where the primary input is
d(n) = ¥n) +2(n) and 2(n) = 5(n) + v,(n) (1)

is the cluter plus noise component of primary input and ¥n) i3 the wrget signal component embedded in the
primary frame. The optimum Wiener solution, W, Of the tp vector w, which minimizes the mean square
(MS) value of the output Wn) is given by

o= @ ey @
where @__is the reference inputautocovariance matrix given by
@, = Elx(n)x(n)T]
and ,, is the cross-covariance vector between the input vector x(n) and the cesired signal d{n) as:
V™ Eld(n)x(n)). @

The "minimum"” output of the change detector, that is, the output having mininized energy, which corresponds
0-the optimum filter is

L , .
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autocovariance matix, @(n), of the reference input vector, x(n) = [x(n),x(n-1),...,%(n-1+1)]T, and the Lx1
Cross-covariance vector, ¥(n), between x(n) and the desired input, d(n), as follows [8]:

E-1 1-1

@(n) = Wn-1) + Z Z x(n-1)x(n-j)

is0 a0

L-1
W) = ¥n-1) + Z d(n)x(n-j)

j=0

After @(n) and W(n) are updated for a given n, the reflection coefficients Kig(n), K2y (n) and Hp (n) are
order-updated using By, | o f0), Ry, ) g 1), Cuo 1,060 and Dy, 4 o (), and the GRE's of order m are obtained
by using the values atm-1, and the reflection coefficients of order m. Once the adaptation is performed, the
signal .(n) represents the difference image, i.e., Yirl 1) = €1 (1) = ¥n), which contains the target 10 be
detected.

The TDLMS Target Detector:

The 2-D counterpart of the Widrow LMS algorithm was originally introduced by Hadhoud and Thomas (6] for
handling 2-D signals. It is well suited for our problem because of the assumption of image background
coxrelatedness in both dimensions. The TDLMS algorithm employs the method of the steepest decent, and the
current filer weight matrix is given by the previous weight matrix plus a change proportional 10 the negative
gradient of the error power. Referring 1o Fig.4, the 2-D arrays x and d are the reference and primary inputs,

respectively, both of dimension M by N. The filter weight matrix is of dimension K by L. In the example in
Fig.4, M=5, N=10, K=2 and L=5. Of course, the 2-D algorithm reduces © its 1-D counterpart for K=1. When
the filter is operating on the neighborhood of the pixel x(m,n), a3 indicated in Fig.4, the error signai at the ith
iteration, ypn,n) is given by

K-11-1]
y(m,n) = d(m,n) - z(m,n) = d(m,n) - g 2 vj(k,l)x(m-k,n-l)
0 isd

In the above equation mruns from 0 © M-1 and n runs from 0 © N-1. Limits K' and L' are equal, respectvely,
oKandLform2K-1and n 2 L-1. Towards the image boundaries, where m < K-1 andlforn< L-1, K and L
reduce, respectively 10 m and n. When the filter window scans the image left-w-right, and top-to-bottom
Tteration index is related to the current pixel coondinates by

j=mN +1n n=0,. N-1and m=0, . M-1

The weight adjustment algorithm is then given by

Wie (k) = Wik 1) + 2 yitm' 0 )x(m’-kn'-D),
The value of i is chosen 0 balance the tradeoff between the convergence speed, tracking ability and stead y-stte
MSE. To optimize the convergence factor |, different ways were sugessted for 1-D gradientbased adaptive
algorithms. We use a normalized value of |1 [9,10], 1.e.,

L - d
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1. The sugessted trget detector could suppress the clutier and noise backgmund components whils keeping the
wrget power unatenuated.

2. The Wiener solution requires prior information about the coveriance matrix of the clutter plus noise.
However, in most practical situations, that required statistics is seldom known in advance, and typically, ft
veries with ime. Therefore, the most effective solution for target detection relies on the use of adaptive filers.

[1I. ADAPTIVE ALGORITHMS FOR TARGET DETECTION

* Assume available a recent frame, d(n), which contins a target embedded in a clutier plus noise background.
Adaptive warget detectors can be developed by using information that the clutier signals in the recent frame and in
o reference frame are spatially correlated.

The error signal W), y(m,n) in the case of TDLMS algorithm, is used © generate the performance critexion for
adjusting the filer coefficients. The adaptive filer (ORLS lattice or TDLMS) uses the reference input frame ©
estimate the cluteer plus noise background in the primary Input frame. Then, the estimated clutter plus noise is
subtracted from the primary input, leaving only the estimate of the taxget which we wish to detect,

The performance criterion for the TOLMS is 10 minimize the least mean square of value Wm', n'), as the name
implies. On the other hand, the exact least squares (ELS) algorithms perfonn the minimization of the finite sum
of L valtues of Wn)? which is known exectly for each step n. Here, we treat the veriant of ELS, known es the
order-recursive least squares (ORLS) lattice algorithm.

The Adaptive ORLS Algorithm

Ft.Zsmmmhmmrome,Me(n)mdr(n)m,mpecttvaly,dntorvudm
backwend residual at spatial location n, of the inverse Ailer part of , cormesponding time-varing
weflection cosfficients are Kfy (n) and K3, (n). The joint path input go(n) is the primary image d(n), whereas the
teference image x(n) is fed © the inverse filwr input. The backward residuals  (n) are weighwed by joint
reflection coefficients H(n) © obtain the estimatws, 2(n), of the cluteer phus component, z(n), of the
primary image d{n), these are then subtracted from g, (n) 10 yield the estimate, n), of the desired target,

(n) = g _{n).

We use the ORLS lattice algorithm for computing the reflection and joint coefficlents of the lattice filer. This
algorithm differs from the conventional L8 lattice [7] in that the time and order recursions are separated as
shown in Fig.3. The problem of poor initial speed of convergence of the mixed tme and order recursive LS
latiice algorithms and the related gradient latticé algorithms in a fixed-point environment have been alleviated.
Since this approach does not require residual recursions, emor accumulation does not occur, and hence thers is
no degradation of the adaptation speed.

The genaralized residual enetgies (GREs) are LxL matices derived from the autocovariances of 8.0, L0},
€un), and the cross-covariances between them, and are defined as follows [4,5):

Bg i f0)= eTa(n-D) ex(n),

Ry i f(0) = Ta(oei1) rp(af-1),
Co /00 = 0T (nei1) £y ( 03-1),
D 140 = gTa(0-) 1 (0r-1),
Ap f(0) = gTu(ne) oq(n-)).

where (<115 L-1, Atesch pixel location n, “the covariance matrix tracking” block of Fig.3 updates the LxL
| .
] ‘ -
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where LK is the number of filer coefficients and 02j is the power estimate of the reference frame which is
updated for the cuent input pixel value x(m,n) as follows

0? zcz:c?‘(m,n)+(1-oz)uf_l 0 sa<<t

and o is & forgeting factor. This estimate fits nonstationary environment assumption since & can be selected 10

reduce the influence of past input pixels. The initial value of 0% is the  uiu7 estimate of the input power of the

reference frame x(m,n). In many application, imeges are often of the square shape, i.e., M=N. Also the
window size is taken 10 be square, resulting in K=L.

IY COMPUTER SIMULATION RESULTS

in an experimental verification of the two adaptive target detectors, an optical sakelliv image s(n) of a city area,
of size 42x42 as shown in Pig.5, is used a3 a clutter background for both the primary input, d(n), and the
reference input, x(n). The prmary input is formed from s(n) by adding 1 ita colored noise, vi(n) = ayv,(n-1) +

v(n) where w(n) is zero mean white Gaussian noise of veriance o and & one pixel target centered at spatial
location m=14, n=24 . Therefore,

d(n) = Y(n) +2(n), where z(n) = s(n) + v,(n)

Such a composite primary image input is shown in Fig.7. The reference image input, x(n), is a blurred version
of s(n) with a colored noise v,{n) (correlawd with v,(n)) as shown in Fig.8. Bluning is performed by passing
s{n) through a low-pass filer, e.g,

3y(n) = 0.95 s, (n-1) + 0.053(n)
Therefore,
x(n) = 8y{n) + v,{n)

where v{n) = g vw{n-1) + v(n) and Wn) is white gaussian noise. It can be shown that the crosscorellation

between v(n) axd v(n), ¥, (k), is

k
8.|

1-a,
and the correlation coefficient, 1, k), will be

o, k20 (6)

Vo v (K) =

Ve (B0
Tyv, (k) = 2 2 % o
0,.I U'z

B A s okt
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Sustituting with equation (6) in equation (7), the correlation coefficient for zero lag, I,,,A0), will be

Ja-2)1-2)
r\'lvato) = (1“&182)
We choose & = -0.5 and 8, = 0.8 such that ,,,£0) and &, 0) Will be equal © 0.7142 and 0.3712,
respectively. To quantify the SCNR in the input and output imsges, the power of the clutter plus noise in the
primary input 2(n) is computed as:

MN- 1

P,=(IMN) 2 (sXi) + v2(D)-

j=0

1

where the pixel location is taken 0 be in one dimension and the images are of size M by N. Similarly, the power
of the target image signal is computed: .

Q2-1

Py=(11Q%) 2 &),
i=0
where Q is empiriceily selected size of the square window that encompases the target.
Thus, the input SCNR, is given by
SCNR;=P\ /P,

The output of the target detector %,,.(n) consists of the estimawed terget signal in additon 0 the residuval clutter
plus noise. The output SCNRo is

Q?-1 MN- 1
SCNR,= [(11Q3) 2. ch¥D)! (LIMN) 2. (i) <h(D)?]
i=0 i=0

The two sdaptive detection algorithms are applied © the primary and reference imeges of Figs.6 and 7,
respectively. For convenience, the SCNR, of the primary imsge d(n) was chosen 1 be -14.5. The powers of the
colored noises vy(n) and vo(n) were adjusted so that the clutier © noise ratio (CNR) in the primary input is equal
1 24.4 dB. For the ORLS processing, images are processed xow by row sequentially so a3 © represent the
one-dimensional input 1o a fileer of order L=2. The output, ¥n), of the ORLS detector is shown in Fig.8. The
choice of L=2 for the order of the latdce wes guided by its effect on the improvement factor, which is shown in
Fig.9. The optimal value for L is 4, however, the difference in performance for any value of L greater than one
all the way up © L=10 i3 negligibly small. The choice of minimum value in this range speeds up the
compuiation significandy. The SCNR, and the improvement factor were 28.63 dB and 43.13 dB, respectively.

The TDLMS detector with a window size of 2x2 pixels, a convergence factor jiy=0.047, a forgetting factor

a=0.01, and an initial power estimae of x(m,n) of 0.02 was used  scan the images left-to-right, and
top--botom. The resulting output is shown in Fig.10. Again the target is clearly visible, indicating the
powerful detection capabilities of the proptsed detectors. Compared © the output of the ORLS in Fig.4.9,
however, the detected target is of a Jower inensity due © a generally slower convergence of the TDLMS. The
first row of the output imsge shows strong cluter background due ¥ the same effect, combined with the fact
that the window 'size’ is reduced v 2x1 pixtls. The SCNR, and improvement factor values of 8.1 dB and

L : -
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22.58 dB, respectively.

Y. CONCLUSIONS:

The presented results show that both the suggested adaptive tarzet detectors display good performance for the
detection of small size taxget (of the oxder of one pixel ) embedded in clutered images.

Meiiher target detectors requires any prior information sbout the shape or position or the swtistics of the change,
or the stetistics of cluter and noise, except that te dackgound clutier and noise in the primary and reference
tmages are spatially correlated. Also, the target imegeitarget and the clutter plus noise beckgrounds are assumed
1 be uncomelated. The background in the yeference imege cen be scaled and/or bluned endlor have different
brightness from. the primary one. Both the suggested change dewctors could successiully track the nonstationary
tmage signals, suppress the clutier and noise beckground and detect the change between the imeges in a very
low signal o clutier and noise environments (SCNR of the orderof -14.5 4B).

The order recursive least squares (ORLS) target detector; however, {s more robust in very low signal o cluter
ratio environments. It converges very quickly, within about 2L iterations, and does not require adjustment of
any tuning perameters. Itis relatively insensitive © finie word length effects, and can sasily be implemented by
using systolic architecture, so that the computation time can be drasticelly reduced.

The TDLMS wrget detector i3 computatonally as efficient as its 1-D counterpan, requires the oxder of 2(LxK)
multiplication per ieretion. Its convergence is, however, slow which may result in insufficient background
suppression in the upper-left region of the image. Itneeds edjustments of the convergence factor and about 300
10 400 fterations for the algorithm 10 converge.
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Fig.2 The block diagram of the ORLS lattice algorithm
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