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4— 	ABSTRACT 

Dawction of targets in in a by signal to clutter plus noise ratio (SCNR) is a problem of increasing interest. In 
this paper we present two ellaptive algorithms for the detection of smell targets (of the order of one pixel) in 
images using reference correlated frames (the reference frames can be obtained either from frequency bands of 
the same scene or from different sequential observation in time) in a by signal to clutter plus noise ratio 
(SCNR) environment (of the order of -14.5 dB). They both have the ability to track the nonstatimery image 
signals (targets and clutter plus noise) and suppress the clutter plus noise background. Both detictors are based 
on time varying autoregressive models to model image background and on correlation canceling concept. The 
first one uses an order recursive least squares (ORLS) lattice filter, stile the second one is based on a 
normalized version of the two dimensional least Mall square (TDLMS) algoridnu. The influence of the osier of 
the detectors on then detection performance is studied. The performence of the two algorithms are evaluated 
using an optical smell* image, as a clutter beckgrotuel, with compubr generawd target and noise added to it. 
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I. INTRODUCTION 

Detection of unfriendly tergeri is en integral part of the air, ground and sea defense. The area under surveillance 
is monitored by a set of receivers, active aridear passive. The receivers (sensors) are intercepting the energy 
which is reflected from, andlor radiated by target of interest. The received signal, in addition to the desired 
information, usually contains heavy clutter and background noise. In such envirorenent, target detection 
procedures should be able to isolate the moving target in signal-to-clutter-plus-noise ratios (SCNR) in the order 
of -10 to -20 dB . Clutter sources themselves are not entirely spatially stationary, even during the relatively short 
time spans. Weather clutter is slowly moving due to wind activities, end clear air turbulence, among other 
causes. Even ground clutter is varying with the local movement of vegetation. Sea clutter exhibits various 
statistical characteristics in different sea states. 

Gegliari et. elf1] have developed en algorithm for the detection of optical targets by using correlated reference 
scene. However, this algorithm demands a substantial computation time, most of which is used for estimating 
the covariance matrix and for calculating matrix inverses. Margelit et. al [2] have developed a detection 
algorithm which is based on the assumption that the image intensity is spatially Gaussian process end that the 
covariance matrix of optical end infrared (IR) images, after subtraction of correct variable mean, is 
approximately a constant tints an identity matrix. Therefore, the resulting Gaussian image processes are nearly 
white. This algorithm was shown to save most of the computation tine required by the optimum algorithm 
developed in [1]. In addition, Chen end Reed [3] have developed an alternate algorithm for the detection of 
optical target by using a reference scene. The above algorithms are based on the approximation of the image data 
by a white Gaussian process. For real images, this assumption is not necessarily valid in general case. 

To remedy the mentioned problems, we suggest two adaptive algorithms for clutter plus noise suppression and 
optical infrared targets detection. The first one is based on the order recursive least-squares (ORLS) lattice 
algorithm [4,5], while the second processor uses a normalized version of the two dimensional least mean square 
algorithm (TDLMS) [5,6] 

PROBLEM FORMULATION 

Let us assume that we have two M by N images of a specific scene that are taken at different times. Thar 
images can be forward looking infrared (FLIP), radar echo, remote sensing. The first (primary) image, d(m , 
n ), differs from the second (reference) one, x(m al), in that it has a target embedded in a background clutter. 
The m ( =0,1,...,M-1) and n ( = 0,1,... ,N-i) are the spatial coordinates of the pixel location alit respect to 
some prespecified coordinate system, say, with the origin lit the upper left corner The background in the 
reference image may be shifted or blurred and may be of different brightness compared to the background in the 
primary one The backgrounds, however, remain spatially correlated, while independent of target component. 

Our objective is to design adaptive target detector that should have the ability to track the nonstationary image 
signals, suppress the background and efficiently detect the changes (targets) between two images in a sequence 
in a low signal to clutter plus noise ratio (of the order of -14.5 dB). Target image edges shouki be preserved so 
that relatively small size target can be discerned. In the applications where images appear in sequence, both 
adaptive algorithms can be applied to a pair consisting of a current frame and a reference one. 

General block diagram of the suggested target detectors is shown in Fig. 1 . Signals and processor parameters are 
given as I -I) functions of spatial coordinates as they will be used in the context of the ORLS processor Fqr the 
origin in the impel left corner of M by N image, the value of the single spatial coordinate n is related to in and 
n as: 

n' rrt N an' ; 	,N-1, 

end it rues from 0 to MN-1. Thus, for the "zeroth" mat (m'=0), n=n'( =0,...,N-1),for the first row (m'=1), 

L 
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( - 0,1,...,N-1) ate the spade' coordinates of the pixel location vith 'aspect to some prespecified coordinate 
system, say, with the origin in the upper left comer The background in the reference image may be shifted or 
blurred and may be of different brightness compared to the background in the primary one. The backgrounds, 
however, remain spatially correlated, while independent of target component. 

Our objective is to design adaptive target detector that should have the ability to track the nonstationary image 
signals, suppress the background and efficiently detect the changes (targets) between two images in a sequence 
in a lov signal to clutter plus noise ratio (of the order of -14.5 dB). Target image edges should be preserved so 
that relatively small size target can be discerned. In the applications where images appear in sequence, both 
adaptive algorithms can be applied to a pair consisting of a current frame end a reference one. 

General block diagram of the suggested target detectors is shown in Fig. 1. Signals and processor parameters are given as 1-D functions of spatial coordinates as they will be used in the context of the ORLS processor. For the 
origin in the upper left corner of M by N image, the value of the single spatial coordinate it is related to m end n as: 

n= m N+n; 

and n runs from 0 to MN-1. Thus, for the "zeroth" row (m'=0), n=n'( =0,...,N-1),for the first row (m.=1), n=N+n'( =N,N+1,...,2N-1), end so on, until the (M-1)st row (m'=M-1) where n=(M-1)N+n' (=MN-N,MN-N+1,...,MN-1). The 1-D representation for the ORLS processor is adequate since it converges 
rapidly for even the moderate level of 1-D cmsscorrelation between horizontal lines in two images. For the 
TDLMS algorithm, the block diagram would be the same, except that all the signals and filter pentameters would 
be two-dimensional functions of spatial coordinates instead of one-dimensional. The primary image input d(n) 
(recent frame) consists of the desired target signal l(n) embedded in a clutter background s(n) and a colored 
Wise vi(n). In terms of Wiener filtering theory, d(n) represent the desired response. The reference input x(n) 
consists of aclutter (possibly blurred), sb(n), end a colored noise, v2(n), which is spatielly correlated with that 
of the primary image. The colored noises v1(n) and vg(n) can be considered as additional clutter sources. 

Defining the L-th order filter coefficient vector by v [vo,v1 ,...,‘,L_ IIT and the Lxl reference input vector as 
x(n) fx(n),x(n-1),...,x(n-L+1)11, the output of the target detector in Ft. I , at spatial coordinate ri, is given by 

y(n) = d(n) - z(n) = d(n) - 'Tx(n) 

where the primary input is 

d(n) t(n) z(a) and z(n) XIV vi(n) 	 (1) 
is the clutter plus noise component of primary input end 1(n) is the target signal component embedded in the primary frame. The optimum Wiener solution, vott  of the tap vector v, which minimizes the mean square 
(MS) value of the output y(n) is liven by 

= •trIropeci  
(2)  where tPir  is the reference input it tocoveriance matrix given by 

Orr  - E[x(rt)x(n)Tj 
and trot, is the cross-covariance 'factor between the input vector x(n) and the desired signal d(n) as: 

tpdx = E [d(n)x(n)] 
(3)  The "minimum" output of the cllange detector, that is, the output having minimized energy, which corresponds to-the optimum filter is 
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autocovariance matrix, qn), of the reference input vector, x(n) = [x(0,x(n-1),...,x(n-1+1)1T, and the Lxl 
cross-covariance vector, gi(n), between x(n) and the desired input, d(n), as follows [81: 

L - I 	L- I 
41(11) qn-1) + 	x(n-i)x(n-j) 

p(n) = 	+ I d(n)x(n-j) 
J-0 

After 4a(n) and p(n) are updated for a given ri, the reflection coefficients Kfm(n), KIL(n) and Hz(n) are 
order-updated using Em_ i, 0,  0), Rm 10,0), C, 1, 0, tin) and Dm_ i, 0, f(n), and the GRE 's of order mare obtained 
by using the values at m-1, and the reflection coefficients of order ra. Once the adaptation is performed, the 
signal y m(n) represents the difference image, i.e., ymm(n) = = t(n), which contains the target to be 
detected. 

The TDLMS Target Detector: 

The 2-D counterpart of the Widrov LMS algorithm was originally introduced by Hadhoud and Thomas [6] for 
handling 2-D signals. It is well suited for our problem because of the assumption of image background 
correlatedness in both dimensions. The TDLMS algorithm employs the method of the steepest decent, and the 
current filter weight matrix is given by the previous weight matrix plus a change proportional to the negative 
gradient of the error power. Referring to Fig.4, the 2-D arrays x and 4 are the reference and primary inputs, 
respectively, both of dimension M by N. The filter weight matrix is of dimension K by L. In the example in 
Fig.4, M=5, N=10, K=2 and L=5. Of course, the 2-D algorithm reduces to its 1-D counterpart for K=1. When 
the filter is operating on the neighborhood of the pixel x(m,n), as indicated in Fig. 4, the error signal at the j-th 
iteration, ym,n) is given by 

y (m,n) d(m,n) - z j(m,n) d(m,n) - 	I w(k,l)x(m-k,n-1) 
0 1.0 

In the above equation mruxis from 0 to M-1 and n runs from 0 to N-1. Limits K' and L' are equal, respectively,, 
to K and L form 2 K-1 and n L-1. Towards the image boundaries, where m < K-1 andhor n< L-1, K and L 
reduce, respectively to m and n. When the filter window scans the image left-to-right, and top-to-bottom 
iteration index is related to the current pixel coordinates by 

j=mN+n 	 n = 0,. ,N-1 and m=0,...,M-1 

The weight adjustment algorithm is then given by 

vi4.1(k,l) = 	+ 2it 
The value of it is chosen to balance the tradeoff between the convergence speed, tracking ability and steady-state 
MSE. To optimize the convergence factor it, different ways were sugessted for 1-D gradient-based adaptive 
algorithms. We use a normahzed value of it [9,101, i.e., 
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1. The sugesstid target deector could suppress the clutter and noise background component while keeping the 
target power unarienuatd. 

2. The Wiener solution requires prior information about the covariance matrix of the clatter plus noise. 
However, in most practical situations, that required statistics is seldom known in advance, and typically, it 
varies with time. Therefore, the most effective solution for target detection relies on the use of adaptive filters. 

ADAPTIVE ALGORITHMS FOR TARGET DETECTION 

Assume available a recent frame, d(n), which contains a target embedded in a clutir plus noise background. 
Adaptive target detectors can be devebped by using information that the clutter signals in the recent fame and in 
a Were= frame are spatially correlated. 

The error signal y(n), y(m,r1) in the case of TDLMS algorithm, is used to generate the performance criterion for 
adjusting the filer coefficients. The adaptive filter (ORLS lattice or TDLMS) uses the reference input frame to 
estimate the chatter plus noise background in the primary Input frame. Then, the estimated clutter plus noise is 
subtracted from the primary input, leaving only the estimate of the target which ye wish to detect. 

The performance criterion for the TDLMS is to minimize the least mean square of value y(m., n'), es the name 
implies. On the other hand, the exact least squares (ELS) algorithms perform the minimization of the finite sum 
of L values of y(n)2  which is known erectly for each step n. Here, we treat the variant of ELS, known as the 
order-recursive least squares (ORLS) lattice algorithm. 

The Adaptive ORLS Algorithm 

Fig.2 shove the joint lattice filter of order L, where em(n) end rok(n) ere, respectively, the forward and 
backward residual at spatial location n, of the inverse filter pert of the lattice, corresponding time-varing 
reflection coefficients are Kra(n) and Kim(n). The joint path input go(n) is the primary image d(n), whereas the 
reference image x(n) is fed to the inverse filter input. The backward residuals rm(n) are weighted by joint 
reflection wefficients Hm(n) b obtain the estimates, z(n), of the clutter plus noise component, z(n), of the 
prunary image d(n), and these are then subtracted from gm(n) to yield the estimate, 1(n), of the desired target, 

S- ta0. 
• 

We rile the ORLS lattice algorithm for computing the reflection and joint coefficients of the lattice filter. This 
algorithm differs from the conventional LS lattice [7) in that the time and order recursions are separated as 
shown in Fig.3. The problem of poor initial speed of convergence of the mixed time and order recursive LS 
lattice algorithms and the related gradient lattice algorithms in a fixed-point environment have been alleviated. 

he this approach does not require residual recursions, error accumulation does not occur, and hence there is 
no degradation of the adaptation speed. 

The generalised residual energies (Gras) are LxL matrices derived from the ant:covariances of aro(n), rro(n), 
gan), end the cross-covariances between tem, and are defined as follows [4,5): 

HaAjOk) era(n4) ear(n-D, 
Ram(n) rTa(n-i-1) rm(n-j-1), 
CokAi(iti eT1(re1-1) rut( n-j-1), 
Dmm(n) gTo(n-i) ra(n-j-1), 

gTa(ik-1) es(n-1). 

where 0 S 1,1 S L-1. At each pixel location n, 'the covarience matrix tracking" block of Fig.3 update the LxL 
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11J= (LKXO2) ° 

where LK is the number of filter coefficients and 02 j is the power estimate of the reference frame which is 
updated for the current input pixel value x(m,n) as follows 

02  = Cd X 2(MA) + (1 - 62  
1-1  

0 s << 1 

end a is a forgetting factor. This estimate fits nonstationary environment assumption since a can be selected to 
reduce the influence of past input pixels. The initial value of o2 j  is the a pair/ estimate of the input power of the 
reference frame x(m,n). In many application, images are often of the square shape, i.e., M-11. Also the 
window size is taken to be square, resulting in K=1.. 

IV COMPUTER SIMULATION RESULTS 

In an experimental verification of the two adaptive target detectors, an optical satellite image s(n) of a city area, 
of size 42x42 as shown in Fig.5, is used as a clutter background for both the primary input, d(n), and the 
reference input, x(n). The primary input is formed from s(n) by adding to it a colored noise, vi(n) = v1(n-1) + 

v(n) where v(n) is zero mean white Gaussian noise of variance a and a one pixel target centered at spatial 
location m=14, n=24 . Therefore, 

d(n) - 	+z(n), where z(n) = s(n) + vi(n) 

Such a composite primary image input is shown in Fig.7. The reference image input, x(n), is a blurred version 
of s(n) with a colored noise v2(n) (correlated with v1(n)) as shown in Fig.8. Blurring is performed by passing 
s(n) through a low-pass filter, e.g, 

st,(n) = 0.95 sb  (n1) + 0.05s(n) 

Therefore, 
x(n) sti(n) + v2(n) 

where v2(n) = to2 v2(n-I) + v(n) and v(n) is white gaussian noise. It can be shown that the crosscorellation 

between v1(n) and v2(n), ogv1v2(k), is 

II 1 2 	slier  v  (k) — 	 41 	k 0 	(6) 
1 

and the correlation coefficient, rvi4k), will be 

iv2(k) 
ryi.,r2 (k ) —    2  an 

101;
1 
 a+

2 
 

(7) 

L 



■
AV-4 1471 
	1 

FOURTH ASAT CONFERENCE 

“4-16 May 1991 , CAIRO 

1 

Sustituting with equation (6) in equation (7), the correlation coefficient for zero lag, rvi40), vill be 

(- f4)(1-  tk;) 

	

ry1yz(0) - 	(1  _ aia2 	s 1 

We choose al  = -0.5 and a2  = 0.8 such that )640) end ro40) will be equal to 0.7142 and 0.3712, 
respectively. To quantify the SCIIR in the input and output images, the power of the clutter plus noise in the 
primary input z(n) is computed as: 

MN-1 

Pz= (11MN) E (32(i)+5,21(o),  
i.0 

\vhere the pixel location is taken to be in one dimension and the images are of size M by N. Similarly, the power 
of the target image signal is computed: 

42 - I 
Pt= (UV) E 

ico 
where Q is empirically selected size of the square window that encompases the target. 
Thus, the input SCNR, is given by 

SCNR, = Pt  11)2  

The output of the target detector ymm(ry consists of the estimated target signal in addition to the residual clutter 
plus noise. The output SCNR0 is 

Q2- 	 MN- I 

SCNRO= 1(11Q2) I ch2<o) co !MN) I  (y(i) -ch(i))21  
i.o 	 1.0 

The two adaptive detection algorithms are applied to the primary and reference images of Figs.6 end 7, 
respectively. For convenience, the SCNRi of the primary image d(n) was chosen to be -14.5. The powers of the 
colored noises vi(n) and v2(n) were adjusted so that the clutter to noise ratio (MR) in the primary input is equal 
to 24.4 dB. For the ORLS processing, images are processqd row by row sequentially so as to represent the 
one-dimensional input to a filter of order L=2. The output, Xn), of the ORLS detector is shown in Fig.8. The 
choice of L=2 for the order of the lattice was guided by its effect on the improvement factor, which is shown in 
Fig.9. The optimal value for L is 4, however, the difference in performance for any value of L greater than one 
all the way up to L=10 is negligibly smell. The choice of minimum value in this range speeds up the 
computation significantly. The SCNR0  end the improvement factor were 28.63 dB and 43.13 dB , respectively. 

The TDLMS detector with a window size or 2x2 pixels, a convergence factor 1.1.0=0.047, a forgetting factor 
ot=0.01, and an initial power estimate of x(m,n) of 0.02 was used to scan the images left-to-right, and 
top-to-bottom. The resulting output is shown in Fig.10. Again the target is clearly visible, indicating the 
powerful detection capabilities of the proptsed detectors. Compared to the output of the ORLS in Fig.4.9, 
however, the detected target is of a lover tatensity due to a generally slower convergence of the TDLMS. The 
first row of the output image shovi strong clutter background due to the same effect, combined with the fact 
that the window 'size' is reduced to 2x1 pixtls. The SCNR0  and improvement factor values of 8.1 dB and 
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22.58 dB , respectively. 

V. CONCLUSIONS: 
The presented results show that both the suggested adaptive target detectors display good performance for the 
detection of small size target (of the order of one pixel ) embedded in cluttered images. 

Neither target detectors requires any price information about the shape or position or the statistics of the change, 
or the statistics of clutter and noise , except that the background clutter and noise in the primary end reference 
images are spatially correlated. Also, the target imegelterget and the clutter plus noise backgrounds are assumed 
to be ureorrelated. The background in the reference image can be scaled andior blurred endlor have different 
brightness from the primary one. Both the suggested change deteceers could successfully track the nonstationary 
image signals, suppress the clutter and noise background and detect the change between the images in a very 
by signal to clutter and noise environments (SCNR of the order of -14.5 dB). 

The order recursive least squares (palms) target detector; however, is more robust in very lov signal to clutter 
ratio environments. It converges very quickly, within about 2L iterations, and does not require adjustment of 
any tuning parameters. It is relatively insensitive to finite void length effects, and can easily be implemented by 
using systolic architecture, so that the computation time can be drastically reduced. 

The TDLMS target detector is computationally as efficient as its 1-D counterpart, requires the order of 2(LxK) 
multiplication per iziation. Its convergence is, however, slow which may result in insufficient background 
suppression in the upper-left region of the image. It needs adjustments of the convergence factor and about 300 
to 400 iterations for the algorithm to converge. 
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