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ABSTRACT

i This paper presents an indirect adaptive robust control scheme for

time varying plant in the presence of the modeling error. The
robustness is achieved by using a normalizing identification error
signal in combination with a dead zone and a projection algorithm
in the adaptive law. This modified algorithm is used to estimate
the controller parameters so that the closed loop plant will track
a certain desired performance closely in some sense and the plant
input. and output will remain bounded for all time.

The proposed adaptive control algorithm is used to control the
behavior of an aircraft system in which a good behavior is
obtained. A comparison between the ordinary projection algorithm
and the proposed adaptive algorithm in controlling the aircraft
system is carried out. The simulation results indicate the
effectiveness of the proposed adaptive control algorithm.

INTRODUCTION
Most stability results for adaptive control systems are based on
the assumption that the model used in the control structure is an

accurate representation of the process. 'However, most real
processes are high order and hence, in general, an approximate
model is used in practice. In [11 it was demonstrated that

straightforward application of the stable algorithms found in the
literature may lead to stability problems when unmodelled plant
dynamics or modeling error, due Lo this model—process order
mismatch, are present.

In (2,3,4,5], an adaptive pole placement combined with an adaptive
law is used to control a certain plant with bounded disturbance.
The main problem is that when the disturbance becomes unbounded
this will lead to stability problem.
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In the robustness problem, the distrubance is internally generated
and thus depends on the actual plant input. and output signals. In
particular, if the adaptive control system was unstable and the
plant input and output signals were tao grow without bound, then
the disturbance would also £row without bound. In other words, the
robust stability problem becomes the problem of an internal,
signal-dependent., and thus potentially unbounded disturbance.

This paper presents an adapti&e pole placement. control algorithm
to control the time varying system in the pPresence of unmodeled
pPlant dynamics. To achieve the robust stability, a normalized
identification error signal is combined with a dead zone in a
modified version of projection algorithm. This modified algorithm
is used to estimate the controller parameters so that the closed
loop system will behave as the desired performance and the system
input and output remain bounded for all time. To show the
effectiveness of the present work, the proposed adaptive control
algorithm is used successfully to control the behavior of the
time varying aircraft system in the presence of modeling error.

A comparison between the proposed adaptive algorithm and the
ordinary one in controlling the aircraft system is carried out.
From the obtained results, the proposed adaptive control algorithm
is superior than the ordinary one.

SYSTEM MODELING ASSUMPTIONS AND PROBLEM FORMULATION
It is assumed that the system to be controlled is discrete single
input-sigle output time varying associated with a modeling error
and that can be represented in the form:

Acq™ zctd = uewy

YL = g9 Bag™h zcwr + netd
Where UCL), YCL) and n{t) are input, output. and modeling error

1>

signals respectively. A(q_i)and B(q_l) are defined as:
ACq1y= 1 + agC<t> g7t o+ .. . a (1) g ™ 2>

=1 % re -1 -nb
B{q > = bO(t) + bl(t) q + ...+ bnb Lty q° 3>

q 1 denotes the unit delay operator.
Associated with these polynomials define the modeling error ndtL)
as:

nCt> = Aq™1y veuy - g9 gy ueeo 4>
Further, we choose 0 < o < 1, and define the additive modeling
error as first order dynamic of the plant [61.

ECtd = o ECt-1) +  |UCt-1>] + jYCt=1> | 5>
The modeling error is said Lo be relatively bounded if there
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rexist a finite p > 0 and ECOY > 0 such that:
L) s p ECLD ‘ 6>

It is assumed that.:
Al : The time delay d is Known.
A2 : The relative degree m of the plant is known ¢ n=na-nb J.

A3 : A(g 1) and B{(q 1) are coprime and assumed to be arbltrary

A4 : a;Ctd, i=1, ... , na and b‘(t) j1, ... , nb are time
varying parameters.

Since the . zeros of B(qmi) are arbitrary, the plant may he

nonminimum phase.

From the above descriptiom, the problem is to devise an adaptive
controller for the plant so that inspite of the modeling error
nCt>, the adaptive control system is globally stable, and the
putput of the plant follows the bounded desired reference signal
closely in some sense.

ADAPTIVE CONTROLLER STRUCTURE
Consider the following feedback control system associated with
integral action such that: '

Feq 1y uct) = Reg™ly ectd 7>
with

Fegly= - q 1 1+t T, q 0 (8

Rq >=1 +r  + 1:~1q'“1 AT T b 9 q-nr (9
and

eCt) = Y (L) — YU - 10>

where £(t) is the tracking error, Y(t) is the syst.em odtput and
pCt2 is the desired bounded set point sequence to be followed

Applying the control law (7> to the system 1D results the
following closed loop system: -

tacqg 1y Feg > + a9 Bag™ Reg™y 1 2> = Req -1y Y (LD
A C11d
Yctd = g9 Bcg™dy zctd + How

Assume that. C(q “1y is a stable pelynomial of degree ncC whose zeros
represent, the desired closed loop location. From equation (11> it
~can be verified that:
aca Y Fegly + 9 Beg™h rRag™h = cig™h 2>
where:
o |

cca™ty =1 + a7t v+ Gae 13>

5 =1 Fgh acgHccg™hH

nc = na + nb

nf =nb+d-~1 14>
nr = na
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MODIFIED PROJECTION ALGORITHM:
In this section, modifications are introduced to the projection
algorithm [3]. These modifications include a normalized
identification error combined with a dead =zone in which the dead
zone acts on a suitably normalized relative identification error.

The system which is represented by the equation (1> can be put in
more compact form as:

Y = oct-10T gct-1d + need _ 15>
where O(t) contains the actual system parameters and defined as:

- - T

et-1) = a;(td,..., a .t bi(t),..., b, p<td > 16>

¢Ct-1) = C Y(t-1),..., Y(t-nad U(t—d),...,U(t-d—nb))T a7
If the plant parameters are assumed to be unknown and time

invariant, the following projection algorithm [11] is used to

estimate the plant parameters,é(t).

BCt) = 6Ct—1) + o $Ct—1) eCtd/C 1 + PCt-1>T FCt—1> > 18D

vhere e(t) is defined as:

e(t) = Y(tO - é(t—l)T PpCt-1> 19>

In order to deal with time varying plant and additve modeling
error, the algorithm <18 -19) should contain a normalized
identification error such that the relative modeling error signal
is within the dead zone i.e. the modeling error becomes bounded.

Defining a normalizing factor NCt) and a relative error signal
(normalized error signal) El(t) as

NCL) = 2 + ECL) , ¥g >0 ' 20>

E;Ct) = eCt) ~ NCt> €21
and the adaptive law becomes

OCt) = BCt-1) + [a ¢Ct—-1) NCL-1) DCE, (t-1>1/rCt=1)> 22>

rCt) = rct-1> + ¢ctdTpctd 23>
where

ad> o0 , rC0> > 0 24>

D(Ei(t)) is a function defined by ( see also fig. 1)),

D(El(t)) = K(El(t) i if Ei(t) > dg 25>

K(d0 = E; (D) if E1(t> (—do

| 0 ‘ it |E[ ()] = d
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Fig.<1> The dead zone function DC.> aof the
normalized identification erroaor E1(t)

in the algorithm (22> the jdentification error el{t) is replaced by
NCtD) D(E1(t)), where D(Eict)) is the dead =zone func@ion of the
normalized identification error and d i= the size of the dead
zone. The slope K and the dead =zone size dj can be obtained
through studying their effect on the mean square of the tracking
conprol error £(t> and the accurate values of K and dé are chosen
based on achieving a least value of eCt). - Ly

After estimating the time varying parameters of the unknown.
system, they put in the following form as:

~ -~ ~ ”~ >~ T
8ty = € —agCtd ... —ay C(t) byt ... bpp(td D 26>
Act,g =1 + a,<td> gt + .. agacty @™ 27>
-~ - -~ -~ = o -—-b
BCt,q 1> = b Ct)> + byCtd q 1w .. % byt g €28

The control signal is calculated as:

-~

Act,q~1> Fet,q1> + g7 Bt gty Ret,q 1y = cct,g 1> 2o
Fct.q 1> Uct> = Ret,q ) &) ¥ €30

The closed loop adaptive control system thus establishéd comprises
the plant <1>, the controller €29-30> and the adaptive law
C20-25). o

§
]

AIRCRAFT TIME VARYING SYSTEM .
The main properties of the above design algorithm will be
illustrated by computer simulation results. One of phe{models used
for the experimental analysis under study represents the
longitudinal dynamics of an aircraft time varying system [71. It
is given by the following equat.ion:

XCLY = ACBCLYY XCLY + BCL) ULy + nltd (31>
. X<0> =0 |

and
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B (L) ~.4085 0

ACBCLS = 1 B, (L) 0 (32)
1 0 0
2. 85700

BCLY = - 061581 €33
0.0000

The state variable XICL) is taken as an output of the aircrafit
system. A two dimensional vector of unknown parameters 2(L) i=
assumed to be time varying obeying the relatiomns.

-0.2778 for 0< t <8
Bty = —-0.06444(t-3. 689> for 8< t <13 (34>
-0.6 for 13< t <22
-0.4075 for 0< t <10.5
ﬁz(t) = -0.065Ct-4.23> for 10.5< t <15 (35>
-0.7 for 15 t <22
This system is discretized at sampling T = 0.05 second. and by

applying the proposed adaptive control algorithm, the ollowing
simulation results will obtain.

SIMULATION RESULTS

The aircraft system is represented by a second order (i fference
equation as:

YCL) = ~ a,Ct) YCt-1) =~ a,(td Y(t-2) + g9 1 bictd Uy +
+ byCt) UCt-1) ] (367

The open loop time varying parameters of equations (34-33> are
plotted in fig.(2) and the time delay d is chosen equal to 1. At
the begining of operation, the coefficients of do’ K, r{0> and «
are found to be 0.2, 1., 65 and 3.5 respectively. These gabtainocd
values can be chosen through studying their effects on the mean
square control error and their reasonable values correspond to Lhe
least value of the mean sguare control error.

The values of 7o» ¢ and pu ‘are chosen as 0.1, 0.1, and 0.2
respectively. At the starting, the adaptive law is initialized by
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8T¢o> =€ 0.0 0.0 0.6 0.6 1. The resulted closed loop control
system through the proposed adaptive control algorithm behaves as
shown in fig.(3> for the desired tracking sequence, fig.(4> for
control signal, fig.(5) for the auxiliary parameters, fig. (6> for
controller parameters and fig.(7)> for additive modeling error. The
tracking error between the aircraft system and the desired
performance is shown in fig.(8). :

From the obtained results, a robust behavior of the closed loop
aircraft system is obtained inspite of modeling error and time
variation of process parameters. By comparing the results obtained
by the proposed modified adaptive control algorithm and the
control algorithm based on the ordinary projection type algorithm,
the proposed algorithm is superior than the others. This is clearly
demonstrated in fig.<(9) which shows the instability of ordinary
one especially when dealing with time varying systems.

CONCLUSION

This paper presents an adaptive robust. control algorithm for
controlling time varying plants in the presence of plant
uncertainties. The proposed agorithm ensures the robust stability
of the resulting closed loop adaptive control system. The
robustness is achieved by using a normalized identification error
combined with a dead zone and a projection type algorithm in the
adaptive law. Some factors such as d,, « and r(0> affect on the
proposed adaptive algorithm and the best combination of these
factors has been found based on achieving adequate performance of
the closed loop plant.

To show the effectiveness of the proposed algorithm, it |is used
successfully to control the performance of the time varying
aircraft system in the presence of disturbance. A comparison
between the modified adaptive algorithm and the ordinary
nrojection type in controlling the aircraft system is carried out.
From the obtained results, the behavior of the proposed adaptive
control algorithm is robust.
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