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ABSTRACT 

This paper presents a procedure for automated kinematic solution 
of constrained multibody systems such as complex mechanisms 
possessing low or high degree of complexity. The method utilizes 
the properties of constrained mechanisms which relate the 
kinematic characterestics of the individual links to those of the 
respective input link. The procedure developed is non iterative 
in nature and non graphical therefore can be conveniently 
programmed and executed on a minicomputer. 
An example illustrating the concepts of the method is presented. 
The acceleration analysis is executed on the basis of the 
auxiliary acceleration pattern corresponding to constant angular 
speed of the alternative input link. The results are compared 
with those obtained by using two different graphical methods. 

INTRODUCTION 

The traditional approach for the kinematic solution of plane or 
space mechanisms involves the sequential application of the 
relative velocity and relative acceleration equations. However, a 
mechanism which can not be solved by this method directly is 
referred as a complex mechanism [1]. A characterestic feature of 
complex mechanism is the existence of a multipaired floating link 
with at least three moving links as shown in Fig.l. 

Moreover, the complex mechanism is classified as a mechanism with 
low degree of complexity if only one radius of curvature of its 
terminal points is not known, otherwise the mechanism has high 

degree of complexity. 

There are many graphical methods for the-kinematic solution of 
complex linkage such -as the technique presented by Rosenauer and 
Willis [2]. Hall [3] utilized the concept of auxiliary points for 
both velocity and acceleration diagrams. Goodman [4] showed that 
the principle of kinematic inversion can be - used for the 
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(a) 
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Fig.1 Complex Mechanisms 
a) low degree of complexity 
b) high degree of complexity 

graphical solution of complex systems, however his approach fails 
when no inversion of a given system converts it to a simple one. 
Rakesh and others [5] presented a graphical technique which is 
iterative in character and yields the solution within several 
iterations. Other graphical methods include the three-line 
construction [6], Carter's method [7] and the method of normal 
acceleration [8]. 

Only few analytical methods had been offered for the solution of 
sucii mechanisms. Suh and Radcliffe [9] resolvd the analysis of 
complex systems into a superpositions of solutions of two or more 
simpler systems. Gray and Chang [10] developed the former 
technique by incorporating dual slider, slider crank and inverted 
slider crank modules, permitting mechanisms to be analyzed when a 
slider input, e.g. hydraulic or pneumatic cylinder is involved. 
It should be mentioned that the majority of these methods are 
suitable . essentially for mechanisms having low degree of 
complexity. 

This paper presents an analytical method for kinematic solution 
of mechanisms possessing low or high degree of compleity. The 
kinematic characterestics of the individual bodies are determined 
by using the method of multibody system. These characterestics 
may be obtained in both local and global coordinate systems. 
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METHOD OF MULTIBODY SYSTEMS 

Multibody systems are characterized by rigid or elastic bodies 
with inertia as well as springs, dampers and actively controlled 
servomotors. The method of multibody systems is used to simulate 
and design such large scale systems that undergo large relative 
translational and rotational displacements. 

Position Analysis 

A general rigid body is shown in Fig.2, in two 	frames of 

reference. They are the fixed (global or inertial)Xt X2 Xa and the 
...moving (local, rotating or body fixed) Xi X2 X3 frames. 

Fig.2 Global Position of a Point 
on the rigid body 

The position and orientation of the moving frame with respect to 
the fixed one are uniquely defined by six variables (11). The 
global position vector of an arbitrary point P on 	the 1.14' 	body 

can be expressed, in terms of the translation and rotation of the 
body, by the vector r` given by: 

r 	+ 
	 (1) 

where R' 
U 

is the position vector of the origin 3 of the  body 

reference. 
is the position vector of the point F in 	the body 

fixed frame. 

The superscript i refers to body i in the multibody system. The 
orientationof this body with respect to the inertial coordinate 
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.=.1,,stem 	Xi 	X2 	X3 	is 	defined 	by 	the 	3 )( 3 	transformation 	(or 
rotation) 	matrix 	At. 	which 	takes 	the form: 

)s,` - I 	+ "■/- 	sin(&) 	+ 2 V 	sinz(912) 	(2) 

where 	I 	is 	the unit matrix, 
ci 	is 	3X3 skew symmetric matrix 	given 	by: 

v 

0 	—V9 	2  
va 	0 	-v 

—v2 	v1 	0 

T 
where 	V 	(  VI 

V
2 
v3) 	is the unit 	vector 	along 	the 

axis 	of 	rotation. 
(a) 	is 	the 	angle of 	rotation 	of 	the body 	about 	the axis 	of 

rotation. 

The 	rotation matrix 	can 	be written 	in 	different 	forms 	[11]. 	In 
each 	case 	the elements of 	the matrix depend on 	the 	rotational 
coordinates which may be Euler parameters, 	Rodridgues parameters 
and Euler angles. 

Velocity Analysis 

untiol: (1) tiith tprpct to timP lead= to: 

. 	. 
;. -+AG+Ati 
	

(3) 

in which t and R are the absolute velocities of the points P 
and U , respectively. 

If 	w 	and 	w 	are 
moving coordinate systems, 
in 	terms of 	the components 

where 	W 	and 	a 	are 

W 

Furthermore, 	the 	angular 
written 	as: 

-R+AO 

	

the angular 	velocity 
respectively, 

of 	w 	and 

R+ AO +ZIA° 

• 
+A•21,3 

3X3 skew symmetric 

0 
3 

W 	0 3 	1 
—6) 	0 2 	1 

velocity 

a 	as 

0 

m 

vectors 

vectors 
thenr 

matrices 

	

in 	global 	and 
can 	be written 

follows: 

(4a)  

(4b)  

given 	by: 

0 3 	2 ] 
0 3 	1 

--(7) 	(7) 	0 2 	1 

w 	and 	W 	can 	be 
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- H Q 	 (5a) 

_ . 
(-5  " H Q 	 (5b) 

in which the time derivatives of rotational coordinates are 
isolated. The form of equation (5) is general and can be 
developed irrespective of the set of rotational coordinates used. 
This form is commonly used to develop the dynamic equations of 
motion of rigid and deformable bodies in multibody systems. 

Acceleration Analysis 

Differentiating equation (4) with respect to time leads to: 

"a +A -C; + 2 74 6 +W ACI + Z.; t-LAG 
(6) 

where 	U - A 0 is the time derivative of 	, defined in 

global coordinate rdinate system. 
Using the notation: 

a® 
a az  as  

where a 	is the angular acceleration vector, equation (6) 

reduces to: 

•• r • 	
at 	

r 
r R +AU+ 2 (0 U + A0+ 6a w Au 	(7) 

APPLICATION 

The described theoritical approach is applied to a plane complex 
system, that is the ATKINSON engine mechanism shown in Fig.3. 

• The starting point in analyzing such complex system is to apply 
the kinematic inversion to convert it to ,a simple one. 	In this 
case, the input quantities for the inverted mechanism are assumed 
and the analysis is conducted using the presented theoritical 
approach. Then, the true kinematic values for the members of the 
actual mechanism can be calculated on the basis of the follotAng 
important relations, derived by Goodman [1], concerning the 
constrained plane linkage. 

1) The angular velocities and accelerations of links are linear 
functions of the respective "input" quantities: 

The anular velocity of link I may be expressed in terms of the 
angular velocity of the input link i , as follos: 
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• Di Men s 	ri S 1 

a = 22 cm 
b = 10 cm 
A02  = 50 cm 
804 = 40 cm 
AB = 70 cm 
AC = 45.8 cm 
EC = 31 Crri 
CD = 70 cm 

• InDut Values: 

= 60°  
'gyp = 200 	cm/s 

= 12000 cm/ s2  

F i . 	ATP.: I NS(7.0 
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C160L 	dn. 	C1.99L 	dwL  
WL dt ▪ dr . , dt 

	

where the coefficient IS 	is a purely geometrical property of the 
configuration, orphase, of the mechanism. Therefore, the 
velocities constructed with different input quantities are 
similar for the same phase of the system. 

The angular acceleration of link l is given by 

	

Kg% W2 
+ aL (4) 
	

(9) 

—\ 
where Al  , too, is a geometrical property of the configuration of 
the linkage. 

Equation (9) can be written in the form: 

0t 	a
1 	

+ IXi 	 /co
i 
	

(10) 

where the superscript * is used to indicate that the particular 

quantities has been determined by means of an auxiliary 

acceleration pattern, constructed on the basis of the actual 
velocities but with zero input acceleration. 

2) The rPlative angular velocities and accelerations of links are 
not affected by a direct kinematic inversion of the linkage. 

Equation (10) can be written as: 

0 
c■ a +a w /w 

	

Lp Lp tp Lp 	 (11) 

because the term absolute is relative to the stationary frame p 
In this form, equation (11) is applicable to any direct inversion 
of the mechanism. Consequently, the symbol p is no longPr 
rP.r.trir.tPd to 	the fixed link and the symbol 	i 	indi cates. the 
alternative input link with zero acceleration. 

KinPmatir. Solution of the !=;,,,,,,tem 

The configuration of the shown mechanism is determined by using 
equations 	(1) 	and (2) in conjunction with the method givPnbySuh 
and Radcliffe [], where the complex mechanism under study 
decoupled into two simple linkages of fou• bar and slider crank. 
The configuration of the systeri is, thus, given by: 

	

e2— 135 	

• 	

03■ 290 

• 30° 	240* 



Equation (7) 
in successive manner and the results arm: 

used 

a

• .

= -103,083 •ad/82  
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The alternative input link is assumed to be the crank 
	which rotates with an angular velocity 	W 	- 10 rad/s 	. 	The 2 negative sign indicates clockwise direction. 

The angular velocities of the individual linki are calculated by 
successive application of equation (4). Then, 

W
5 - -7.003 rad/s 

w • - -5.365 rad/s 4 

W
5 • ° 10.1 	rad/s 

Moreover, the corresponding velocity, of the slider P. 
is: 

V
D • - 64.502 cm/s 

Consequently, 	
the true angular velocity of link 2 	determined by using Goodman's relations. So, 

2 -31.007 rad/s 

co -21.714 rad/s 

W`  - - 6.635 rad/s 

5 - 31.317 rad/s 
Auxiliary Acceleration Pattern 

The angular accelerations of the links are calculated assuming 
constant input angular velocity for the alternative input link 

- 31.007 rad/s 2 

a4  * 316.528 rad/s2  

a * 1344.607 radis 5 

a - 14510.224 CM/S 
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Application of equation (10) leads to the determination of the 
true values of OK. : 

a
2 
 ■ 389.138 rad/s

z 

a9 °' 169.428 rad/s2  

a - 525.297 rad/s2  4 

as = 951.579 rad/s2  

The presented technique is simple and more accurate than the 
available graphical techniques. For the purpose of comparison, 
the same mechanism is solved by using two different methods. The 
first one is based on Goodman's relations in which the auxiliary 
acceleration diagram is drawn. The solution of the system by this 
method is shown in Fig.4. The second method is the graphical 
iteration technique. The procedure of solution using this method 
is shown in Fig.5. 
The results -obtained by using the three methods, for the same 
phase of motion, are given in Table 1. 

I 
Auxiliary 
diagram 

Graphical 
iteration 

Proposed  
technique 

wz -30.6 -31.5 -31.007 

ws  -21.4 -22.1 -21.714 

w4  -16.4 -16.8 -16.635 

W5  31.2 31.4 31.317 

vD  200 200 200 

a2  389.2 380 389.138 

as 175.7 178.6 169.428 

a4  512.5 525 525.297 

as 
 

978.6 931 951.579 

aD  12050 12000 12000 

Table 1 Results of Kinematic Solutions 
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ML  = 10 	CM/CM 
my  = 100 cm =."1/cm 
ma  = 1000 cm =.-2/cm 

a) Velocity diagram 

bY Auxiliary Acceleration 
diagram 

c) True Acceleration 
diagram 

Fic;. 4 Solution br Uzinc: 
Diagram 



b-line 

A) Velocity iteration 
mv

= 40 cm s /cm 

. 

-.1.1ne: 

b) Acceleration iteration 
m
a
= lone cm =71.(cm 

a'-line 

FOUk1'H 
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aD 

F 9. 5  Solution by Using Graphical Iteration 



I

DY  -41 314 I FOURTH ASAT CONFERENCE 

14-16 May 1991. CAIRO 

 

CONCLUSION 

General expressions for the kinematic analysis of plane or space 
multibody systems have been presented. The equations can be 
applied to machines, mechanisms, robots and all kinds of 
vehicles. The position, angular velocity and angular accelg.ratinn 
of any body in the system can be determined by simple matrix 
multiplications. Consequently, the governing equations of motion 
can be constructed. The proposed technique is. applied for 
kinematic analysis of mechanisms with any degree of comple ity. 
The technique is simple, 	

easy implemented on minicomputer and 
yields to accurate and rapid results. 
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