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KINEMATIC ANALYSIS OF COMPLEX MECHANISMS

BY THE METHOD OF MULTIBODY SYSTEMS

ELIMAM® and  ASABDEL MOHSEN®

ABSTRACT

Thiz paper presents & procedure for automated kinematic solution
of constrained multibody systems such as complex mechanisms
pocscsessing low or high degqree of complexity. The method utilizes
the properties of constrained mechanisms which relate the
kinematic characterestics of the individual links to those cf the
respective input link. The procedure developed is non iterative
in nature and non graphical therefore can be conveniently
progr ammed and executed on a minicomputer.

An example illustrating the concepts of the method is presented.
The acceleration analysis 1is executed on the basis of the
auxiliary acceleraticn pattern corresponding tc concstant angqular
speed of the alternative input link. The resultz are compared
with those obtained by using two different graphical methods.

INTRODUCTION

The traditiconal approach for the kinematic eoluticon of plane or
space mechanisms involves the sequential application of the
relative velocity and relative acceleration equations. However, a
mechanism which can ' not be solved by this method directly |is
referred as a complex mechanism [1]. A characterestic feature of
complex mechanism is the existence of a multipaired floating link
with at least three movimg links as shown in Fig.l.

Moreover, the complex mechanism is classified as a mechanism with
low degree of complexity if only one radius of curvature of its

terminal points is not known, otherwise the mechanism has high
degree of complexity.

There are many graphical methods for the kinematic solution of
complex linkage such as the technique presented by Rosenauer and
Willie [2]. Hall [3] wtilized the concept of auxiliary points for
both velocity and acceleration diagrams. Goodman [4] showed that
the principle of kinematic inverzion can be  used for the
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Fig.l Complex Mechanisms
) low degree of complexity
b) high degree of complexity

graphical sclution of complex svstems, however his approach fails
whern no inversion of & given sustem converts it to a simple one.
Rakesh and others [S5] presented = graphical technique which s
iterative in character and vields the soluticn within several
iterations. Cther graphical methods include the three-line

construction [6], Carter’z method [T]1 and the method of normal
acceleration [&).

Only few analytical methods had been offered for the scluticn of
sucti mechanisms. Suh and Radcliffe [2] resolud the analwsis of
complex syesteme intc = superpositions of sclutions of two or more
cimpler esystems. Gray and Chang [10] developed the former
technique by incorporating dual zlider, elider crank and inver ted
slider crank modulesz, permitting mechanisms to be analyvzed when &
zlider input, e.9. hydraulic or pneumatic cylinder is invelved.

1+ =zhould be menticned that the majority of these method: are
zui table ezsentially for mechaniemsz having low degres of
complexity,

Thie paper presents an analvticsl method for kinematic =clution
of mechanizmz posceszing low or high degree of complexity. The
kinemstic charactereztics of the individual bodies are determined
Ew  wsing the methoed of

a
f multibody zuvs=tem. Thess characterestics
may be obtzined in both locsl and globsl cocrdinats swztems.
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METHOD OF MULTIBODY SYSTEMS

Multibody s=systems are characterized by rigid or elastic bodies
with inertia as well as springs, dampere and actively controlled
cervomotors. The method of multibody systems is used to simulate
and design such large scale systems that undergco large relative
translational and rotational displacements,

Position Analysis

A general rigid body ie =hown in Fig.2, 1in two frames of
reference., They are the fixed (global or inertial) X+ Xz Xs and the

_moving (lecal, rotating or body fixed) X1 Xz Xs frames.

Fig.2 Global Fosition of a Point
on the rigid body

The position and crientation of the moving frame with respect to
the fivxed one are uniquely defined by six variables [11]. The
global position vector of an arbitrary point P on the s body -
can be expressed, in terms of the tranzlation and rotation of the
body, by the wector p' given by:

i L Lk
r =R + AU (1)
where R' i= the poesition vector of the origin 0 of the bDody
_;, reference. '

iz the pozition wector of the point P in the bicdy

fixed frames.
The superzeript i refers to bedy 1 1n the multibody zwstem, The
crientation of thisz body with respect tao the inertisl coordinate
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system X4 Xz X3 is defined by the 3 X3& transformation (or

rotation) matrix AL which takes the form:

A =1 +7 sin(®) + 2 ¥ 8in?(6/2) (2)

where I is the unit matrix,
v i3 3X2 skew symmetric matrix given by s

. N 0 . v,
vV - v, 0 .
-V v 0
i

T
where VY © ( Yy VZ V3] is the unit vector along the

axis of rotation.
(8) is the angle of rotation of the body asbout the axiz of

rotation.

The rotation matrix can be written in different forme [11]. 1In
each case the elemesnts of the matrix depend on the rotational
cocrdinates which may be Euler parameters, Rodridgues parameterc
and Euler angles.

Velocity Analysic

Differentiating equation (1) with reepect to time leads tos
= q I

F=R+AU+AD (3)

in which r and R are the absolute velcrities of the points P
and O , respectively,

If w and are the angular velocity vectors in global and
moving coordinate systems, respectively, then r©r can be written
in terms of the components of w and @ az follows:

r=R+AU+3A0 (4a)
F=R+AG+AST (4b)
whers @ and & are 3X2 skew symmetric matrices given bv:

0 ) w - @
3 2 ~ 0 3 2
w = w 0 - o o= PRy 0 -
3 i 3 1
- w 0 -G @ 0
i 2 i
Furthermore, the angular weloccity vectors w and w can  be

Writften asz:
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w=HQ ' (5a)

o =HQ (5b)

in which the time derivatives of rotational coordinates are

icolated. The form of equation (3) is general and can be

developed irrespective of the set of rotational coordinates used.

This form is commonly used to develop the dynamic equations of
- motion of rigid and deformable bodies in multibody systems.

i »

cceleration Analvsis

Differentiating equation (4) with respect to time leads to:
;-§+A‘rj'+z$og+aAU+$$AG (6)

where Ug = AU ic the time derivative of y , defined Iin
global coordinate csystem.
llsing the notation:

& = ©
T
= | @, % as]
where g ie the angular acceleration wvector, equation (&)
reduces to:
FeR+AD+2D0, +2AT+EEAD (7)
APPLICATION

The dezcribed theoritical approach is applied to a plane complex
system, that is the ATKINSOM engine mechanism shown in Fig.3.

"The starting point in analyzing such complex system is to apply
the kinematic inversion to convert it to a simple cone. In this
case, the input quantities for the inverted mechaniesm are assumed
and the analysiz iz conducted using the presented theoritical
approach. Then, the true kKinematic values faor the members of the
sctual mechaniem can be calculated on the basis of the following
important vrelations, derived by Goaodman [1], concerning the
constrained plane linkage.

"i
w
-
i
—
= 5
U
w
==

1% The angular velcocities and accelerations of links
functions of the respective "input" quantities:

-t

The snulsr weleocity of link U may be exp

ed 1n terms o the
sngular velocity of the input link + , &% c
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®Dimenzione:
—hZilons

a = 22 cm
b =10 cm
A0 = S0 em
BQ, = 40 crm
AB = 70 cm
AC = 45.8 cm
BC = 21 i
CD = 70 cm

& Input Yalues:

y = GDO
Vp = 200 cmse
3p = 12000 emsg?

Fig. 2 ATK INSON Frajn =
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de, de, de, de,
W = L - W
dt dpl dt dPL i
’ =ty % (8)
where the coefficient K1 iz a purely gecmetrical property of the
configuration, or phase, of the mechaniszm. Therefore, +the
velocities constructed with different input quantitiesz are

zimilar for the same phasze of the syztem.
The angular acceleration of link Ll i= given by:
= K & (9)
o Kl. w, + o col/oo,L

Y
whers

]
the linkage.
Equaticon (9) can be written in the form:

too

s+ 12 a geometrical property of the configuration of

b T % e wl/m,[ (10)

where the superscript o iz used to indicate that the particular
quantitiecs hazs been determined by means of zn auxiliary
acceleration pattern, constructed on the basis of the actual
velocities but with zero input acceleration,

-

€} The relative angular velocities and accelerations of links are
not affected by a direct kinematic inverszion of the linkage.

o

\ ]
|

Equation (10) can be written as:
o

(= Y T e | ' -
tp \p ke Yip /s (11)

because the term absolute is relative to the Stationary frame p .
In this form, equation (11) is applicable to any direct inversion
of  the mechanism, Consequently, the =sumbol ¢ iz nao longer
restricted to  the fixed link and the sumbol i indicates the
alternative input link with zero accelerstion.

Kinematic Solution of the System

The configquration of the shown mechanism iz determined bv using
equUatIOon: r1d and (2} in conjunction with the method Qiven by Suh
and FRadcliffe [2], where the complex mechanism under study  is
deccupled into two simple linkages of fou bar and =lider crank .
The configuration of the svster: is, thus, 3iven by:

8 = 135° , & = 290°

& = 30° ; & = 240°
4 5
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The alternatiyve Input link j= sssumed to be the crank 2 wWwhich
rotates with an angular wvelocity WX - 10 rad/s . The
neqative zign indicates clockuwice direction,

The angular velocities of the individual links are e

alculated by
successive application of equation (4), Then,

w
wy, = =7.003 rad/s

w: = -5.365 rad/s

w; = 10.1 rad/s

Mereover, the corresponding velacity of the slider € jisg;

"

Vo = 64.502 cm/s

Consequently, the true angular velocity of link 2 ie determined
by using Goodman’s relationg, So,

4. = =31.007 rad/s
W, = =21.714 rad/s
w, = = 6.635 rad/as

w, = 31.317 rad/s
Auxiliagry Acceleration Fattern

The angular accelerations of the linke
constant input angular velocity

@, = = 31.007 rad/s

are calcuylsted a3szuming
for the dlternative input 1ink

Equation (7) is used in sUccessive manner and the resultz are:

, = =103.083 rad/s

K
1}

Q
(]

« = 316.528 rad/s’

A, = 1344.607 rad/s?

o
]

p = 14510.224 cm/s?
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Application of equation (10) leads to the determination of the
true values of O¢ 2
¢ a, = 389.138 rad/s

o = 169.428 rad/s”

525.297 rad/s-

Q
]

a 951.579 rad/sz

The rpresented technique is simple and more accurate than the
available graphical techniques. For the purpose of comparison,
the =zame mechaniem iz solved by using two different methade.,  The
first one is based on Goodman’:z relations in which the auxiliary
accelerstion diagram iz drawn. The solution of the system by this
method iz shown in Fig.4. The second method is the graphical
iteraticn technique. The procedure of solution using this method
ie shown in Fig.S.

The results obtained by using the three methoeds, for the same
phase of motion, are given in Table 1.

Auxiliary Graphical Proposed

diagram iteration technique
w, -30.6 =31.5 =31.007
w, -21.4 -22.1 -21.714
o, |  -16.4 ~ -16.8 -16.635
W 31.2 31.4 , 31.317
v, 200 200 - 200
o 389.2 380 389.138
a_ 175.7 178.6 169.428
a, 512.5 525 525.297
a_ 978.6 931 951.579
a, 12050 12000 12000

Table 1 FResultz of Kinemsatie Sclutions
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my = 10 cri eI
my = 100 em ="7em
Mg = 1000 cm = 2/ cm

Ve

bBY Auxiliary Acceleration
di=gram

0N\
G\ i

N\,

.

c) True Acceleration
diagram

‘ o&

Fig., & Solution by Usy
4

RoCceleration
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////f Uelocxtn 1teratzon

m, 40 cm ’cm

b) Acceleration 1teration
My = 1000  cm =em

A\ §
a-line

Fi' . b’ = 1 i
3. S Solution bv Using Graphical lteration
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CONCLUSION
General exprescions for the kinematic analvsis of plane ar space
multibody systemz hauve been presented. The equations can  he
applied tao machines, mechanisme, roebots  and  all kinde of

vehiclez, The position, angular velocity and angular sccelerstion
of  any  bady  in the sustem can be determined By simple martyris
multiplications. Consequently, the governing equaticns of matian
can be consztructed. The Froposed technique s applied fay
kinemaric analvsis of mechanisms With anuw degres of complexity,
The technique ic simple, =gy implemsnted or rminlicomputer ang
v1elds to accurate and rapid rezulte,
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