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ABSTRACT 

The shock dynamic response of structures subjected to projectile 
impact loading has been recognized by engineers as long as a 
quarter of a century ago. Several computer programs have been 

develped to evaluate the loading history ( the reaction versus 
time curve ) for impact projectiles (missiles and aircrafts) 
impinging against fixed or moving targets. Here, the Finite 
Element Method with special gap element is used for prediction of 
reaction vs. time curve as well as the displacement, velocity and 
acceleration response of different points of the projectile. It 
is shown that the reaction-time curve at, the interface can be 
reliably predicted. First a problem of elastic impact of a 
uniform bar has been solved analytically and numerically and the 
results showed good agreement. Another problem of practical 
interest is the dynamic impact of Phantom airplane hitting upon 
a rigid 	barrier. This problem is solved with three different 
options, first with linear elastic material, second with 
nonlinear elastic-plastic material and third with consideration 
of large displacement, finite strain plasticity and updated 
Lagrange analysis. The results of FEM are compared to those 
obtained w:th the well known Riera and lumped mass approaches. 

INTRODUCTION 

The safety design of a building (nuclear power plant, dam s ... 

etc) for the case of impact by crashing airplanes, aircraft 
debris, missiles,etc,, requires detailed information of the forces 
which are exerted upon the building hit by these projectiles. 
When one assumes both a non deformable projectile and a massive 
target, then all of projectile's kinetic energy is available to 
penetrate the target. With a deformable projectile or a non-
massive target a portion of projectile's kinetic energy is used 
to deform the projectile and the target and this reduces the 
energy available to penetrate the target. 

The pioneering paper on airplane impact on nuclear shielding 
structures was written by Riera [1] . Several authors have 
refined the simple assumptions of Riera and a comparison with 
lumped mass approach is given by Wolf et al [2] for the case of 
Phantom airplane crash. 
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Simplifications concerning the material properties of the 
projectiles and their structure yield in most cases too high 
values for the impact forces. Drittler and Gruner [3,4] presented 
models which allow all relevant influences that affect the load- 
time-function resulting from impact of a projectile upon a rigid 
building or a structural part to be incorporated. The computation 
algorithm is based on a difference method. The projectile model 
has to be divided into elements along the flight trajectory. 
Different elastic and plastic material properties for each ,  

element can be taken into account. Strongly deformed elements are 
assumed to become separated from the projectile. In a paper by 
Bignon and Riera [5] the basic hypothesis introduced in the 
theoretical solutions of three different programs have been 
subjected to extensive checks by comparing the results obtained 
with available experimental data using reduced scale missiles. 

In most structural shock dynamic problems, the rate of 
application of the load is small in comparison with the velocity 
of stress/strain propagation. Therefore the entire structure 
responds to the loading condition immediately and wave 
propagation is not a consideration in the solution. 	If the load 

is applied at a high rate ( as in case of impact of projectile 
e3ainst rigid targets) the propagation of stress/strain waves 
must be considered in the problem so/ution. The major differenc? 
between a wave propagation problem and a structural dynamic 
problem is the number of modes that significantly contribute to 
the response of the structure. In structural dynamics, only a few 
lower frequencies are excited. Therefore only these lower modes 
contribute significantly to the response of the system. In a wave 
propagation problem, a large number of frequencies are excited 
and significantly contribute to the structural response. For this 
reason modal analyses generally do not yield cost effective 
accurate results in the wave propagation analysis and a direct 
numerical integration procedure must be utilized [6,7]. 

The Finite Element Method has been used in elastic wave 
propagation for a long time [ 8 ]. The wave propagation was later 
extended to include nonlinear material properties [ 9 ] and large 
displacement [ 10, 11 ]. For impact problems involving elastic 
plastic flow with large displacement, the finite difference and 
finite element formulations have many similarities. Both are 
Lagrangian methods and both are susceptible to numerical 
instability. FEM , however , is more advantageous because complex 
geometries , boundary conditions , and material variations can 
readily be represented .The limitations of the finite element 
approximation are studied by different authors [12,13,14]. One of 
these limitations is the fact that spurious reflection takes 
place at the interface between any two finite element grids with 
different sizes. However, this problem can be mitigated by using 
higher order elements as well as. by inserting a transit zone 
where element sizes changes gradually. 

For impact problem involving elastic-plastic (nonlinear) material 
behaviour the propagation of stress waves is a very complex 
phenomenon. The plastic stress wave travels at a much lower 
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velocity than the elastic portion of the stress wave and will 
therefore lag behind it.The solution of the elastic-plastic large 
deformation problems using total Lagrangian approach [15] shows 
inadequancies in treating finite strain plasticity problems 
because the rate equations of-plasticity are readily expressed 
with respect to the current configuration using Cauchy stress as 
opposed to the initial, configuration using Kirchhoff stress. The 
updated Lagrangian technique as proposed by McMeeking and Rice 
[16] was developed to overcome this difficulty [17]. This 
approach permits a correct treatment of plasticity constitutive 
law because at each instant the reference state is updated to 
coincide with the current state. 

In this work, analysis of stress wave propagation due to impact 
loading of a deformable projectile and rigid wall using FEM and 
special Gap element is given. First, a problem of elastic impact 
of a uniform bar is solved analytically and numerically. Another 
problem of practical interest is the dynamic impact of fast-
flying airplane hitting against rigid barrier. This problem is 
solved with three different options : first with linear elastic 
material, second with nonlinear elastic-plastic material, and 
third with consideration of large displacement, finite strain 
and updated Lagrange analysis. The results are compared together 
as well as to results of conventional approaches. 

BASIC EQUATIONS 

Nonlinear Equations of Motion 

The FEM can be used to derive the mechanical equations governing 
the deformation of a structure under impact loading. The 
principle of virtual work as applied to dynamic phenomena 
(inertia terms are included ) may serve as the starting point for 
the development of finite element expressions. In a next step 
stresses are related to strains via constitutive equations. Under 
crash conditions , certain materials exhibit inelastic properties 
while elastic contributions to overall strains are negligible. In 
such cases.it is often advantageous to disregard entirely elastic 
effects and to deal with an exclusively inelastic 	material 
model. For brevity of presentation, it suffices to quote the 
final equation governing the impact motion and deformation of 
the structure discretized by FEM in the form 

M u+ C u+ S(u) = f 	 ( 1 ) 

This equation can be linearized for a finite domain of time i t 

Mcdi + C 	+ Keu =&f. 	 ( 2 ) 

Where 	M,C,K are the mass, damping, and instantaneous stiffness 
matrices 

S(u) is the vector of internal nodal forces 
f 	is the vector of external nodal forces 

• 	•• 
u, u, u are position, velocity, and acceleration vectors 

For details, however, interested readers are refered to [18]. 
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Once the discreized equations governing the ;:esponse of the 
strueture deforming under impact are established , numerical 
methods are applied for their solution. In this study, the 
nonlinear equations,together with boundary and initial conditions 
are solved using the Newmark-°Q method of 	implicit 	time 

integration [19] with e = 0.5 and /6 = 0.25 . The Newmark- P 
operator can effectively give solutions for linear as well as 
nonlinear problems for a wide range of loading types. While this 
method 	is unconditionally stable for linear 	systems , if 
nonlinearity occurs, instability may develop. That is why this 
operator may be used with adaptive time step control. By reducing 
time step and/or adding stiffness damping we can overcome these 
problems . The generalization of the operator is: 

un+1 = 
u n 

+ aitbt
n 
+ (0.5 -0) 	t 2  1:1"

n 
+13 ,t,t 26*

n+1 	
( 3a ) 

•• 
un+1 	n 

+ (1- ) t un +t.e• t n+1 	
( 3b ) 

The particular form of the dynamic equations corresponding to 
the trapezoidal rule ( 	e 0.5 and 	= 0.25 ) results in : 

[ ( 4/At
2
) M 	( 2/At ) C 	K ] pu

n+1 

ti f + M [ 2 Un  + ( 4/46.t)U n] + 2 C Un 	( 4 ) 

Equation ( 4 ) allows implicit solution of the system 

un+1 	
u 	+ u 
	

( 5 ) 

The above operator has effectively converted a nonlinear second 
order differential equation ( 1 ) into a set of incremental 
algebraic equations linearly approximated at discrete instants 
( 4 ). Once the solution of the nodal incremental displacement 
become available, the corresponding stress components in the 
elements will be computed from the constitutive equations. The 
total strains and stresses can be evaluated from the 
eorresponding ncremental values as 

4 	= € 	A- v E 	 ( 6a ) 
n -n4-1 

n+1 
= F

n 
+ AC)- 	 ( 6b ) 

Maintaining a numerically stable solution for dynamic problems 
is generally accomplished by using a numerical integration time 
increment which is sufficiently less than the lowest period of 
vibration of the system. However, it is usually not computation-
ally feasible to determine the natural frequencies due to many 
degrees of freedom. Furtheremore because of large strains and 
displacements, the frequencies are not constant but rather vary 
as solution progresses. Since an assemblage of elements will 
never have periods of vibration less than that of individual 
elements, a lower limit for the lowest period of vibration can be 
established by obtaining the periods for individual elements. 
Therefore, the maximum time increnent is selected so that the 
stress wave propagates the distance between element integration 
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points within that time increment. 

Atmax 
= ( Le 

/ 2)/ c 	 ( 7 ) 

Where Le 
is the length of an element in the direction of wave 

propagation 
c 	is the velocity of wave propagation. 

From experience [20] 

t < 	(1 / 3) Is tmax 	 ( 8 ) 

yields accurate results. 

The velocity of wave propagation in one dimensional elastic 

medium is given by: 

/17.ca 	 ( 9 ) 

However, the velocity of wave propagation in plastic medium is a 

function of the slope of a- - E curve and is defined by : 
I( -a 671E )/.13  

Gap Element Equations 

( 10 ) 

   

The contact with a fixed surface is one of the nonlinear boundary 
conditions which occur during impact of projectiles and a rigid 
target. This problem may be solved in the FEM through the use of 
so called special Gap (contact) element. The modeling of the gap 
(contact) element is based on the imposition of kinematic 
constraints. The minimization of the total potential energy is 
subjected to these constraints. This necessitate the introduction 
of Lagrange multiplier and the solution of an expanded system of 
equations. During evaluation of the stiffness matrix the gap 
status is based on the estimated strain increment. The gap status 
is checked again after solution is obtained during recovery of 
the 'strains and stresses. 	Let the system equation in static 

analysis 

K u 	= f 

be subject 	to constraint condition 

( 11 ) 

C u 	= 0 ( 12 ) 

Through minimization of the augmented functional 

^e= (1/2) uT K u - u
T f

T c u 

we obtain 

( 13 ) 

( 14 ) 
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This equation can be solved simultaneously for both 
( displacement ) and X( Lagrangian multiplier ). In the gap 
(contact) element, the values of the Lagrangian multipliers 
represent the normal and frictional gap forces as well as 
frictional slippage. The Gap-Element can be used in dynamic as 
well as static analysis. However, in dynamic impact care should 
be given to the application of law of conservation of momentum 
for the calculation of velocities and accelerations of contact 
nodes in the case of closed gap. 

APPLICATIONS 

Example 1 : Impact of an Elastic Bar 

In order to test the capability of the FEM with Gap element to 
calculate the reaction force versus time , the case of impact of 
homogeneous bar with linear elastic material was considered 
because of availability of analytical solution and existance of 
s,onlinpar boundary condition. The bar has the following data: 

L = 10 m 	A = 0.03 m
2 f = 26800 kg/m3  

m = 9040 kg , E = 63.8 GPa 	, 	V = 0.3 

v
o 
= 215 m/s , c = 	= 1542.9 m/s 

With this data, one obtains analytically (3] the reaction force 
, to be : 

F = J'A c v. = 266.7 MN 

and the duration time : 

= 2 L/c = 0.013 sec = 13 ms 

The momentum transfered to the rigid wall during elastic impact 

1 = 2 m v 	= 3.457 MNs 

This AI is known to be equal to the impulse F At-  . 

Using the FEM , the bar is modelled as a 30 linear ( two-node ) 
straight truss ( bar ) elements and one gap element at the 
interface with rigid wall. The equations of motion are derived 
and integrated for period of 20 ms using 200 increments of 0.1 ms 
each. The reaction force versus time curve is obtained ( Fig.1 ). 
The agreement of FEM results and analytical solution appears to 
be satisfactory. 

Example 2 : Crash of Phantom Airplane 

In this example , we study the calculation of the reaction force 
resulting from impact of fast-flying airplane upon a rigid wall. 
The case of Phantom airplane is considered because of availabil- 
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ity of data and results with other approaches [2,3,4]. For 
Phantom airplane it is given ( Fig.2 ) : 

1- The mass distribution per unit length amounting to a total 
of 20 000 kg. 

2- The distribution of the supporting cross-section area A. 

3- The material behaviour ( E = 68 GPa , H = 3 GPa ,GY= 500 MPa) 

4- The initial impact velocity vo  = 215 m/s. 

This problem is solved using simple one-dimensional model 
together with gap element. The following three cases are employed 
for the solution: 

Linear elastic material model. 
Nonlinear elastic-plastic material model with small 
strain theory and total Lagrangian technique. 
Nonlinear elastic-plastic material model with large 
displacement, finite strain, and updated Lagrangian 
technique. 

The integration of equations of motion is performed for 100 ms 
using 500 increments of 0.2 ms each. The reaction force versus 
time curve is given for different cases in Fig.3, and compared to 
other approaches in Fig.4. The displacement and velocity vs. time 
curves for point A ( front of airplane ) and point B ( rear of 
airplane ) are given for different cases in Fig. 5,6 . 

DISCUSSION OF RESULTS 

From the results of example 1 ( Impact of Elastic ear), one may 
conclude that FEM with gap element can be used for reliable 
prediction of the reaction force at interface with rigid wall. 
However v in practical applications with material and/or geometric 
nonlinearities as in examlpe 2 ( Crash of Phantom Airplane ), the 
problem is more complicated. The results of the three cases are 
different which means that one should properly select the approp-
riate model. In case 1 ( linear elastic material ) the maximum 
value of the reaction force is 671.6 MN which is 4.74 times 
higher than that of case 2 ( nonlinear elastic-plastic material). 
Of coarse, case 1 assumption is only theoretical and is given to 
manifest the importance of nonlinear treatment of this type of 
problems. 

In case 2 ( elastic-plastic ), the maximum value of. the reaction 
force ( 141.8 MN ) as well as the general behaviour of the force 
versus time curve are in good agreement with the results obtained 
from Rierra and lumped mass finite difference approaches [2,4] 
(Fig.4). However, this model is different from real condition 
of airplane crash where large displacements and large (finite) 
strains takes place. Using the capabilities of nonlinear FEM a 
proper combination of large displacement, finite strain, and 
updated Lagrangian analysis ( case 3 ) gives a more realistic 
model. The results of this case gave a maximum force of 283.7 MN 
which is 2 times higher than that of case 2. In a trial to use 
only large displacement option with elastic-plastic material 

Case 1 : 
Case 2 : 

Case 3 : 
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model, it has been recognized that the solution was susceptible 
to greater oscillations and instabilities, where convergence was 
difficult to achieve, 

The comparison of displacement and velocity versus time 	curves 

of two points on airplane ( A: front and B: rear), in case 2, 
showed that at begining of impact point A is stopped immediately 
while point B continued to move towards the wall and reached a 
maximum compression of 7.2 m after approximately 50 ms . After 
that time the wave reflected and the point B started motion far 
from the wall. In case 3, however, the point B moved towards the 
wall and reached a maximum compression of 5.15 m after 30 ms. 

CONCLUSIONS 

From previous work, we can recapitulate the following conclusions: 
1- The reaction force of impact of deformable projectile against 

a rigid wall can be reliably predicted using the FEM together 
with gap element. This force can be used as input for dynamic 
response calculation of target structure. 

2- In spite of the fact that we used only simple one-dimensional 
models, the procedure can be easily extended to the treatment 
of complex geometries ( two- and three-dimensional models ). 

3- In elastic-plastic problems, the stress wave is not only 
reduced in intensity but it is also lengthened due to reduced 
velocity of the plastic portion of the wave. 

4- The 	nonlinear elastic-plastic material model 	which 	is 
equivalent to conventional lumped mass method gave lower value 
of the maximum force than that obtained by considering large 
displacement, finite strain and updated Lagrangian analysis.It 
may be, therefore, recommended to use the force obtained from 
the combinations of opions as in case 3 in order to achieve 
conservative design. 
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