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Abstract: 
An ARMAX augmented UD identification (AUDIX) algorithm for systems identification is developed to 

identify an ARMAX model by rearranging the regressor and parameter vectors and augmenting the covariance 
matrix of Bierman's UD factorization algorithm. The structure of the AUDIX is particularly easy to interpret 
and it is a direct extension of the augmented UD identification (AUDI) which is a direct extension to the 
Recursive Least Squares (RLS) algorithm. The proposed algorithm permits simultaneous identification of 
model parameters, disturbed by a noise model, plus loss functions for all orders from 1 to n I at each step with 

approximately the same calculation effort as n th  order RLS, in addition it has a fast convergence rate than the 
AUDI. Simply, this AUDIX algorithm is a least-squares estimator, with the same numerical properties as those 
of Bierman's UD factorization algorithm. In addition, its structure and implementation are more 
straightforward and easier to analyze than the UD algorithm. Therefore, the AUDIX provides a convenient and 
efficient basis to be used on-line in Self-Tuning or adaptive control algorithms. This is because in real 
applications no guarantee that it will be free from disturbances and measurement noises in addition to 
stochastic environments. Thus, the objective is to estimate the parameters of the model which best fit a set of 
observed or measured data. This model is time-varying and is used to determine the parameters of the 
controller to cope with the changing process characteristics. This algorithm is utilized with the self tuning 
control of an aeroengine and proved robustness to numerical singularities in addition to fast and good tracking. 
The paper contains some of the results with a general example showing the good convergence and tracking for 
this algorithm. 
Keywords: Systems Identification, Recursive Techniques, UD Factorization, Adaptive Control. 

1- Introduction: Most adaptive systems are based, explicitly or implicitly, on recursive identification [5,6,8,161. That is 
Recursive Parameter Estimation (RPE) techniques are required when a process model is to be constructed 
based on a limited set of data which lead to the availability of an estimated model of the process at all times. 
Therefore, the problem is that: given a set of observed data/variables and it is required to estimate the 
parameters of the model which best fit these data in some sense given that the model structure is predefined. 
This time-varying model is used to determine the parameters of the {also time-varying) regulator/controller. In 
this way the regulator will be dependent on the previous behavior of the process and it should adapt to the 
changing process characteristics. 

The parameter estimates of a dynamic system may be computed using either On-Line methods which compute 
the parameter estimates recursively in time i.e. if there is an estimate 0( t — 1) based on data up to time (t-1), 

then 0(t) is computed by simple modification of 0(t — 1), or Off-Line or Batch methods in which all the 
recorded data are used simultaneously to find the parameters' estimates. The field of system identification is 
filled with limitless number of different algorithms, the choice between them depends on some factors among 
them are model complexity, noise-to-signal ratio, convergence rate, and computational expense. Recursive 
Least Squares (RLS) is the most widely used parameter estimation algorithm because of its conceptual 
simplicity, ease of implementation and relatively fast convergence rate [1,2,4,91. However, the basic RLS has 
also a number of shortcomings such as poor numerical performance. One of the most successful algorithms for 
improved numerical performance is the Bierman's UD factorization algorithm [1,9,14,151. However, this 
algorithm is not widely used due to its complexity for interpreting and implementing. Therefore, it is extended 
by rearranging the order of the regressor and parameter vectors and augmenting the covariance matrix to yield 
the ARMAX augmented UD identification algorithm (AUDIX). 
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Fig. 1: System model in ARMAX form 

(3) 

Proceedings of the 7th  ASAT Conf. 13-15 May 1997 I GC-3 I 630 I 

 

The idea of this paper is motivated due to the need for ARMAX models in Self-Tuning process and the poor 
results obtained using the AUDI algorithm. This is because in real applications no guarantee that it will be free 
from disturbances and measurement noises in addition to stochastic environments. The paper shows that the 
UD algorithm can be directly related to the familiar RLS algorithm and can be easily extended by rearranging 
the order of the regressor and parameter vectors and augmenting the covariance matrix. This rearrangement 
yields the proposed ARMAX augmented UD identification algorithm (AUDIX) which 

I. Simultaneously estimates the parameters and loss functions for all ARMAX model orders from I to 

n; where n is a user specified upper limit for the model orde4 with approximately the same 
computational effort as n th  order RLS , 

2. is inherently a least-squares algorithm , 
3. has good numerical properties and stability , 
4. is much easier to interpret and understand than the original UD algorithm. 

2- Problem Formulation: 
A dynamical system, with the configuration shown in Fig. 1, can be described by the following linear difference 
equation: 

A(z-1 )y(t) = B(z-')u(t)+ Cd  (Z-1  )C(t) 

where; u(t) represents input signal to the system. y(t) represent output signal from the system, and C(t) 
represents some disturbance acting on the system output. The system polynomials are defined as follows: 

A(z-I ) = 1+a,z-1 + 	+a..z-"• 

13, (z-' ) = 1), 4- b2 z-I  + 	+1)„.z-nb 

B(z-I  ) 	= z-kBk 
Cd  (Z-1  ) = 1 + CI Z-1  + 	+Cn  Z-n` 	 (2) 

n. 	= deg(A) 
n b 	= deg(Bk ) 	 & Ic_ 1 

= deg(Cd ) 

(4) 

(5) 
This model is not linear regression since 4(t) contains the unobserved data (t). Applying any of the 
available identification methods to the model in Eq" (3) yields estimates of the parameter vector O. That is, 

estimates for the system polynomials A(z-I ), B(z-1 ) and Cd  (Z-1  ). 

3- The Recursive Least Squares Method (RLS) 
Recalling the model (3), y(t) = 01'4)(0 	(t), with the definitions of0 and 4 as in (4) and (5) and the 
disturbance term C( t) is not specified, the objective is to obtain estimates of the parameter vector E) from 
measurements of y(t) and 4(t). Since c(t) in Ecr(3) is not specified, a prediction of y(t) given the previous 
data values can be obtained according to the relation: 
9(tio)=4)T(t)e(t —1) 	

(6) 

(1) 

nc  
This system is known as the ARMAX model in which C(t)is 
modeled as a moving average (MA) of a serially uncorrelated 
white noise sequence. It can be put in the following vector form 
y(t) = OT4)(t)+C(t) 
where the variable 0 denotes the parameter vector formed according to the following form: 

0 = [al  a, a3 	b, 1D2 	c, c2  
The variable 4 represents the regression/signal vector defined as 

= {—y(t —I) - y(t -2) 
t(t-k) 

c(t -1) c(t 	 n.)]r  
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Let us *define (t) as the prediction error, which is the difference between the measured output y(t) and the 
one-step ahead prediction of y(t) made at time 	and based on the model corresponding to the estimate 

(t — 1). Thus, if 6(t) is small, the estimate El(t — 1)is good and should not be modified very much. This 
prediction error is thus given by the relation: 
e(t) y(t)-9(t /6) y(t)-- chT (t)(3(t — 1) 	 (7) 
A natural way to obtain estimates of 8 is to try to minimize the prediction error (7), w.r.t. 0, using the following 
criterion [11,13]: 

14  1 	r 	 1 
VN  (0) = —N E {y(t)-4)T WO(t —1)/

2 
	 (8) 

This criterion is quadratic in 8 and can therefore be minimized analytically to yield the estimate [4,11] 

o(N) = [±(1)(t)OT  (t)] • I E th(t)y(t)] 	 (9) 
t=i 

or 

= 
 [

E Vt )0(DOT (D] 1E414)(DY(j)] 	 (10) 
1=1 	 1=1 

This is the non-recursive least-squares estimate of the parameter 8. For real-time applications the recursive 
form of the estimate, called RLS algorithm [3,6,7,8,9,15], will be as follows: 
0(t) = e(t — 1) +K(t)e(t) 

6(t) 	= y(t) — 01. (t)6(t —1) 
K(t) = 	P(t —1)0(0  

+0T (t)P(t —1)4)(t) 	 (11) 
P(t) = P(t 1) P(t — 1)4)(t)d)T  (t)P(t —1)  ,  

AO f  +01. (t)P(t — 1)0(t) 
E 	= y(t)—chT MO(t) 

where; 2t. t. is the forgetting factor, e r  (t) is the residual error of the parameter estimates and K(t) is a 
weighting or kalman gain factor showing how much the value of e(t)will modify the different elements of the 
parameter vector. The form of the kalman-gain factor given in eq' (11) is more appropriate or convenient to be 
implemented in computation and updating of the covariance matrix P(t). The covariance matrix P(t) is given by 
the relation [111: 

P(t) = [E 4)(t)OT  (t)] 	 (12) 

This matrix is called so because its expectation is proportional to the covariance matrix of the parameter 
estimates. The corresponding loss function has the following recuisive form 

J(t) = E X7'62, (i) 
1=1 	 (13) 

= 21.f J(t — 1) +sr  (t)E(t) 
This algorithm gives unbiased estimates [11] (i.e. estimates tend to the true parameters at steady ste only if 
c(t) and 4:0(t ) are uncorrelatecl, which holds when c(t ) is a white noise sequence. However, the covar.,,floo  
matrix P(t) is updated from P(t-1) using the potentially unstable formula Ece (11) which makes the violation or 
the positive-definiteness-property of P(t) probable. So for achieving more numerical robustness, Bierman [1] 
proposed the UD factorization algorithm, described shortly next in this paper. 

4- Bierman's UD factorization algorithm 
Bierman's UD factorization algorithm uses a different method for updating the matrix P(t) that greatly 
improves the numerical properties of P(t). This is done by decomposing the covariance matrix P(t) into 
P(t) = U(t)D(t)UT (t) form, where U(t)and' D(t) an a unit-upper-triangular matrix and a diagonal 
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matrix, respectively. Then, the matrices U(t)and D(t), instead of P(t), are updated at every time step. This 

decomposition guarantees the positive-definiteness of the covariance matrix P(t), and thus higher identification 
accuracy and numerical robustness can be obtained [1,6,9,12]. This algorithm in form of steps can be described 
as follows: 

Step-1: 

Step-2: 

Step-3: 

Step-4: 

At time t=0, set P(0) = U(0)D(0)UT  (0) = a2I, with a is of large integer-value, or 

accurately set D(0) = (72i, and 15(0) = I. Then, update U(t — °and D(t — 1) to yield, 

U(t)and D(t), respectively, using Steps 2-8 
Construct the regressor vector 4,(t) as in Eqn (5), then compute 

f 	= UT  (t — 1)4)(t) 

g = DT  (t —1)f 

Ra = (t) 
For j = 1, • • • •, d; go through Steps 4-6; where d=-3n is the dimension of the regressor vector, 

U(t)and D(t). 
Compute the following variables/matrices 
R; 	= Oi-1  +figi 

13'-_D.
-11
.(t —1) 

D -(t) = 	 
f3 j2t. (t) 

= g 
f i  

13;_i 
Step •5: 	For i = 1, • 	, j 1; do Step-6 { if j=1, skip Step-6 } 
Step-6: 	Compute the following variables/matrices 

U,i (t) = U;; (t-1)+VI.t j  
V 	= V, + (t — 1)Vj  

St,e.p-7: 	Compute the kalman gain factor
11 
 

K(t) = [VI  V2  ••••••Vd JT 

K 
K(t) 	K(t)  

5d 
Update the parameter vector Ow as 

o(t)= 6(t —.1) + K(t)e(t) 

5- AUDIX algorithm 
The AUDI algorithm, used to estimate the parameters of the ARX model, is described in Niu et al. [12]. The 
proposed AUDIX algorithm can be started by rearranging the regressor and parameter vectors in Ecr(4,5) as 
follows: 
1. The regressor vector W a  (t) is formulated as follows 

(t) = [—y(t — n),u(t — k — n),e r (t — n),••••••••-, —y(t — 1),u(t — k),e r (t —1)1T 	(14) 

and the augmented regressor vector (1),, (t) will be as follows 

a  ( t) = [—y(t—n),u(t — 	(t — n),•••-•-•-•, — y(t —1),u(t — k),E r (t-1),—y(t)fr  
(1)  

= [w; (t) — y(t)1T  

11. ; 	= — 

Step-8: 

(15) 

The regressor vector is rearranged and the output y(t) is added in order to simplify the formulation and 
interpretation of the AUDIX algorithm, where the error/noise sequence C(t) is predicted by the residual 

error er  (t). 



Proceedings of the 7th  ASAT Conf. 13-15 May 1997 	 I GC-31 633  

2. The new parameter vector O. (t) will be rearranged in a similar manner as follows: 
O. ( t) = [a„ b„ cn  a,,, b,, c,, • 	b1 c1] (16) 

where the subscript n represents the assumed model order, (t) represents the augmented regressor vector 
whose dimension is (3n+1) or d. Now the new covariance matrix P„ (t)will have the form: 

Pa (t) = [E Vildh(.0010)] 1  
J=1  

I 

which is decomposed into the form P, (t) = U. (t)D, (t)U; (t); where 
1 
0 

et, (t — n) 
I 61 (t — n + 1) 611 (t—n+1) 

. • • 

••• 
0 0 1 
0 0 0 1 

U. (t) = 
0 0 0 0 6,1 (t-1) 	an_1 (t-1) 	O n  (t) 
o 0 0 0 ••• 1 
o o 0 0 0 	1 
o o 0 0 0 	0 	1 

(18) 
and 
D:' (t) = diag[J. (t — n),L„ (t 	 — 1),J. (t)] 	 (19) 

In Bierman's UD algorithm, the matrices U and D are used to update the kalman gain factor K(t) and then the 
parameter vector 0, (t) is updated recursively as in the conventional RLS. However, in the presented AUDIX 
algorithm, U, (t) and D. (t) matrices already contain the parameter estimates and the loss functions for all 
model orders from 1 to tr. Therefore, the AUDIX algorithm can be implemented through the following steps: 

Step-1: 	At time t=0, set P, (0) = U, (0)D, (0)UI (0) = 621, with a is of large integer-value, or 
accurately set D, (0) = cr2I, and U, (0) = I. Then, update U, (t — pond D, (t —1) to 
yield U, (t)and D, (t), respectively, using Steps 2-6 

Step-2: 	Construct the regressor vector 4), (t) as in Eqn (18), then compute 
f 	= UT.(t —1)4), (t) 
g = DTa  (t -1) 

i3 	= Xf (t) 
Step-3: 	For j = 1,- - • •, d; go through Steps 4-6; where d=3n+1 is the dimension of the regressor 

vector, U, (t)and Da  (t). 
Step-4: 	Compute the following variables/matrices 

13, 	= Pi-i + 
13 j_ I D,ii  —1) 

D, (t) 
13 f t) 

Vj  

fj  

Step-5: 	For i = I,- • -•, j —1; do Step-6 { if j=1, skip Step-6 } 
Step-6: 	Compute the following variables/matrices 

(17) 

= 
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1.J.4  ( t) = 	(t —1)+ 

V. 	= 	+ U.a  (t — 1)Vi  

Note that in this algorithm Steps 7-8 of Bierman's UD algorithm had been omitted and paid for by the inclusion. 
of the current output y(t) in the regressor vector ci). (t) . The updated parameter vector e a  (t) is included in 

the last column of the U. matrix. 

6- Numerical implementation/evaluation 
Now the AUDIX algorithm is implemented to identify the ARMAX model parameters of a given system whose 
dynamics are either constant or slowly varying or time-varying. The point to be considered here is that the 

forgetting factor (X f ), either constant or exponential, could be used to improve the convergence and tracking of 

the algorithm. The initial values for the estimate and the covariance matrix can be chosen such as 6(0) 

indicates the a priori estimate of 0 and P(0) reflects the confidence in this initial estimate. 

Example-1: Consider the system model with the plant and disturbance transfer functions given as 

z-i  (1+0.5z')  
W — 

P  A 	1 	+ 0.7z-2  
w 	d = (1—  1.4z-1  - 0.48z- 2 ) 

d  — A 	1-1.5z' +0.7z-2  
Where, the input signal u(t) is a Pseudo-Random-Binary-Sequence (PRBS) with amplitude ±1, the disturbance 

( t) is a white noise with zero mean and 0.02 variance, using the variables X f 0) = 0.99 , X f.  = 0.97, 

P. (0) = 104 1 and model order n=3 or 2. The evolution of parameter estimates using the AUDI is shown in 
Fig. 2, where the algorithm did not consider any disturbances, and using the AUDIX is shown in Fig. 3, where 
a disturbance model is considered. The difference between the two algorithms is clear where the AUDIX 
converges very fast and gives good tracking in addition it is the appropriate algorithm to be utilized with 
adaptive control and can simulate the real process applications. 

Conclusions: 
The proposed AUDIX algorithm is a least-squares estimator, with the same numerical properties as those of 
Bierman's UD factorization algorithm. It provides simultaneous estimates of the parameters and loss functions 
for all model orders from 1 to n with the same computational effort required for the 211ft  order RLS. The 
structure and implementation of the AUDIX as well as AUDI algorithm are more straightforward and easier to 
analyse than the UD algorithm. The AUDIX provides a convenient and efficient basis to be used on-line in 
Self-Tuning control and/or algorithms in addition to the fast convergence than the AUDI. The AUDIX 
presented in this paper could be used with a general ARMAX models where the parameter estimates of the 

, 2nd  , 3"I  , 4th  , • • • order models are in 4th  , 7th  , 10th  , • • •columns of the U-matrix, instead of 

, 5th  , 7th  , • • • columns of the U-matrix in the AUDI. The updated parameter vector O. (t) is included 

in the (3 n +1) th  column of the U. matrix. 
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