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Abstract: Since the dynamics of real systems are either time varying or nonlinear in nature, the self-tuning 
controller design is appropriate where a recursive identification algorithm is utilized to monitor or track the 
process behaviour. The systems identification algorithms are utilized to estimate the parameters representing 
the dynamics of the underlying process in linear, nonlinear or both forms, depending upon the required 
analysis. Therefore, the controller parameters can be tuned on line by reference to the periodically updated 
plant model. Ideally, the controller synthesis should optimize plant performance taking the uncertainty in the 
model into account as well as the performance criterion. However, for simplicity, the plant model is usually 
considered accurate during control synthesis yielding the 

certainty equivalence self-tuner. Self-tuning control 

combines the design of feedback controllers based on plant system models with the on-line estimation of the 
model parameters or the controller parameters using input and output data measurements. The robustness or 
alertness of self-tuning is totally dependent upon the robustness of the system identification algorithm and its 
ability to detect and track rapid changes in system performance. The identification techniques find its way into 
aerospace applications through identifying the flight parameters, adaptive control or adaptive signal and image 
processing. For example, it could be used to identify the attitude of an aircraft or a missile, engine parameters 
like engine load variations, fluctuations in fuel supply, and aerodynamic effects from the airstream that change 
considerably,... etc. The subject of system identification has extremely diverse approaches depending upon the 
purpose of identifier and the underlying process to be identified. The choice between them depends on 

factors among 
among them are: model complexity, noise-to-signal ratio, convergence rate, and computational 

expenses. The most popular and easiest method for system identification is the least squares (LS) approach. 
Therefore, this paper presents some of these algorithms in a simplified way leading to the equations that must 
be solved through the specified algorithm, without going deeply into the derivation of each algorithm. Then, 
one of them is numerically implemented/evaluated for some examples. In addition, it highlights the 
identifiability which is a joint property of an identification experiment and a model and establishes the 
environment for adequate parameters estimates from the injected signal point of view yielding what is called 
the persistency of excitation. The results showed good convergence, fast response and good tracking utilizing 
some of the mechanisms or techniques that improve the numerical robustness of any identification algorithm. 

Keywords: Systems Identification, Recursive Techniques, Adaptive Control. 

1- Introduction Self-tuning control combines the design of feedback controllers based on plait system models with the on-line 
estimation of the model parameters or the controller parameters using input and output data measurements. 
There is an intriguing interconnection between the control law selection and the identification rule operating 
simultaneously in closed loop. Many practical applications of control system design based on input-output 
measurements permit the repeated application of a system identification procedure operating in closed loop data 
together with successive refinement of the designed controller. The a priori assumptionf 

w 
or se lf- 

the rotuninbustness
g design is 

that the underlying system parameters are unknown and constant or slowly varying. Hoever, or 
alertness of self-tuning is totally dependent upon the robustness of the system identificadon algotithm and its 
ability to detect and track rapid changes in system performance. The detection of change in process 
performance can be done using the prediction error in conjunction with some statistical rules (6,71. Tracking 
the detected rapid variation can be carried out using various techniques or mechanisms such as random walk, 
covariance resetting, constant covariance trace, exponential forgetting and directional forgetting (1,3,4,10,13, 

14,15,16,191. 
The dynamics of real systems are either time varying or nonlinear in nature, and therefore the self-tuning 
controller design is appropriate where an identification algorithm is utilized to monitor or track the process 
behaviour. Linear self-tuning techniques have the potential practical advantage that they can cope with some 
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nonlinear phenomena by retunning some parameters to create a new locally linear approximation. Moreover, in 
case of severe nonlinearities, a nonlinear self-tuning controller can be used where the nonlinearity is identified 
and then incorporated into the design process as described in the [6,71. Self-tuning has three stages: validation 
phase, modeling task, and implementation of the designed controller. The modeling_ task concerns the 
construction of a mathematical representation of a system in a form suitable for design utilizing a system 
identification technique. The linear parametric approach for system identification is the subject of this paper. 

Self tuning control is based on recursive identification in which a process model is to be constructed based 
on a limited set of data. The subject of system identification has extremely diverse approaches depending upon 
the purpose of identifier and the underlying process to be identified. The choice between them depends on some 
factors among them are: model complexity, noise-to-signal ratio, convergence rate, and computational expense. 
There is no recommendation for one approach upon the other, however there are some requirements 
[1,5,9,10,111 that should be considered by the designer: 

1. System configuration, either open-loop or closed-loop. 
2. Input or control signals from the viewpoint of amplitudes and spectra. 
3. Processing of data, either off-line or on-line. 
4. Signal filtering and conditioning. 
5. Sampling interval, especially in real-time experiments, and the frequency of data measurement or 

collection in case of multi-rate systems. 
6. Hardware requirements, either the computational capacity of the computer or interfacing with the 

real process under investigation. 

Identifiabilitv  is a joint property of an identification experiment and a model. It establishes that the model 
parameters can be estimated adequately from the experiment. The signal requirements for identifiability are 
expressed in terms of the persistency of excitation. The conditions for persistency of excitation are those 
conditions concerning the signals in an identification experiment to ensure adequate excitation of the system 
dynamics. They effectively specify how many independent components must be present in the input signal. This 
number depends on the order of the model to be identified. All of controller complexity, non-zero reference 
input and output noise/disturbances help or improve closed-loop identifiability. With the reference input zero, 
the feedback may destroy the linear independence of the regressors in the regressor vector which causes 
singularity of the covariance matrix and unfeasibility of the identification method. In a self-tuning control, the 
recursive identification allows a controller to tune/adjust its parameters on line by reference to a periodically 
updated plant model. Ideally, the control synthesis should optimize plant performance taking the uncertainty in 
the model into account as well as the performance criterion. 

Experiment design:  Identification is not a matter of applying standard techniques in a specified way and 
getting guaranteed results. It is a untidy combination of a model and experiment, computation, analysis and 
revision. Every stage is uncertain, and common experience is that each identification exercise raises some new 
problem. This is a reflection not primarily of immaturity in identification techniques, but rather of the immense 
variety of dynamical behaviour, experimental constraints and purposes for modeling. For these reasons. 
designing a software package for identification is extremely difficult. Adequacy of input and output is usually 
justified by persistency excitation conditions. The input sequence fu(t)) is persistently exciting (p.e.) of order p 
if no selection from every p successive samples was exactly linearly dependent. The frequency domain 
counterpart is that the input contains power at p or more frequencies. The persistency of excitation conditions 
can be used in identification or self-tuning experiments to warn against over-simple choices of input signals. 
The modest p.c. requirement is to have non-zero power at some minimum number of frequencies that may 
ensure asymptotic convergence but do not guarantee satisfactory finite-sample performance. 

The most popular and easier method for system identification is the recursive least squares (RLS) approach 
because of its conceptual simplicity, ease of implementation and relatively fast convergence rate. However, the 
basic RLS has also a number of shortcomings such as poor numerical performance due to the expected 
numerical singularity in case of non-informative signals. One of the most successful algorithms for improved 
numerical performance is Bierman's UD factorization algorithm [2.S,19]. But, this algorithm is not widely used 
due to its complexity for interpreting and implementing. Therefore. this paper presents sonic of these 
algorithms in a simplified way leading to the equations that must be solved through the specified algoritlun, 
without going deeply into the derivation of each algorithm. Then, one of them is numerically tested for some 
examples. 
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2- System description (model structure 
Real processes evolve continuously in time and are 
nonlinear in nature. No mathematical model can ever 
display every nuance of the behaviour of the real 
system that it is constructed to represent. However, the 
demand is to obtain a model that is satisfactory under 
given experimental conditions in pursuing a chosen 
experimental goal. Therefore, any chosen model is 
only conditionally valid and the preservation of the 
relevant conditions is crucial. The most commonly 
used parametric models associated with the self-
tuning area are linear both in the data and the 
parameters, which eases considerably the problems of 
design, estimation and analysis. The recursive nature 
of self-tuning algorithms suggest that discrete time 
modeling is appropriate. In addition, the output of real systems is usually corrupted by disturbances. Therefore 
a dynamical system can be described by the linear difference equation: 

n. 	 nb 

y(t) = —Zai y(t —i)+Eb ju(t —k— j)+d(t) 	 (1) 
J=0 

where, u(t) represents the input signal or the control variable, y(t) represents output signal from the 
systern,d(t) represents some disturbance acting on the system output, n„ represents the number of poles of the 

plant, and nb  is the number of zeros of the plant. Introducing the backward shift/delay operator z defined by 
y (t) = y (t — i) , the system model can be expressed in the following discrete time transfer function form: 

A(z-I  )y(t) = B(z-')u(t)+d(t) 	 (2) 

where the B and A are polynomials in the unit shift operator z- ' given as: 

A(z-I ) =l+al z-1 + 	 z-k  [b. +bi z-1 + 	+b„.z-", B(z-')1, 

deg(A), n b  = deg(13) — k; b. # 0, k 1. Depending on the characteristics of d(t), two cases of 
dynamical systems or models can be distinguished: Linear regression model arid ARMAX model. In the linear 
regression model d(t) has unspecified character and the model (2) can be written as 
y(t) = GT4(t)+d(t) 	 (3) 
where the variable 0 denotes the parameter vector formed as 

= [a a2  a3 '• ••••••••a„, b. b,•••••••••b n. 11. 	 (4) 

The variable (t) represents the regression/signal vector defined as 

(I) 	[ — y ( t — 1) -y(t-2) .........—y(t— n,) u(t-k) u(t-k-1). ----- •-•u(t —k—n b )11.  
(5) 

In the ARMAX model d(t) is modeled as a moving average (MA) of a serially uncorrelated white noise 

sequence 	(t) i.e. d(t) Cd (z ')C(t), where Cd 	+ CI Z-1  + C22-2 +••• 	•°•+ed Z-af and 

n, = deg(Cd ). This ARMAX model is shown in Fig. 1 and is the most appropriate to represent practical 

systems for control design. In this figure, the input signal u(t) is a control variable, (t) is a white noise 

disturbance and y(t) is the system output Therefore, the system response y(t) can be related to the control input 

u(t) and the corrupting disturbance C(t) through the following linear difference equation 
ne 	 n, 

y(t) = —Zai y(t—i)+Eb,u(t— k— j) + egt — j)+c(t) 	 (6) 
J =0 

where n, represents the number of poles of the plant, n b  is the number of zeros of the plant and 	is the 

number of zeros of the disturbance model. Therefore, introducing the backward shift operator z-k  yields the 
system's model in the form of discrete time transfer function as follows: 

B 	C 
y(t)=— 

A 
u(t)+—g-C(t) 	 (7) 

A 
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where Cd , B and A are polynomials in the unit shift operator z- I  as given above. Then, the model (7) can be 

put in a vector form as follows 
y(t) = 01.4)(0 +c(t) 	 (8) 

where the variable 0 denotes the parameter vector formed as 
1.  0 = [al  a2  a3  •••••••••ao. 	b, •••••••-•b 	CI c, • • • • •Cn  1 	 (9) 

The variable O represents the regression/signal vector defined as 
cto = [-y(t -1) -y(t -2) -------y(t- no ) 

t(t-k) u(t-k-1)-- ------ u(t- k-n b ) 	 (10) 

c(t -1) (t -2) 	 •c(t - no  )IT  

This model is not linear regression since (OW contains the unobserved data C(t), Then, applying any of the 
available identification methods to the model (3 or 8) yields estimates for system polynomials 

A( z-1 ), B( z-I  ) and C d  (1.1  )which constitute the parameter vector 0 of the respective model. 

3- The Recursive Least Squares Method (RLS) 
Recalling the model (3) as: y(t) = 0T14:1(t)± d(t) with the definitions of 0 and O as in (4) and (5) and the 

disturbance term d(t) is not specified, the objective is to obtain estimates of the parameter vector 0 from 
measurements of y(t) and (0(0. Since d(t) in ecr (3) is not specified, a prediction of y(t) given the previous 

values of { y(t -1),•••••••••,u(t k)•••••••-•1 will be: '7(t / 0) = cOT  (t)6(t 1) and the prediction error 

is, therefore, defined as: 
e(t)E- y(t) - 9(t /0) = y(t)- (1)1.  (0E5(t 1) 	 (11) 

A natural way to obtain estimates of 0 is to try and minimize the prediction error, Eqn (11), using the following 
criterion: 

1 
Vbi (8) = —E ty(t)-4)T (t)6(t -1)/2  (12) 

N 
This criterion is quadratic in 0 and can therefore be minimized (w.r.t. 0) analytically to yield the estimate as 
follows: 

- N 	1-1 	N 	- 
8(N) = 1 CO(t)1:01 r  (t)i • Ed)(t)y(t) 	 (13) 

This is the non-recursive least-squares estimate of the parameter 0. However, real-time applications necessitates 
the recursive form of the estimate that can be described by the following RLS algorithm: 
8(t) = 0(t - 1)+K(t)e(t) 

e(t) 	= y(t) - (pT(t)o(t -1) 
P(t-1)4)(t)  

K(t) = 

	

	
(14) 

1 + OT.(t)P(t - 1)4)(t) 
P(t-1)(0(t)41T (t)P(t -1)  

P(t) = P(t 1) 
1+4)T  (t)P(t -N(t) 

where e( t) is the prediction error, which is the difference between the measured output y(t) and the one-step 

ahead prediction [y (t / t - 1,8(t - 1)) 7-1 ii)T  WO (t - 1)] of y(t) made at time (t-1) and based on the model 

corresponding to the estimate 6(t -1). The variable K(t) is a weighting or gain factor, called kalman-gain 
factor, showing how much the value of s ( t)will modify the different elements of the parameter vector. The 
form of the kalman-gain factor K(t) in ecr (14) is more convenient to be implemented in computation and 

updating of P(t). The variable 0 denotes the parameter vector formed as in Eqn(4) while O represents the 
regression vector and defined as Eqn(5). If 6(t) is small, the estimate 8(t - 1)is good and should not be 
modified very much. The covariance matrix P(t) is given by the following relationship: 
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P(t) = [E rti(t)iir  (0] 
t=1 

This matrix is called so because its expectation is proportional to the covariance matrix of the parameter 
estimates. The initial values that must be supplied to the algorithm are 8(0)and P(0). This algorithm gives 

unbiased estimates {i.e. estimates tend to the true parameters at steady state } only if d(t) and 4(t) are 

uncorrelated, which holds when d(t) is a white noise sequence. 

4- The Recursive Instrumental Variables Method (RIV) 
This method is a modification of the RLS algorithm and is designed to obtain unbiased estimates in cases 

where RLS would lead to biased estimates. Recalling  the model (3) y(t) = OT4:1(t)+d(t), with the 

disturbance term d(t) and +(t) are correlated (i.e. d(t) is not white noise) which will lead to biased estimates of 

0. In this method (RIV), the signal vector 4(t) is replaced by a vector 'P(t), called the instrumental variable 

vector, such that: the signals 'P(t) and d(t) are uncorrelated while the signal 'FM is as strongly correlated 

with 4(t) as possible. That is, the estimate give by Eqn(13) now becomes: 

ii(N) = [E IP(t)4iT  (01 .[EN 	t P(t)y(t)] (16) 

or 	
l

(N) = [ZIP(t)TT  (01 	T(t)y(t)] 
i=1 	 t=1 	

(17) 
-1 

where the form (16) is called RIV while (17) is called symmetric RIV. Considering Eqn(16), the RIV algorithm 

will be as follows: 
e(t) = e(t —1) +K(t)e(t) 
e(t) 	= y(t) — 4:01.  (t)6(t —1) 

P(t —1)tr(t)  
K(t) = 	

(18) 
1 + (1:4 T  (t )P(t — 1) T(t) 

P(t —1)tP(t)4•T (t)P(t —1)  
P(t) = P(t —1) 	1 + cO r  (t)P(t —1)41(t) 
A number of variants of the RIV algorithm exists, reflecting  the freedom in choosing  the instrumental variable 

'P(t). A common approach is to define an unbiased auxiliary system driven by the actual input u(t); 

A.(z-')y(t) = B(z-1)u(t) 	 (19) 

where;  A and B are the estimated system polynomials. Therefore, the instrumental variable vector is chosen 
as 
T(t) = [—y m  

and the value 
equations (19, 
advantage that 
However, it has 

(t — 1) - y. (t - 2) ••••••—y,„(t— na ) u(t-k) u(t -k -1).----u(t — k— nb )1T  
(20) 

of y (t) is obtained from eqn (20) or from the relation: y. (t) = OT (t)tP(t). Now, 

20) together with cc(' (18) define one version of the RIV algorithms. This method has the 

it gives unbiased estimates of the parameters of the model (3) even when d(t) is not white. 

a larger computational expense than the RLS method. 

5- Recursive Maximum Likelihood (RML) 
Recalling  the ARMAX model (8) with the definitions of the parameter vector 8 given by Eqn(9) and the 

regressor vector by Eqn(10), the derivation of the RML algorithm involves forming  a prediction t )of the 

output y(t), then minimizing  the error between the predicted and measured values of the output This approach 
leads to the family of methods known as Prediction Error Methods (PEM). Let the prediction error be defined 
as e ( t, 0) = y(t)— 9(t / 0) and the criterion function defined by 

1 VN  (9) = 2
—Es' (t/ 9) 	 (21) 

(15) 
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The optimal prediction of the output of the ARMAX model, Eqn (7), is given by [31: 

Cd  (Z-1  )9(t I 8) =- [Cd  (Z-1 ) A(z-1 )}y(t) + B(z-i  )u(t) 	 (22) 

Inspection of Eq°(22) reveals that Y.  (t 8) is a non-linear function of 0. This means that the criterion 

V1,1 (0) can not be minimized analytically, and non-recursive numerical methods have to be used Thus, for 
obtaining a Recursive Prediction Error algorithm some approximations have to be made as follows: the 
regression vector 	Eq° (10), contains the unobserved components 1C(t 	-••c(t — ; )} which can be 

approximated by the residual error defined as C r  (t) = y(t) — 4)1. WO(t). That is, the regression vectur has 

the form: 
= [—y(t -1) -y(t -2) 	 -y(t - n a  ) 

	

t(t - k) u(t -k -1).•-•-•-u(t - k- nb ) 	 (23) 

6,(t-1) s r  (t 	e r  (t - na ) 1.  1 
The minimization of VN  (8), eq°  (21), gives the following RML algorithm: 

9(t) = e(t -- 1) + K(t)E(t) 
E(t) 	= y(t)-(1)T  (t)e(t -1) 

K(t) 
= P(t -1)y(t)  

1+ y T (t)P(t-1)y(t) 
P(t) - P(t 1) P(t -1)y(t)y (t)P(t -1)  

1+ ‘v T  (t)P(t -1)y(t) 

W(t) = 	 
Ca  (z-1 ) 

where IV (t) is called the gradient vector. Looking at this algorithm it seems to be close to the RLS except that 
the regressor vector is extended by the components of C r  (t - 1) and the gradient vector 111 	is 	 

6- Recursive Extended Least Squares (RELS): {or Pseudo-Linear Regression (PLR)} 
Ixi the RELS method it is attempted to cast the ARMAX model (8) in the form of a linear regression (3) and 
then applying the ordinary RLS algorithm to the obtained model. From the ARMAX model representations, it 
is clear that this is not a linear regression since the components [C(t — 1)• • • •-• •C(t — na  )} in the 

regression vector (kW are unknown which must be replaced by its estimates given the current parameter 

estimate. That is, (t) = E r  (t) = y(t) — 4:4 T  (t)6(t) and the regressor vector is consequently modified to 
contain the residual errors. Therefore, applying the RLS algorithm to model (8), the RELS algorithm will be as 
fellows: 

K(t) 
1+ (I)T  (t)P(t -1)4)(t) 	 (25) 

P(t — 1)4)(t)4)T  (t)P(t —1)  
P(t) = P(t 1) 1 + 	(t)P(t -1)(1)(t) 
E r  (t) = y(t) - 	(t)6(t) 
Comparing algorithms (14) and (25) shows that the RLS and the RELS methods are computationally identical, 
except that the RELS is complemented by the residual errors given by: sr  (t) = y(t) -COT  (00(t). That is, the 
parameter and regression vectors are extended by the inclusion of the disturbance term. Comparing algorithms 
(24) and (25) reveals that the only difference is that the vector (0(0 is replaced by the filtered vector W(t)in 
the equations of K(t)and P(t). This filtered vector is obtained by filtering (1)(t)through the estimated 

polynomial C d  . This is the reason for calling the RELS, also, as the Approximate Maximum Likelihood 
(AML) method. This filtering operation represents the increased computation required for the RML algorithm 
when compared to the RELS algorithm. 

(24) 

(1)(t) 

9(t) 	= 8(t —1)+K(t)E(t) 

8(t) 	= y(t)- (1)-1. (t)6(t -1) 
P(t -1)4)(t) 
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7- Implementation of System Identification 
It is assumed to implement system identification algorithms with time-invariant systems whose parameters are 
constant but unknown. However, in practice the systems will vary with time so that those algorithms must be 
equipped with some means of tracking these variations, which can be considered as time-varying parameters, or 
time-varying noise variance. Therefore, appropriate techniques [2,3,4,8,12,13,17,18,20] should be used to 
improve the robustness, convergence and tracking capabilities of the identification algorithm working in such 
corrupted environments. Among these techniques is the forgetting factor approach in which an appropriate 
weight is put on each measurement according to its contribution to the estimate. If the system to be identified 
has parameters which vary with time, however, then old data may not be relevant to the actual model and their 
influence should be reduced by using a weighting factor which increases with time. This idea is achieved 
using an exponential weighting (X f ) in the criterion of the identification algorithm which is slightly less than 
unity (e.g. between 0.95 and 0.99}. That is, with increasing the time t, the measurements obtained previously 
are discounted. A measurement received II samples ago will have a weight proportional to Xnf  = en.in(If ). The 

smaller the value of X r , the quicker the information in previous data will be forgotten. The choice of the value 

of X r  is a trade off between tracking ability and noise sensitivity: a smaller value of X. gives faster discounting 
or tracking but leads to a greater noise sensitivity, and the inverse is true for X f close to one. That is, if X = 1 

the algorithm will have good convergence and if X r < 1 it will be more sensitive and the parameter estimates 
change quickly. An alternative technique is the Kalman gain approach in which the parameter vector is 
modeled as a random walk or a drift and consequently the covariance matrix P is modified by the addition of 
the matrix R1  which used to describe how fast the different components of C are expected to vary. Therefore, 
the covariance matrix P(t) will no longer tend to zero, and K(t) will not decrease to zero and consequently the 
parameter estimates will change continually. 

Thus, A.. t. and/or Ri  are design variables to be chosen by the user via a trade-off between alertness and ability 
to track time variations of the parameters (which requires X 1. small or R1 largel on the one hand, and good 
convergence properties and small variances of the estimates for time-invariant systems {which requires X t  

close to 1 or R i  close to 0} on the other hand. The kalman gain approach offers more flexibility than the 
forgetting factor approach does, since the whole matrix R1  can be set by the user giving the possibility to 
choose different diagonal elements for describing different time variations for the different parameters. If the 
system exhibits some fast parameter changes, some modified methods are necessary, through which a fault 
detector will be used to test for the occurrence of significant parameter changes. Once a change is detected the 
algorithm could be restarted, at least partly, by decreasing the forgetting factor temporarily or to increase R I  or 

parts of the matrix P(t). 

If the variance of the disturbance term d(t) is varying, a weight inversely proportional to the variance should be 
put on each measurement. Let d(t) be a white noise with variance cs(t), so to account for this variation the 
criterion is modified by dividing the error components a( t). That is, the more uncertain measurements the 
less significance will be. This approach could be combined with the forgetting factor approach to yield alert or 
robust identification algorithm. 

Practically, it is reasonable to take the initial value for 6(0)as a priori estimate of 0 and to let P(0) reflect the 

confidence in this initial estimate 6(0). If P(0) is small then K(t) will be small for all t and the parameter 

estimates will therefore not change too much from 8(0) If P(0) is large, the parameter estimates will quickly 

jump away from 8(0) and therefore 8(t) will be close to the off-line estimates. Without any a priori 

information, it is common practice to take 6(0) = 0 and P(0) = a i l; where cs, is a large number. 

Steady-State Offsets: Usually the identification algorithms are concerned only by the ARX models which did 
not include the effects due to external disturbances. These ignored disturbances may easily degrade the 
performance of the identification algorithm resulting in inaccurate model. However, those including the 
external disturbances considered it as unknown quantities although inputs to the system. This situation has the 
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benefits of avoiding the nonlinear form resulting from considering these types of system structures. 
Unfortunately, in practice this assumption rarely satisfied resulting in some sort of steady-state offsets. This 
problem can be overcome by inserting a unity in the regressor vector then identifying the system offset through 
the parameter vector. However, this approach have the drawback of increasing the order of the regressor and 
parameter vectors and consequently the required number of numerical processes. An alternative approach to 
tackle this problem is to purify the data measurements or the set of observations by removing the steady-state 
offsets. 

8- Numerical implementation 
Now the RELS algorithm is implemented to identify the model parameters of a given system whose parameters 
are either constant or time-varying (the zero of the process is shifted five times its initial location). 

Example 1: fixed parameters plant 
Consider a plant whose parameters are fixed with polynomials (process and disturbance) are defined as follows: 

W = = 	  

	

B 	z-1 (0.2 +0.02z-1) 	
& W 

— 
 d 

— 	
(1 — O. 5 z -1  ) 

P 	
d 

A 	1-1.5z-1  + 0.56z-2 	 A 	1— 1.5z-1  + 0.56z-2  
The input signal u(t) is a pseudo-random binary sequence (PRBS) with amplitude ±10 and the disturbance 
C. ( t) is a white noise with zero mean and 0.1 variance. The evolution of parameter estimates is shown in Fig. 
2, using constant forgetting factor with X r  = 0.995 and 	= 1.0 , and initial covariance matrix 

P( 0) = 106  I. From the figure it is clear that the parameters converge very fast to the correct values with zero 
steady state errors while the disturbance polynomial C converge with relatively slow profile. The initial 
excursion of estimates is due to the initial poor information which overcome quickly during operation of the 
process. 

Example 2: Plant with varying parameters 
Consider the previous plant whose zero changed during the evolution of identification process fife time its 
initial location after 100 sample. That is, the parameter b l  = 0.1 instead of 0.05. The evolution of parameter 
estimates is shown in Fig. 3 using constant forgetting factor with X r, = 0.85 and initial covariance matrix 

P(0) = 106 I. From this figure it is clear how the algorithm detects the change in parameters during 
operation and modify itself quickly to track the new parameters value. 

Conclusions 
The paper highlights the need for systems identification, especially the recursive approach, in slef-tuning 
control with real applications. Then it presented the most widely used models in systems identification: the 
linear regression model and the ARMAX model in addition to the concepts of identifibility and experiment 
design. The recursive least squares (RLS), the recursive instrumental variables (RIV), the recursive maximum 
likelihood (RML) and the recursive extended least squares (RELS) methods for systems identification were 
described in algorithmic approach ready to implement on computers directly, using any of the known or 
available high level language. The results obtained using programs due the author on MATLAB and C-
Language. The paper addresses the point of how to improve the robustness of the identification algorithm and 
its convergence. The results show how the plant polynomials (A and B parameters) converge very fast to the 
correct values with zero steady state errors while the disturbance polynomial C converge with relatively slow 
profile. In addition, the algorithm detects the change in parameters during operation and modify itself quickly 
to track the new parameters value. The point to be remembered here is how to design the experiment and 
choose the appropriate value for the forgetting factor and the covariance matrix, as highlighted in this paper. 
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Fig. 2: The evolution of parameter estimates 	Fig. 3 The evolution of parameter estimates when 
one of them changed during operation 
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