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ABSTRACT 

A design technique of loop transfer recovery (LTR) is introduced to design a robust full-
order observer that recovers the full-state feedback loop properties for uniformly 
completely controllable (UCC) and uniformly completely observable (UCO) linear time-
varying (LTV) systems. Asymptotic loop transfer recovery is achieved by selecting the 
observer gains based on the observability Gramian of closed loop system. We study the 
loop recovery problem at the input of the plant when the loop is broken•t the input 
When the loop is broken at the output, similar results can be developed for the recovery 
problem at the output of the plant. For linear time-invariant (LTI) systems the observer 
gain is computed via solving a simpler algebraic equation compared with the standard..  
linear quadratic Gaussian/loop transfer recovery (LQG/LTR). For linear time-varying 
(LTV) systems the stability of the closed loop system is guaranteed during the recovery 
process without any additional constrain. Finally, two examples are given to illustrate the 
effectiveness' of the proposed approach. 
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1. INTRODUCTION 

In model based controller design. when the plant model is known, the separation 
principle can be applied [1]. This means that the design can be performed in two 
separate steps. namely the state-feedback control design and observer design to 
reconstruct the state using only the output information. However, in the presence of 
model uncertainty, the controller design based on the separation principle does not 
necessarily have the same pertbrmance/robustness properties attainable by the state 
feedback design [2]. Thus, there is a definite need to develop observer design schemes 
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which recover the properties achievable by the state-feedback design and, at the same 
time, guarantees the stability of the closed loop system. Over the past decade, loop 
transfer recovery (LTR) has been proposed as solution to the recovery of stability 
robustness and disturbance rejection characteristics in LQG [3-12]. The main idea in this 
design, is to select the observer gain such that a certain loop-transfer function is the same 
as in the state-feedback case [3]. This paper proposes a simple design rules of such 
observers for both LTI and LTV systems. The observer gain ,is a function of the 
observability Gramian of the closed loop system which is exponentially weighted. by a 
control parameter. The system is assumed to be UCO, UCC, and minimum phase. We 
study the case when the loop is broken at the input point of the given system. However, 
when the loop is broken at the output point, a dual result can be developed. The degree to 
which the desirable target loop is recovered is partially dictated by the selection of the 
control weighting parameter. In Section 2.. LTR design is made for completely observable 
LTI systems. The observer gain using the proposed LTR technique is computed via 
solving a simpler algebraic equation compared to the standard LQG/LTR where the 
computation involves the solution of Riccati equations [4]. In Section 3, we generalize 
the design. technique of the proposed LTR to the case of LTV systems. The stability of 
the closf.td loop system is guaranteed during the recovery process without any additional 
constrain. While, applying the standard LQG/LTR for LTV systems required the solution 
of a frozen-time feedback algebraic Riccati equation. This approach assumes that the rate 
of the parameter variations is sufficiently small to guarantee the closed loop stability 
during the recovery process [18,19]. In Section 4, we introduce two simple numerical 
examples to show the capability of the proposed technique. 

2. ASYMPTOTIC LTR OF LTI SYSTEMS 

Consider a LTI system 

k(t) = Ax(t) 	Bu(t) 

y(t) = Cx(t) 

under the assumption of the pair {A. B} is completely controllable and the pair {A, CI is 
completely observable, we can assign the observability Gramian in observer design. 
Moreover the exponential rate of stability convergence and estimated error convergence 
can be controlled. This will be the key point in the designing of the loop transfer 
recovery. The observer deign are stated in the following theorem. 

Theorem 1 

The observer equation for the system given by (1) can be written as follows [1]: 

.(t) = FR(t) — Ly(t) 4- Hu(t) 	 (2) 

where R(t) is the observer state vector, matrices F and H are chosen such that 

.......■•••••••••••i•••• 

(1) 
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F A + LC , H = B,and 

L = -N-1(8)CT  
6  

N(8) = re-{"1)TCTCe4A*431)tdr 
o  

Let the error state vector be defined as 

(3)  

(4)  

e(t) = )1(t) — x(t) 

then the error dynamics described by the following differential equation 

e(t) = (A+ LC)e(t) 	 (5) 

is exponentially stable i.e. (A+LC) is Hurwitz. 	 GC 

Proof 

Consider the associated scalar valued function 

v(e) = eTNe 

f(e) = eT  [(A + (3I)T  N + N(A + 13I)Ie — 2eT  CTC e — 2PeTNe 

N is positive definite by complete observability of the pair {A + 131, CI . 

(A + ODIN + N (A +(31) = — (e-(Ar+o)tcrce4A4')T  )cit 
0 

— e-6\ 741)6CrCe"`A'13ns  + CC 

V(e) = _eT(e-(Ar-onsc Tce--(A•0118 	CT C)e —213eT Ne 

< —,13e T Ne 
= —213V 

which implies that the error state exponentially goes to zero with rate p. 

The case where 13 = 0 { N(5) = f re-Art CT CC'dt} is dual problem equivalent for the 

case proved in [1=4]. 	
Q.E.D. 

(6)  

(7)  

(8)  

(9)  
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2.1 Target Loop Dynamics 

Consider the block diagram shown in Figure 1 with loop broken at the indicated point, the 
open loop transfer function is given by 

G, (s) = - KcD(s)B 

where 4)(s) = (sI - Al' 

2.2 Recovery of The Target Loop Dynamics Via Model Based. Compensator 

Consider the block diagram shown in Figure 2 with loop broken at the indicated point, the 
open loop transfer function is given by 

G r(s) = K(st - A - BK - LC)-' LC(D(s)B 	 (11) 

From Theorem 1 and the separation design property, the stability of the closed system is 
guaranteed for all values of p. The proposed LTR pins  have asymptotic properties which 

result in: 

rim G r(s) = Gt(s) 	 (12) 
5-•.13 

The asymptotic properties of the proposed LTR can be obtained by analyzing behavior of 
(8) as I3-÷ cc . It is loosely speaking as p.-÷co 

Um— 1  LC = I 	• 
2f3 

where 

L = -1\r(3)Ci  

Equation (11) can be written as follows 

1 
G, (s) = K[—(SI - A - BK) 

2p 

and from equation (13) we ttet the following 

limG r (s) = -K(sf- 	B 

1 1 — LCCD(s)B 
213 

(13)  

(14)  

(15)  

(16)  

213 

= G. (s) 

It is clear from the previous equations that the control weighting parameter P is the 
design variable for this procedure. The degree to which the desirable target loop 

(10) 



Proceedings of the 7th  ASAT Conf. 13-15 May 1997 AV-6 I 571 

recovered is partially established by the selection of the control weighting parameter 13 
The minimum phase restriction is obvious from equations (15) and (16) where the 
compensator poles will cancel the plant zeros and exact inversion over specified 
frequency range is possible. 

3. ASYMPTOTIC LTR OF LTV SYSTEMS 

Several approaches exist for studying the stability of the LTV systems.. Depending on 
their framework, these studies can be classified as a state space approach and/or input-
output approach [1,15,16 ]. The input-output description of a system gives a mathematical. 
relation between the input and output of the system. In state-space approach, the system is 
described in terms of its internal behavior, referred to as states, and is governed by 
ordinary differential equations. A simple, but restrictive approach to investigate the 
stability of LTV systems is so-called frozen-time approach. In this approach, the-system 
viewed as a collection of LTI systems for which well known LTI tools can be applied 
[17,18]. For example a sufficient condition for asymptotic stability of the LTV system is 
that the frozen system matrix is strictly Hurwitz and the rate of parameter variations is 
sufficiently small. In [19] the frozen-time approach is used for target loop recovery of 
time-varying systems. In general this approach dose not guarantee that the closed loop 
system will be stable during the recovery process. Thus, additional constrains should be 
imposed in odder to guarantee the stability. In this section we extend the proposed LTR 
to the case of LTV systems. The closed loop stability is guaranteed during the recovery 
process without the need to additional constrains as in the case of the frozen-time 
approach. 

3.1 Observer Dynamics 

Consider the linear time-varying system described by 

k(t)=A(t)x(t) + B(t)u(t) 
y(t) = C(t)x(t) 
	

(17) 

where the pair {A( t), C(t)} is UCO. The observer dynamics is described as follows 

z(t) = F(t)i4t) - L(t)y(t) + H(t)u(t) 	 (18) 

where R(t) is the observer state vector. The matrices F(t) and H(t) are chosen such that 

F(t) = A(t) + L(t)C(t) 
	 (19) 

where H(t) = B(t). L(t) = - N-' (t 	t)Cr  (t) , and N(t -5.t) is the observability 
Gramian is defined by 

N( t -6.t) = 1001- (-c,t)C r (t)C(r)(1)(t.t)dt 
	 (20) 
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where (D5(r,t) is the state transition matrix for A(t) +131 with scalar parameter p 0 
and 8 is the observability interval. It is straight forward to show that 

13. (T 0 = e,"""ca(T, t), ' 

where (D(t,r) is the state transition matrix of LTV system in (17). An error state vector 
can be defined as e(t) = z(t) – x(t). Then the error dynamics can be described as follows 

e(t) = [A(t)`+ L(t)C(t)}e(t) 
	 (21) 

where e(t) = R(t) – x(t) 

Theorem 2 

The error state defined in (21) goes to zero exponentially fast with rate of at least 13. 
00 

Proof 

Consider the associated Scalar function 

V(e(t),t) er  (t)N(t –8,t)e(t) 
	

(22) 

Since N(t – 6,t) is bounded, then we can obtain 

ct l ile(t)112  < V(e(t),t) 5 a.211e(t)lr 

where ct i  & Ct2  > 0 

—
d V(e(t), t) – er  {CT C(t)+ (DT5  (t – 5, t)C T C(t – 8)05  (t –6, t) +213N(t – 5, t)}e(t) 
dt 

5_ – eT  {2131\1(t – 5, Ole(t) 

= – 2I3V 
	 (23) 

which implies that the error state exponentially goes to zero exponentially with rate 
The case where = 0 is a dual problem equivalent for the case proved in [20]. 

Q.E.D. 

3.2 Target Loop Dynamics 

Consider the block diagram shown in Figure 1 with loop broken at the input point, the 
open loop input/output relationship assuming zero initial conditions is given by 

u.(t) = K(t)10(t,r)B( -c)u(-c)dt 	
(24) 



(25)  

(26)  

(27).  
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where cD(t,t) is the state transition matrix of the system in (17). 

3.3 Recovery of The Target Loop Dynamics Via Model Based Compensator 

Consider the block diagram shown in Figure 2 with loop brokensat the input point; the 
open loop input/output relationship assuming zero initial conditions is given by 

u" = — K(t) rcl> (t, -OUT) C(r)[1(1)(r, s)B(s)u(s)ds]dt 
, 	 t, 

where oe(t,T) is the state transition matrix of the following system 

x(t) (A(t) + L(t)C(t) + B(t)K(t)))1(t) 

From Theorem 2 the stability of the closed system is guaranteed for all values of p. 

Define the following operator 

1P[r(t)j= 10(t,$)r(c)ch- 

where .0(•,•) is the state transition matrix of the LTV system. z(t) = A(t)x(t) Equation 
(25) can be rewritten as follows 

u"(t) = — K(`r.' — BK — LC) -' LCT[Bu(t)] 	 (29) 

In the limit when p co 

lim = KY'[Bu( t)]  
a—. 

= u'(t) 
(30) 

Equations (29) and (30) requires that the system in (17) has to be exponentially stable 
zero dynamics. 

4. EXAMPLES AND SIMULATION RESULTS 

Example 1 

Consider the following double-integrator plant 
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CO 

	1 
k(t) = 	 0 	0  x(t) + 

0 
1 (31) 

y(t) = [1 O]x(t) 

The plots for the closed-loop step response are shown in Figure 3. The open-loop Bode 
plots for the proposed LTR are shown in Figure 4 and Figure 5. It is clear thatthe step 
response of the recovered closed loop approaches the state feedback for increasing the 
values of [3. Also, the frequency response magnitude and phase of the recovered loop 
approach that of the state feedback target loop or increasing the values of [3 . 

Example 2 

Consider the following LTV, UCC system 

k(t) = 

0 
0 

2sint 

1 
0 
2 

0 
1 

2 cost_ 

x(t) 

0 
0 
1 

u(t) (32) 

y(t) = [1 0 01x(t) 

The step response of the closed loop system using different values of p = (0,10,100,200) 

is shown in Figure 6. Note that the step response approaches the state feedback case for 
increasing values of p 

5-C ONCL USIONS 

Asymptotic loop transfer recovery is achieved by selecting the observer gains based on 
the exponentially-weighted observability Gramian of the closed loop system. The system 
is assumed to be UCC, UCO, and minimum phase. We study the case when the loop is 
broken at the input point of the given system. By the selection of the control weighting 
parameter we control the desirable degree to which the target loop is recovered. the 
convergence results are presented that are sufficient to ensure the validity of the proposed 
technique. For LTI system the observer gain is computed via solving a simple algebraic 
equation. The stability of the closed loop system is guaranteed during the recovery 
process without any additional constrain. Simple numerical examples are given to show 
the capability of the proposed technique. 
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