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ABSTRACT 

The problem of modeling a single-link flexible manipulator having a revolute joint, is rather 
complex. It involves complex interaction and coupling between the desired rigid body motion 
and the undesired flexible motion. Analysis is performed on a representative case study of a 
Pinned-Free Euler-Bernoulli beam with noncollocated sensors. Numerical method for accurate 
computation of the transfer function poles and zeros is proposed. Experimental investigations 
that have been carried out on a real laboratory model of a single link flexible manipulator is 
reported. This model consists of a prismatic beam free at one end and attached to a DC motor 
at the other end. Using a dual channel Dynamic Signal Analyzer DSA, the manipulator has 
been excited by a harmonic torque and the structural displacement at several locations have 
been measured using vibration accelerometer. The DSA curve fitting capability are used to 
determine the best fit estimate of the manipulator's experimental transfer function poles and 
zeros. 
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1. INTRODUCTION. 

One .of the major limitations of current industrial robots is their low payload/weight ratio. 
Excessive arm weight not only limit the speed at which robots can displace from one point to 
another but also increases the energy requirements and the size of actuators. Manipulators 
made with lighter materials are flexible and cannot be controlled accurately with the joint-
oriented classical controllers used in most industrial robots. 
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Department of the Aeronautics, M.T.C, Cairo, Egypt. 
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The problem of modeling and control of a single-link flexible manipulator, in general is rather 
complex. It involves complex interaction and coupling between the desired rigid body motion 
and the undesired flexible motion [2,4,5,9 ]. In this work, however, only structural vibrational 
behavior of the manipulator will be considered, i.e. no large rigid rotation is considered. This 
case corresponds to the practical situation at the end of a rest-to-rest rotational maneuver of 
the flexible manipulator shown in Fig. 1. The structural behavior of the flexible manipulator, 
here, is considered to be that of an Euler-Bernoulli beam pinned at the joint hinge axis, and 
free at the other end. The structural transfer function of this manipulator has been derived on 
basis of the product expansion method [6,7 ]. Expressions for the transfer functions poles and 
zeros have been obtained. For the numerical computation of transfer function poles and zeros, 
a computer program based on Matlab Package has been prepared. Synthesized frequency 
response curves are obtained based on the computed poles and zeros. 

Tip 

Fig. 1 Pinned-Free beam model 

Experimental investigations that have been carried out on a real laboratory model of a single-
link flexible manipulator is reported. This model consists of a prismatic beam free at one end 
and attached to a DC motor at the other end. Using a dual channel Dynamic Signal Analyzer 
DSA, the manipulator has been excited by a harmonic torque and the structural displacement 
at several locations have been measured using vibration acceleroineters, The DSA process the 
torque and displacement signals and yields the frequency response function. The DSA curve 
fitting capability are used to determine the best fit estimate of the manipulator's experimental 
transfer function poles and zeros. The calculated values of transfer function poles and zeros 
have been compared with the measured values. Moreover, the calculated values of real 
transfer function zeros have been used to improve the quality of DSA identification curve 
fitting process. 

2. STRUCTURAL DYNAMIC MODEL OF A SINGLE LINK FLEXIBLE 
MANIPULATOR. 

Consider the Pinned-Free Euler-Bernoulli beam shown in Fig. 1. The beam has length 1, 
Young's modulus E, area moment of inertia I, mass density per unit volume p, and cross-
sectional area A. The input is a torque at the pinned end, M(0,t), while the output is the 
deflection at an arbitrary point x along the beam, y(x,t). It is assumed that both the rigid body 
and flexible motions are small. The structural vibrational behavior of the beam is described by 
the following partial differential equation. 
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The boundary conditions at the pinned end are, 

y(0, t) = 0 

a2 ax2
y(0, 

EI 	= 	t) 

And at the free end are, 

	

EI  a2 	t) 
= 0 a,x  2 

EI 
a3  AL,t) 

= 0 
ax3  

The initial conditions are assumed to be zero, i.e., y(x,0) = 0 and y' (x,0) = 0. 

Considering the laplace transform of Eqs. (1)-(5) and using the trigonometric and hyperbolic 
functions, the solution of Eq. (1) can be written as, 

y(x,y) = (y)siny x+ C2 (y)cosy x + C3 (y)sinhy x + C4  (y)coshy x 

Where :- 
y = 13s1/2  [1,5] 

p4 = —pA/EI 

The coefficients C, , i = 1,2,3, and 4 in Eq. (6) are found by applying the time transforms of 
the boundary conditions, expressed by Eqs. (2)-(5). The characteristic roots of Eq. (1) are 
found and the boundary conditions are applied. This yields the transcendental transfer function 
from the torque at x = 0 to the displacement at a general point x, 0 S x L as, 

G(x,y) = y(x, )/M(0, y) = N(x, y)/D(x, y) 	 7) 

Where the numerator N and denominator D are expressed as [1,5 ], 

N(x,y).= al(7)131 (x,y)+a2 (7)b2 (x,y)+a3(y)b3(x,y) 	 8) 
D(y) = 2EIy 2a3 	 9) 

Eq. (7), expresses the system transfer function as the ratio the numerator, Eq. (8), and the 
denominator, Eq. (9). Note that the numerator, which defines the zeros of the transfer 
function, depends on the sensor position x. 
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2.1 Transfer function poles. 

To justify the product expansion, in Factoring the denominator Eq. (9), has been used by 
Goodson [6] , Wie [7], and [5]. Since control analysis is usually performed in the s— plane, 
the s-plane roots are of interest. Each 7-plane quadruple maps into a complex conjugate pair of 
imaginary poles in the s— plane: 

s r, = 	(c1„ /1)2 	 (10) 

Where elo  is the solution of :- 

tan d = tanh d r, 	with d > 0 , real 	 (11) 

Note that, as mentioned before, the poles of the transfer function do not depend on the 
actuator or sensor locations. In solving Eq. (11) numerically, it is also helpful to note that the 
higher roots differ by almost exactly rt. 

2.2 Transfer function zeros. 

Analytically factoring the numerator, Eq. (8) using product expansion [6,7], presents greater 
difficulty, except in the special cases x = 0 and x = 1. Note that the numerator which defines 
the zeros of the transfer function depends on the sensor position x, 0 < x < 1. 

A. For sensor at x = 0 

Since controls analysis is usually performed in the s— plane, the s-plane roots are of interest. 
Each y-plane quadruple map into pure imaginary conjugate zeros. The roots values of b, have 
been evaluated using the computer program on Matlab Package [5]. 

S r. = ±i(EI/p 	(I) r, /02 	 (12) 

Where b. is the solution of:- 

14- cos b cosh b = 0 	b,, )0, real 	 (13) 

B. For Sensor at x =I 

The sensor is placed at the tip position of the flexible beam. For x =1, the numerator roots are 
mapped into pairs of real zeros in the s-plane, with one of each pair in the left half plane and 
the other in the right half plane. The roots values of c r, have been evaluated using the 

computer program on Matlab Package [5]. 

= ±.2(Eljp A)1 (c „ /1)2 	 (14) 

tan c,, + tanhc r, = 0, 	c,,) 0, real 	 (15) 
Where c. is the solution of:- 
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C. For Sensor at General Point. 

For a general point x, 0 < x < 1, the s-plane zeros will be a mixture of real and imaginary 
pairs. The transfer function zeros determines whether the system is minimum phase or 
nonminimum phase. For the general case, numerical methods are required to determine the 
transfer function zeros, based on Matlab Package. For a fixed value of x, the first ten transfer 
function zeros were determined numerical by evaluating the magnitude of the numerator, Eq. 
(8), along the following two half lines in the 7-plane :- 

♦ Case I : 
= a 	 (16) 

The ten transfer function zeros were determined numerically by evaluating the magnitude of 
the numerator Eq. (8) where :- 

N(x, = (1 + cosocicosha 1)(sina x + sinha + (sinalsinhal)(sina x — sinhax) + 
(cos x sinhx — sina 1 cosha 1)(cosa x — cosha 

These roots map into a complex conjugate pair of pure imaginary s-plane zeros:- 

s = ±VEI/pA a2 	 (18) 

For a fixed value of x, the first ten transfer function zeros were determined numerically by 
evaluating the magnitude of the numerator Eq. (17), along the half line in the 7-plane Eq. (16). 
The roots in the y-plane as x is varied from 0 to 1, are evaluated in [ 5 J. 

Case II : 
y = all + i) 	 (19) 

These roots map into a pair of real s-plane zeros, with one of each pair in the left half plane 
and the other in the right half plane. 

s = ±2VEI/pA a2 	 (20) 

For a fixed value of x, the first ten transfer function zeros were determined numerically by 
evaluating the magnitude of the numerator Eq. (8), along the half line in the y-plane Eq. (19). 
The roots in the 7-plane as x is varied from 0 to 1, are evaluated in [ 5 ]. 

3. CASE STUDY 

For the sake of comparison between the computed values of transfer function poles and zeros 
and the experimentally identified ones a case study has been investigated. The schematic of 
the flexible robot arm used in this investigation is shown in Fig. 2. The one-link flexible robot 
arm rotates in the horizontal plane, is constructed from a single continuous aluminum beam 
and the only control available is the motor located at the single rotating joint. 

(17) 
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The flexible beam to be modeled has dimensions and material properties listed in Table 1. 
Synthesized frequency response curves are obtained based on the computed poles and zeros. 
These poles and zeros have been evaluated using the computer program on Matlab Package. 

1.015m 
4- 

*I 

0.004m 

Fig. 2 The flexible manipulator under investigation 

Table 1 Dimensions and material properties of flexible beam 

Material 
Modulus of elasticity E(N/m2  

Volume density p(kg/m3 ) 

Length 1(m) 

Height h(m) 

Width t(m) 

Total mass (kg) 

Cross section area (m2 ) 

Moment of inertia (m4 ) 

Aluminum 
72.38 x 109  

2767.54 

1.015 

3.0 x10-2  
4.0 x 10-3  

2.6 x 10-1  

1.2 x 10-4  

1.6 x 10-w  

4. EXPERIMENT AI. INVESTIGATION 

The experimental setup is schematically represented in Fig. 3. It consists of a flexible link 
shown in Fig. 2. The link is made of aluminum alloy. Its cross section is designed to provide 
considerable flexibility in the lateral direction while maintaining sufficient rigidity in the 
vertical direction. The material properties of the link are given in Table 1. With a DC 
permanent magnet motor unit installed on the hub. 



DSA 

Channel 1 
Channel Charge 

Amplifier 
Type 2635 Bout 

DC 
Motor Flexible Link 

I. 
Accelerometer 

Plotter HP 
7475A  

Power Amplifier i  V a  Source 

4 	 
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The experimental setup included also a Modified push-pull power amplifier to measure L', v 
current passing through the armature windings of the DC motor, the motor current is sensed 
by a sensed resistor that is small compared with motor resistance. Two measurements are 
available, the current passing through the armature winding of the DC motor, and an 
acceleration sensor located along the beam, to provide the output charge proportional to the 
acceleration of the vibrated beam. Charge amplifier with active integration networks are built 
in for conversion of vibration acceleration to displacement signals, and HP 3562A Dynamic 
Signal Analyzer used to measure the frequency response with swept sine mode. 

The prediction of the previous synthesized frequency response section have been checked and 
verified, using the HP 3562A Dynamic Signal Analyzer. Based on measuring the open-loop 
frequency response transfer function between the applied torque from the dc permanent 
magnet motor, and the position output response from charge amplifier. Apply harmonic swept 
sine waveform from the Dynamic Signal Analyzer source, with source limit 1 volt, and 
frequency band 11.5 Hz - 720 Hz, to the power amplifier V,. The amplified voltage signal Va, 
drives the DC permanent magnet motor and produce an output current proportional to the 
command voltage V„ which is proportional to the generated motor torque. 

Fig. 3. Schematic diagram of experimental setup 

The motor current sensed by a shunt resistance, is fed back to channel 1 of the analyzer. This 
is made with the objective to measure the harmonic current passing throughout the armature 
windings of the de motor. This current is proportional with the torque generated, which 
actuate the flexible link at the revolute pinned joint. An accelerometer located at different 
position along the flexible beam, measures the acceleration of the beam, at x = 0.8, and 1. 
Charge amplifier with active integration networks are built in for conversion of vibrational 
acceleration to displacement signals. This displacement signal is the output response of the 
flexible beam, and fed back to channel 2 of the analyzer, to measure the frequency response of 
the flexible beam model. 
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5. RESULTS AND DISCUSSION. 

The measurements show both the open loop frequency response of the flexible beam model as 
a bode plot, and the coherence. The coherence is a functional of frequency, each frequency 
point in the coherence function is a real value between 0.0, and 1.0. A value of 1.0 implies 
that noise does not contaminate the measurement at that frequency. Using the powerful tool 
allowed in the analyzer, to get the coefficients for a function that best fits the .neasured 
frequency response data, to closely approximate the frequency response obtained from the 
measurement. The poles and zeros model is developed by calculating a weighted least-squares 
fit of the frequency response data. With curve fitting we will start with frequency response 
trace magnitude curve, or phase curve, whatever, to find a linear model that correspond to the 

trace. 

Generally, these arms have highly vibratory poles and low damping factors, and the measured 
frequency response have a wide band of frequencies. Then we have the option to enter and 
"fix" known system transfer function poles and zeros, the known poles and zeros can be 
obtained from curve fitting a narrow region around a resonance. This is done by decreasing 
the entire frequency response trace displayed on the analyzer is used as fit region. Then the 
poles and the imaginary zeros extract from the curve fitting with narrow region are fixed. 
Except that the real zeros, we can not extract from curve fitting with the narrow band region, 
and we have been forced the curve fit to fit the analytical real zeros. The curve fitter assumes 
they are correct and includes them as starting values in the next fit. 

Fig. 4 shows the synthesized calculated poles and zeros frequency response bode plot of the 
single link flexible manipulator for x = 0.8, and x = 1.0. Fig. 5 shows experimental frequency 
response bode plot of the single link flexible manipulator which represented as a solid line, 
and the corresponding curve fit shown as a dashed line for sensor located at x --= 0.8, and 1.0, 
A comparison table between the experimental and analytical results, are shown in Table 2. In 
view of Fig. 4, Fig. 5, and Table 2 it is apparent that : 

The real part for both poles and imaginary zeros, represents the damping of the flexible link 
theoretically are assumed to have a negligible value. This real part of both poles and 
imaginary zeros have been determined experimentally. The imaginary part for both poles and 
zeros experimentally shows nearly the same analytically values specially at low frequency 
range. Except that their exist a slight difference at the high frequencies. It is clear that from 
theoretical analysis the imaginary zeros have a phase lead 180 degree, but experimentally their 
exist imaginary zeros have a very high damping factor, forced the phase to be lag -180 degree, 
resulting in increasing the nonminimum phase. 

Although in theoretica'i analysis the rigid body pinned mode are represents by a two poles at 
the origin in the s- plane, but from experimental results we have been estimated. The 
calculated real zeros are used as a fixed values in the curve tit table for adjustment the curve 
fitting of the measurement frequency response. 



1 Ian 
i 

I I I I II 
I  

ETAxl. 

I 1 1 
LT 

Phase 

SYNTHESIS 
80.0'-  

FYI 

Deg 

	

I 	

1,•■••■•■••■1,•••••-•• 

I 	1111 
I 	I 	I 	I 	1111 
I  

	

1 	111111 

	

I 	I 	I 	1111 
1111 

-1 	
I 	I 	I 	11 II 	I 	1 	1 1 III 1:10 	1 	I 	1 	1 1111 	I 	I 	I 	I 1 1 1 1 1 	1 	1 	1 1 1 1  1 	 1 	1 	1 j 1 1 1 1  

	

10 Lag Nz 	 ETA-O.9 	• lk 
SYNT0HESIS 	 Pals Zara 0.  

1 	1 	I 	I 	III 
1 	1 	I 	I 	1111 

111 
1 1 1 

a. o I. -a. o 

ProceedinT3 of •Li;e 7th  ASAT Conf. 13-15 May 1997 SM-12 335 

SYNTHESIS 
100 

dB 

I 	I 	1 	1 	1 	111 
I 	I 	I 	1 	1111 
I 	L I I !ILI 

Pale Zara 

-40.0 

FxdXY 11.5 Log Hz 

SYNTHESIS 
0. O__. ___ 

1  

_._. _ 

1 
1 
1 
1 
1 
I 
1 

I 
3 	 1 L 	L1 	1 	1 	1 	1 1 

i 	I -LI 

	

I 	--, 1 	—1 	1 	1 	I 	, 

Mao 

Osg 

FxdX ETA..1. 0 

x = 0.8 x = 1.0 
Fig. 4 Synthesized torque to displacement transfer function 

1.•P ILO RESI. 
01110/ OP. a 
OD. 0 

111111 
111111 
111111 

I 
1 
I 

I 	111 
1 	1 	II 	I 
I 	1111. 

I 	I 	1 	II '  
1 	1 	

'! 
1 
1 / 

1 	; 	I; 
1 	1 	11 

1 	1i 	1111 

' al'  
1 	1 	I 	II 

1 	I 	II 
/il lmum1111:  

g 	N.7 	I 	. 	.., 
I 	I 	I 	lig. 

Alpiridisui el.i.a. 

, 	, 	I 	1111 g 	I 	i 	■ 
1 	111111 
I 	111111 
I 	111111 

1 

i 

I 	111 
I 	I 	III 

1 	1 11 111 
1 	11111/ 
1 	111111 

I 
1 

I 	II 	I 	1 
1 	I 	II 
1 	III 

I 	1 	1 	1111 
1111 I 

1 	1111 
1 	1111 . 	• 	•' NT ^4.0- IN 	 710  

1-NRVi FIT 

I 	/1111 
111111 
111111 

ramminumummomma 
--inugicer annimmu mamisammik4es-• mow : ,, mommime , 	, 	, 	., 	, III : 	111. 

111 
I 

III 
111 	

! ET A■ 1. 	 720 

02. 

as 

as 

lac 
-1.00 

_s•. `I 

REMr 

It 

1 

1-CU1RV *VI' 
1-mrag 	 

200 

i-CVS•611C  iT  

200 

as 

as 

00 

-1..saPa 

0.a 

Oman 

I 	' 1 
1111 
1111 

11 

I  I:  
1111 

1 
	

111 

i 	; 

1111 
1. 

mra r 11. 	a 20 itTA.• I.+11 Has 
11. I I..= el 14= 

x = 0.8 
Fig. 5 Measured frequency response curves 

x = 1.0 



Proceedings of the 7th  ASAT Conf. 13-15 May 1997 SM-12 1  336 1 

 

It is apparent that the system behavior is qualitatively different for each sensor location 
especially at low frequencies. As the sensor location increase from 0.8 to 1.0, the imaginary 
zeros along the imaginary axis increase in frequencies. In general, as sensor location increases, 
the imaginary zeros increase in frequency until they disappear completely for x = 1.0. The 
synthesized frequency response of the single-link manipulator, agree with that measured 
frequency response obtained from the experimental results. 

Table 2.a Experimental and Synthesized Poles/Zeros for X 0.8 	Table 2.b Experimental and Synthesized Poles/Zeros for X 1.0 

Synthesis 	 Experimental 

POLES 	 POLES 

0 0.0 - 26.1237 
1 0.0 - 0.0 
2 -1.0 m±j 14.0654 - 84.4m tj 14.143 
3 -1.0m ± j 45.581 -155.0m ± j 44.807 
4 -1.0m ± j 95.1017 • 235.0mt j 91.466 
5 -1.0m ± j 162.63 - 559.0mt j 154.2 
6 -1.0m ± j 248.165 - 467.0m ± j 238.09 
7 -1.0m ± j 351.707 - 1.26 ±j 333.2 
8 -1.0m ± j 473.233 - 4.64±j 440.54 
9 -1.0m tj 612.806 -1.53 ± j 550.24 
10 -1.0m ± j 770.338 -3.48 ti 680.19 

L±ROS ZEROS 
---. 

±1.40156 ±1.40156 
±1.01292 ±1.01292 
±730.81 ±730.81 
±450.174 ±450.174 
±209.861 ±209.861 
±112.546 ±112.546 
±23.680 ±23.680 
-1.0m ± j 23.689 -31.31mtj 21.4709 
-1.0m .±.-j 349.179 -572.401m tj 315.094 

	

Synthesis 	 Experimental 

	

POLES 	 POLES 

0 0.0 - 30.7587 
1 0.0 0.0 
2 -1.0 mtj 14.0654 - 215.0m t j 13.322 
3 -1.0m ± j 45.581 - 243.0m ± j 42.95 
4 -1.0ra ± j 95.1017 - 455.0m ± j 89.202 
5 -1.0m ± j 162.63 - 514.0m ± j 151.42 
6 -1.0m ± j 248.165 - 537.0m t j 229.37 
7 -1.0m t j 351.707 - 1.21 ±j 321.45 
8 -1.0m± j 473.233 - 1.99 ± j 426.93 
9 -1.0m ± j 612.806 -1.23 tj 547.16 
10 -1.0m ±_j 770.338 -2.35 ± j 676.47 

ZEROS ZEROS 

±10.2051 ±10.2051 
±55.1477 ±55.1477 
±136.195 ±136.195 
±253.229 -±253.229 
±406.292 ±406.292 
±595.370 ±595.370 
±820.455 ±820A55 
±1.08115K ±1.08115K 
±1.37868K ±1.37868K 
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6. CONCLUSION 

Position control of flexible mechanical systems is an important topic. Its application range 
from control of motor-driven-actuators in computer peripherals, to robotics manipulators and 
large scale active space structures. Much excellent work has been done in this area, especially 
those related to instability caused by the noncollocation of sensors and actuators. It is well 
known that the control system will be stable when there exists alternating poles and zeros. 
Mechanical engineers have good physical understanding of the poles. Complex conjugate 
poles are the resonant frequencies of the flexible structure. The purpose of this paper is to 
discuss the modeling of the flexible beam, physical significance of the zeros, and 
experimental study. Its shown that the zeros are related to the energy propagation 
characteristics of a flexible system specifically, for the case of uniform cross-section elastic 
beams, the complex conjugate zeros are shown to be the resonant frequencies of the 
constrained substructure and are related to propagation of energy. The real zeros, which cause 
the control system to be nonminimum phase, are related to nonpropagation of energy. The 
example treated here has the generic properties of more complex structural control problems. 
Therefore the analysis, and experiments presented here lead to the following general 
observations: 

1 Accurate dynamic modeling of the structure is of critical importance is noncollocated 
structural control design, small inaccuracies in the model can lead to qualitatively different 
system characteristics, resulting in deficient and possibly unstable designs. In particular, 
small variations in sensor locations can result in interchanging the ordering of poles and 
zeros, producing phase errors of up to -360 degrees. A phase error of this size virtually 
guarantees closed loop instability. 

2. Noncollocated structural control systems are always nonminimum phase above some finite 
frequency. The frequency at which the transfer function becomes nonminimum phase 
decreases as the sensor/actuator distance increases. A conventional modal model, that is 
perfectly adequate for collocated control design, may therefore be completely unsuitable 
for noncollocated control design. 
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NOMENCLATURE 

A 	 : 	Cross sectional area (m2) 
a(y) 	 : 	Position-independent terms 
b. 	 : 	Numerator roots at x = 0 
Ca 	 : 	Numerator roots at x =1 
D(x,y) 	: 	Denominator of the transcendental transfer function 
d. 	 : 	Denominator roots 
E 	 Modulus of elasticity (N/m2) 
f(x,y) 	 Position-dependent terms 
G(x,y) 	 Transcendental transfer function 
1 	 The beam length (m) 
M(0,$) 	 Applied torque at the pinned end (N.m) 
N(x,y) 	 Numerator of the transcendental transfer function 
I 	 Moment of inertia (m4) 
y(x,t) 	 Deflection at an arbitrary point x (m) 
p 	 Mass density per unit volume (Kg/m3) 

y-s 	 Transformation plane 
a 	 • Wave number parameter 

11=30 	: 	Normalized separation 
DC 	 : 	Direct Current 
DSA 	: Dynamic Signal Analyzer 
POE 	• . 	Partial Differential Equation 
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