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ABSTRACT 

A theoretical investigation has been made to predict the flow pattern within a radial blade 
centrifugal pump. A mathematical model based on steady two-dimensional incompressible 
Navier-Stokes (N-S) equations has been developed. The real flow was modeled under these 
considerations. A computational-fluid-dynamic scheme was suggested using the primitive 
variables with artificial compressibility. The predictor-corrector method proposed by 
MacCormack was employed for its advantages of accuracy, less complexity, reasonable 
storage and convenient stability limit. A stability criterion was suggested and a fourth-order 
extrapolation smoothing term was used to limit the higher variations of the primitive variables. 
The use of this technique involved imaginary rows behind walls, and periodic boundaries at far 
upstream and downstream which adequately improved the convergence to the solution. Based 
on this model a computer program capable of predicting the flow pattern and pump 
characteristics inside the radial blade pump has been developed. The validity of the developed 
computer program, has been proven by comparing calculated and measured pump 
characteristic, which showed good agreement. 
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1. INTRODUCTION 

The investigation of the flow pattern inside the centrifugal pump is a basic object to select the 
pump suitable for a specific application. The flow pattern solution is a basic material to solve 
and predict the flow parameters inside the centrifugal pump. This work presents the 
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development of steady two-dimensional, incompressible N-S equations in polar-coordinate 
system and their solution using  primitive variables. The method was applied to a radial blade 
centrifugal pump. The difficult problem of calculating  the flow pattern can be tackled after 
making  a number of simplifying  assumptions: 
• The effect of turbulence is neglected and there is no separation of flow. 
• The relative flow through the impeller passage is incompressible, and steady. 
• The impeller is assumed rotating  in an infinite field. 
• The thickness of the impeller blades is neglected. 
• The effect of the turn from the axial to radial direction is neglected. 
• The velocity across the axial direction is constant and hence the flow is two-dimensional. 

2. MAIN GOVERNING EQUATIONS 

Consider the polar-coordinate system (r, 9), where r denotes the radial direction and 0 denotes 
the tangential direction. Consider the two-dimensional, incompressible N-S equations for a 
constant property flow without body forces or external heat addition. The continuity equation, 
written in the system relative to a blade row, is: 

la, 	la, , kru ) + — ae— 0  ) = 0 	 (1) P ar 	p   

where: 
Ur, U0 	are relative flow velocity components in r and 0 directions respectively. 
p 	is the operating  fluid density. 
After the above assumptions, the momentum conservation law for a rotating  blade is written 
as: 
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where: 
p 	is static pressure. 
(.1) 	is the angular velocity of the rotating  blade. 
✓ is the kinematic viscosity.  

02 	1 a 	1 a=  
5r - 	r 	r- 30 (for polar coordinates) 

These equations are written in the so-called primitive-variable form where p, u„ and ue are the 
primitive-variables [1]. The computation of incompressible flows is not straight forward as in 
the case of computation of compressible flow. The most characteristic aspect of the 
computation of incompressible flow is the difficulty of extracting  the pressure from the 
combined continuity and momentum equations. One common procedure is to define a Poission 
equation or a specially formulated correction equation for the pressure. Application of 
compressible algorithms to the incompressible equations is accomplished by adding  a time 
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derivative term to the continuity equation in a manner analogous to that originally suggested by 
Chorin [2]. 
The artificial density is related to the pressure by the artificial equation of state: 

	

P = 	 (4) 

where: 
p 
	is the artificial density (variable). 

8 
	

is an artificial compressibility factor (constant). 

Considering constant density p, the continuity equation (1) can be rewritten in the form: 

a 	Fi a 	a 
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Substitution by Eq. 4 into Eq. 5 yields 

--at(p) = P6[r (nir ) 	(Ile)] 
a 	a 	a 

The following is a trial to investigate the artificial compressibility factor 8. An artificial 
equation of state implies the existence of an artificial sound speed (r) given by: 

ap a•= ap11--z.=.18-  

The maximum artificial Mach number (M.) based on this artificial sound speed is required to 
be less than unity. 

M= 
A1(11 r2 	11;) 	 .1(12r  + 1.182  

max 	 max 

a 

The following condition is obtained: 

5 ?_ 	+ u21) 
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3. NUMERICAL ALGORITHM 

3.1 Computational Grid 

The computational domain is discretized into mesh points as shown in Fig. 1. The present 
scheme calculates the flow through one blade passage. The computational boundaries comprise 
the upstream inlet, the downstream exit, the pressure and suction side blade surfaces. The 
blade surfaces are extended along a surface of grid points in the upstream and downstream 
directions. These form permeable periodic boundaries. Logically, polar grid is used in the 
present method. 

(5)  
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3.2 Finite Difference Scheme 

There are two approaches to calculate incompressible N-S equations: implicit and explicit 
techniques. In this work the explicit one will be used. The most appropriate system of 
equations in differential form is the Reynolds averaged N-S equations in a rotating polar-
coordinate system given by Lakshminarayana [3]. 
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+ — 
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= –S + ViscousTerm at 	ar 	r 	r (10) 

where: 
Q 	is the conservation variable. 
E, F are the flux vectors. 
S 	is the source term. 

The viscous term will be discarded for its later use as central difference form in r and 0 
directions (Fig. 2). Equation (10) becomes: 
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Using Equations (2, 3, 6) 
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Q= u r  E +p/p , 	F= u r ue  , and 	S= u 2,3  +p/p+co 2 r 2  +2corue  (12)  

_lle  Il r lle  1182  ÷p/p - u r u e  – 2orti r  

where the elements [p / pl and [p / p] in the flux vector E and source term S respectively are 
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3.3 Predictor-Corrector Method 

Predictor-Corrector method proposed by MacCormack [4] is a two-step procedure based on 
the Lax-Wendroff scheme, and is widely used for both internal and external flows. The method 
is second-order accurate in both time and space. It can be used for both steady and unsteady 
compressible flow, as well as viscous and inviscid flows. For the inviscid flow, in the procedure 
suggested by MacCormack, an iterative approach and intermediate value (r+, 1  is obtained by a 
predictor step, and Q",:: is obtained by a corrector step, where n is the time step and n+1 is 
the next one. The predictor step written for the two dimensional (2-D) inviscid equations in 
polar (r, 9) system is given by: 

At 
–Qin 
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Here it should be emphasized that this step provides only an approximate value for (r*, , and 
this can be corrected or updated using the following corrector step: 

At 	 At 	 Si  -At} 
+Q7j1 	 [F"' - F"' 1+ -1,, 	• - ri 	rl 

where: 
Or 	is the element length in r direction. 
a 	is the element angle in 6 direction. 
The forward and backward differencing can be alternated between predictor and corrector 
steps as well as between the two spatial derivatives in a sequential fashion. The sequence is 
given in four time steps as shown in Table 1, in such a way to eliminate any bias due to the 
one-sided differencing. This procedure will be repeatedly carried out as required for the next 
four time steps. 

Table 1. Differencing sequence for the MacCormack scheme* 

Predictor Corrector 
a 
or 

a 
Fe 

a 
Tr 

a 
ae 

F F B B 
F B B F 
B F F B 
B B F F 

* (F = Forward, B = Backward) 

3.4 Time Marching Procedure 

The equations are solved using a time-marching procedure as is described in the following 
steps: 

1) Specify initial values for u„ ue , p at time t = 0. 

2) Get stability condition which is used to converge the solution. In other words, calculate 
time steps At for all the grid points. 

3) Solve the continuity equation and N-S equation at each interior grid point (predictor and 
corrector). 

4) Perform the appropriate smoothing for the primitive variables to maintain stability in the 
numerical solution. 

5) Find the primitive variables at the boundary using their values at the interior points. 
6) Return to step 3 if the solution is not converged. 

- 2 (14) 

Practically, it was found that it is unnecessary to recalculate the stability condition (step 2) 
after performing each time step computation. 



Proceedings of the 7th  ASAT Conf. 13-15 May 1997 	[T7-27 881 

3.5 Smoothing Terms 

For algorithms of the present type, it is often necessary to add smoothing terms in order to 
suppress high frequency oscillations. This can easily be accomplished by adding a fourth-order 
explicit dissipation term to the primitive variables in the two-directions of flow (r, B) for 
interior points. The added term has the form: 

(A) 
4 

4 -
a4 (Q) +(O., 

4 21-
4 

(Q)] ar 	 ae (15) 

where a, is the explicit smoothing coefficient. 
Since this is a fourth-order term it does not affect the formal accuracy of the algorithm. The 
negative sign is required in order to produce positive damping. The smoothing coefficient s, 
should be less than approximately 1/16 for stability [4]. A value of 0.05 is used in the present 
work. The fourth-derivative terms are evaluated using finite-difference approximations. 

3.6 Stability Condition and Convergence Criteria 

It is necessary to find a value of the time step At for which the stability of the solution could be 
maintained. For the inviscid and incompressible time marching method, a complete stability 
analysis is reported by Abdalla [5] who could express the maximum possible time step for the 
2-D problem. Because of the complexity of N-S equations, it is not possible to obtain a closed 
form stability expression for the MacCormack scheme applied to the governing equations. 
Tannehill [4] used an empirical formula in case of one dimensional N-S equations. The 
expressions of Abdalla and Tannehill have been combined into one empirical formula, suitable 
for 2-D incompressible N-S equations, in the form [6]: 
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where F, is the time factor. It is found from experience that the time factor up to 0.9 can be 
used. In case of an unstable solution, the time factor is reduced by 0.1. 
Time steps are calculated based on the initial conditions and are not updated during the 
calculations. Thus, the time step varies as a function of grid spacing only. The iteration process 
is repeated until it converges. The computation is considered to be converged when the root 
mean square of the residual in the velocity component ur  drops below 10-5. 

E 	n+1 
1=1  j=1  

(Ni — IXM) 

where: 
Ni 	is the total number of grid lines from upstream to downstream extensions in r direction. 
M 	is the number of grid lines from blade-to-blade in a direction. 

RMS 

2 

(17) 
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3.7 Upstream and Downstream Boundary Conditions 

The prescription of the inflow and the outflow boundary conditions is one of the most 
important tasks. These surfaces should be located far upstream and far downstream, where the 
influence of the blade row under consideration.is  negligible. Hence, most investigators locate 
them usually at about one to one half-chord upstream and downstream. The far upstream and 
downstream boundaries are located about half-chord, and one-chord respectively as shown in 
Fig. 1. On the upstream boundary the relative velocity components ur  and ue are specified. On 
the downstream boundary only the static pressure p is required. The other variables at both 
upstream and downstream boundaries are to be obtained by interpolation from the interior 
points. 

3.S Walls and their Extension Boundary Conditions 

The wall points are considered as if they were interior points for the calculation of all the 
variables. This required to add a grid line before the pressure side and a grid line after the 
suction side as shown in Fig. 1. The parameters at these lines were obtained by quadratic 
interpolation from the values at the wall and two interior points. This is numerically exactly the 
same as applying the conservation equations to a point on the half spacing near the wall and 
then extrapolating from this point to the boundary [51 To simulate blade row conditions, it is 
essential to impose zero radial and tangential velocities in case of N-S equations. At the 
periodic boundary the variables were calculated as the interior points. In this case the 
periodicity condition could be used to obtain the variables which were located beyond the 
boundary. The results at corresponding points were then averaged after each time step. 

3.9 Initial Conditions 

The prescription of the flow for all grid points by relatively real values is one of the most 
important tasks. This initial guess can be completely arbitrary, where this procedure has no 
effect on the final solution, but it affects the number of iterations needed to converge the 
solution. Three zones of initial conditions are shown in Fig.1: imaginary upstream grid points 
(Z1), imaginary downstream grid points (Z3), and inside blade passage grid points (Z2). The 
data required for the solution are the major impeller dimensions, the flow rate, the fluid 
viscosity and density, and the impeller speed. The radial velocity is obtained from continuity. 
The tangential velocities in upstream and downstream are obtained from Euler's equation. 
Inside the blade passage, as the flow is considered radial, the tangential velocity is neglected. 
Assuming reasonable starting value for the downstream static pressure, Bernoulli constant at 
downstream is calculated. The initial values of the static pressure at all the grid points can be 
readily calculated. 

3.10 Computer Code 

The developed program is written in the C++ language (version 3.1 for Windows 3.x) with a 
total of about 800 statements. The execution file requires about 90 Kbytes of storage. Up to 
52x23 grid points maximum, with a corresponding memory requirements of approximately 8 
Mbytes, can be used. Time requirements per point per time step were about 7x104  seconds 
when a computer of type 486DX2-66MHz was used. 
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4. RESULTS AND DISCUSSION 

The developed computer code was used to solve the case of an impeller with inner radius of 
0.026 m, outer radius of 0.0625 in, number of blades is 6 and blade width is 0.01 m. The 
water was used as the working fluid, with flow rate ranging from 2 to 6 lit/s and pump speed 
of 1500 rpm. Different techniques were used to implement the boundary conditions to select 
the best technique from the point of view of convergence. Good improvement in the 
convergence of the solution was obtained with the use of imaginary rows behind walls and 
periodic boundaries at far upstream and downstream. 
The convergence was predicted for flow rates of 0.002, 0.003, 0.004, 0.005 and 0.006 m3/s. 
Figure 3 shows the convergence histories for flow rate of 0.004 m3/s. Figure 3a shows the 
convergence of the RMS error in the radial velocity component. About 4000 iterations were 
required to obtain converged solution. The convergence of the outlet-to-inlet flow rate ratio is 
shown in Fig. 3b. It is clear that the ratio converges to a value very close to one. The 
convergence of the radial velocity component near the leading edge is shown in Fig. 3c. Figure 
3d shows the convergence of the static pressure at the upstream boundary. To save computer 
memory and time single precision was used. As seen from the previous figures, a reasonable 
convergence was found for a number of iterations around 3000. 
In order to check the validation of the presented code, it was applied to predict the 
performance of the given pump. The results were compared with the experimental data 
reported by Ahmmed [7], Fig.4. It was assumed that the pump characteristics depend mainly 
on the impeller characteristics. The head characteristic calculated by the code showed the 
correct trend. A close agreement with experimental data was demonstrated, in particular, 
around the nominal discharge Q.  The static pressure distribution at the delivery and suction 
sides of the impeller is shown in Fig.5. In addition, distributions of relative velocities and 
pressure were calculated for the above flow rates. The results for a flow rate of 0.004 m3/s are 
shown in Fig.6. Figure 6a shows the radial relative velocity inside blade passage. The more 
developed flow downstream can be explained by larger flow area. Figure 6b shows the 
tangential relative velocity inside the blade passage. The difference of the tangential relative 
velocity inside the radial direction becomes more pronounced near the delivery side. The 
reverse flows are well indicated at this flow rate. Figure 6c shows the pressure contours inside 
blade passage. It is clear that for the same grid line, the pressure at the pressure side is higher 
than that at the suction one. The process of pump pressurization is obvious as the pressure 
increases in the downstream direction. The flow pattern at different flow rates is presented in 
Fig. 7. It could be seen that, at low flow rates the effect of rotation is dominant and hence a 
large vortex is formed, while at high flow rates the phenomenon is reversed. 

5. CONCLUSION 

A mathematical model based on the steady incompressible Navier-Stokes equations in two-
dimensional polar-coordinate system has been developed. An explicit finite difference scheme 
has been used to solve the model. The pressure field solution.  was based on the artificial 
compressibility approach in which a time derivative pressure term was introduced into the 
conservation equation. Based on the above scheme, a computer code was developed and used 
to predict the flow pattern inside a radial blade centrifugal pump. The validity of the code was 
proven by comparing computational results with experimental data, which showed a close 
agreement. The code was used to calculate the head characteristic, the distributions of the 
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relative velocities and pressure .for specified pump flow rates. The obtained impressive pictorial 
images of the flow might be highly required to interpret the many performance features of the 
pump. 
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