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Abstract: Pisarenko method is an important technique to estimate the 
sinusoidal signal frequencies in white noise. In this paper, we show that the 
assumption of fair white noise and its corresponding equal values diagonal 
covariance matrix can be perturbed in some noise environments. Therefore, 
the simple criterion form of Pisarenko is not suitable and other modified 
algorithms are to be proposed to alleviate this problem. These algorithms and 
their results are shown. 

1. Introduction: 
Pisarenko method is one of the important techniques to estimate the 

sinusoidal signals frequencies in white noise [1], [2]. A problem of strong 
interest in the digital signal processing applications. The method is based on 
finding the optimal weighting vector corresponding to the minimum 
eigenvalue of the signal sampled covariance matrix. 

The interested signal sample is represented by: 

x(n) ECG  sift (27cf. n +(f))+z(n) (1) 

Cj, fj, 4j are the amplitude, frequency (to be estimated) and phase of the jlb  
sinusoidal signal and z(n), the additive white gaussian noise, zero mean and 

i 
variance an  (for this particular signal, SNR = 10Iog 	C'2  For the signal 

2a2  
vector XI, 

xT=Ex(i),x0 - 	 ,x(i-N +1)] 	(T: vector transpose) 
The covariance matrix is given by: 

L 
Rxx  = 	 (2) 

(L - N + ) j.N   
P 
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rwhere L is the number of the sgnal samples and N is the dimension of the 
signal vector 
Pisarenko is mainly optimizing the criterion 

WTRW  
min P = 

W T 
 W 	

(3) 

The minimum of p is known as the minimum eigenvalue of R„„ and W is the 
corresponding eigenvector. W is used as the weighting vector in the 
spectrum estimator of the signals in (1). This covariance matrix (Rn) can be 
considered as the sum of the sinusoidal signals covariance matrix plus the 
noise covariance matrix as: 

R,o, =Rs  +Rn 	 (4) 
This method is based on the assumption that the noise is white, i.e. its 
covariance matrix is given by: 

R. a! I 	 (5) 
(I: identity matrix) 
So, the optimal vector to (3) is given by: 

L  W = 1 - 	 (6) 

i.e. the sum of the noise eignevectors whose eignevalues are the same and 
equal to a2„ (a 2n  is the least value of (3)), where 

Rs  Vi  =0 	 (7) 
R„, 	 i = 1, 	L 	(8) 

(Thus, the weighting polynomial W(co) based on W has zeros at the 
sinusoidal signals frequencies). R),,, has N - dimension where L = N-2m. VVe 
found that this condition on the additive noise may not completely fulfilled in 
same cases, as IR, has small perturbed matrix from the assumed identity 
rnatrix or: 

Rn  = a2„1 + AR 	 (9) 
;as AR is perturbation matrix. 
Therefore, the corresponding noise eigenvectors and their eigenvalues are 
as well perturbed and not equal as changed from the assumed case in (8). 
Actually, while solving the criterion in (3), the algorithm is terminated to single 
noise eigenvector corresponding to the lowest eigenvalue or the most 
perturbed one. Again, this situation is different from the assumed case to 
obtain in (6). The obtained results are usually showing spurious noise to 
smear the wanted results. This situation is precisely met while we perform 
some experiments using linear ccngruential equation that is custom to use in 
signal processing to generate the white noise, this subroutine can be found 
as in [3]. The noise correlation lags are found as: 

ri(1)= 0.952, 0.0627, -0.0792, -0.1008, -0.0337, -0.0315 -0.0791, 
0.0736 

(1) = 0, 1, 2„ 7, 	 (10) 
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[—While the ideal noise is assumed to have correlations lags close to (1, 0, ...0). 
We believe similar situations can be found in some practical noisy channels. 
It is the purpose of this paper to suggest the necessary modifications to (3) to 
avoid such fautly results in these noise circumstances. 

The following section contains the derived algorithms. The simulation 
results to show the algorithms results and improvements are presented in 
section (3). Finally, the conlcusion is given. 

2- The proposed algorithms: 
To correct the pitfall of the criterion in (3) in the explained noise conditions, 
we modified the problem in (3) from looking for vector W corresponding to the 
minimum eigenvalue to find W that gives p equal to a 2n  , i.e. find W s.t. 

W R 
W
„W 	2 
	 (11)   P - 	 = a  W T 

 

Therefore, the algorithms require prior knowledge of the noise variance. This 
noise variance can be estimated in a simple way as solving the set of 
equations corresponding to overdetermined autoregressive model, i.e. 

N 

=[

rx  (q) + Eci  rx(q- i). 0 	 , N+1 q 	 (12) 

and based on these coefficients, the noise variance is estimated as: 

EC1 [rx0)+ECi  rx(i - j)  
i=i 	 i=1 

where the correlation lag is given by: 
L-m 

rx  (m) 	 E x(i)x(i+ in) 
L- m i=1  

Accordingly, we suggest the following algorithms. 

Algorithm (I): 
The criterion in (3) is modified to the following 

WT(Rxx _
a2A(Rxx  _a2i)w 

WT W 

The matrix 13--;(1t xx  -a2r,i)(Rx, -anI) has the same eigenvectors as Roc. 

However, the minimum of (15) attained is zero to give the same vector of (3) 
corresponding to p = a 2„ . This is the_solOon to cited problem in (11) and 
the obtained vector belongs to the noise subspace without being one of the 
noise eigenvectors. The following numerical algorithm is used to solve (15). It 
is based on the conjugate gradient vector, it is better search direction vector 
than gradient vector (this algorithm is used in similar problems [4], [5]) 
defined as: 

Pn 7-"Gn +an Pn-1 	 (16) 

I

where Gn  is the gradient vector of (15) and is given by: 

min 

(13)  

(14)  

(15)  
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r  
Gn  = 	T

-2 
 [13- pn  I]Wn 	 (17) 

Wn Wn 

	

a = [G
n 	Gn 	

(18-a) n iT iGn  -Gn_11 Pn-1 
Pn = value of (15) with Wn  , and as the successive search vectors are 
conjugate orthogonal or restricted by: 

[Gn 	Pn  =0 	 (18-b) 

To update the vector W.; 
Vn+1 =Wn ±tn Pn 	 (19) 

where tn  is the step size at which the criterion (15) is minimum, 

and 	Wn+.  _  Vn+1  
	11Vn+111=11 VnT+1 .Vn+1 	 (20) 

	

as the optimum of 	is reached when liGnikl E (E=10-8) 

The objective function value in (15) is scale invariant w.r.t. W. The 
convergence characteristics to the optimal point is better with this vector 
normalization. 

Alciorthim (II): 
The solution to the problem arised in (11) can be obtained as power 

inversion technique solution that: 

Vk-4-1=(Rxx a2. Wk 	 (21) 

Vk+1  
\Vk+1 :=11Vk+11 

Through this iterative procedure, the emphasized components results in Wk+1 
will be the solution of (11). The normalization of the weighting vector is found 
through experiments to enhance the results further. The initial vector can be 
any nonzero vector. It is to be noticed that it is very simple to obtain the 
inverse matrix in (21) iteratively as: 

	

R.E1.„(Rxx 	/) 1 =-1,(iXiXT -Lcy2n  I) 	 (22) 

and for the first sample vector, we have 
( 	

Xi  X1 	 (23)R1 1  4X1 X-1. 	 I+ 	 (23) 
L (32n 	L (52n  _ XT Xl  

1  R1-1  X2X.1  

	

; Ril  4)(2 	+XiXT - Lan 	=RT 	 (24) 
11-XTRO X2  

a:nd so on until RV 

and 
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Algorithm  
An adaptive loop is derived to converge to the solution of (11) as: 

Vk+i =Wk --11[Rxx 	IiWk 	 (25) 

Vk+1 1  
Wk+1 11 

=1Vk+111 
	= trace of Rxx  

	

In this adaptive mode, the eigenvectors of 	with eigenvalues larger than 
a 2n  will have less than one eigenvalue in the loop equation to be attenuated. 
On the other hand, the noise eigenvectors will have eigenvalue in the loop 
equation larger than one to stay as the converged vector approach the 
solution of (11). The performance of these alogrithms in the noise conditions 
explained in (10) are shown in the next section. 

3- Simulation results 
The estimated power spectral density (PSD) of the signals in (1), is 

given by: 

P(a)= 	 , -7C W 	 (26) 

Ew e-i0-1)(° 1 
i=1 

\NJ  is the ith  component of the optimal weighting vector W A simulated signal is 
used with two sinusoidal signals, fl= 0.27, f2  = 0.34 (the frequencies are 
normalized w.r.t. the sampling frequency) with SNR = 5, 10 dB respectively 
w.r.t. cr 2n  = 1. To represent the noise "z(n)", linear congruential random 
generator is used as: 

I n  =(aIn  +1) mod (m) 	 (27-a) 

and un = 	 (27-b)
In  

un  has uniform distribution over the range; -0.5 5_ un  0.5. In this particular 
example, a=493 and m = 220. To obtain z(n), each 12 successive samples of 
un  are sumed. In Fig. (1), Algorithm (I) is applied and the resulted spectrum is 
shown for N = 20. It takes 9 iterations to reach the optimal value as the 
results shows two sharp peaks at the correct frequencies. For the same 
signals, when applied to pisarenko method criterion in (3), the unsatisfactory 
performance results are shown in Fig. (4). In Fig. (2), the results are based on 
Alg. (II), two sharp peaks are again identified at the sinusoidals frequencies, 
however there is uncorrect false peak at f = 0.5, perhaps due to the noise and 
the nonlinearity of the algorithm. Fig. (3-a) shows good results for the 
adaptive loop Alg. (III) to estimate the sinusoidal frequencies by identifying 
their corresponding sharp peaks. The convergence characteristics of this 
adaptive algorithm is shown in Fig. (3-b) as p versus n (iteration number) to 
show descent and fast behavior to reach the steady state as designed. 

1 

i2  
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Conclusion: 
The criterion of Pisarenko harmonic retrieval method is modified to 

accommodate more noise channels conditions. The new criterion is to obtain 
the weighting vector corresponding to p= a 2, (noise variance). Three different 
algorithms are introduced to find this weighting vector. Simulation results to 
show the advance of these algorithms are presented. Algorithm (II) & (Ill) are 
simple to be implemented than algorithm (I). However, the results are better 
for algorithm (I) & (Ill) with respect to the results resolution and immunity to 
noise false peak. 
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