
Proceedings of the 8k" ASA T Conference, 4-6 May 1999 
	Paper CM-10 	975 

Military Technical College 
Kobry Elkobbah, 

Cairo, Egypt 

401% 
--7------AS A T:=-:.-------  

4*e 

8th International Conference 
on Aerospace Sciences & 

Aviation Technology 

AUTOMATIC CLASSIFICATION OF M-ary PHASE SHIFT 

KEYING (MPSK) SIGNALS 

El-sayed E. Azzouz & Khairy El-barbary 

ABSTRACT 

In this paper, a procedure for automatic classification of MPSK signals, with M=2,4 and 
8 is proposed. The developed algorithm utilizes the pattern recognition approach. This 
is based on counting the number of states in the signal constellations, which is derived 
from the complex envelope of a received signal. Computer simulations for 100 
realizations of each type of band-limited MPSK signal (M=2, 4, and 8) corrupted with 
band-limited Gaussian noise are performed. It is found that the number of levels is 
correctly estimated at the SNR of 10 dB. 
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I- INTRODUCTION 

In modern communication systems, the digital modulation techniques are frequently 
used. So, the current trend is the digital modulation classification. In electronic warfare 
applications, electronic support measures system'plays an important role as. a source 
of information required to conduct electronic counter measures, threat detection, 
warning, target acquisition and homing. Generally, any surveillance system in 
COMINT applications consists of three main blocks: receiver front-end (frequency 
down conversion and activity detection), modulation recognizer (key features 
extraction and classification) and output stage (normal demodulation and information 
extraction). At the output stage there are several functions performed and they are 
mainly related to information extraction, recording and exploitations. All these functions 
are preceded by signal demodulation. The information obtained from the receiver 
front-end and modulation recognizer are gathered to perform the signal demodulation 
and information extraction. 
Modulation recognition environment may vary between two extremes - from no 
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significant noise in the best situation to a very noisy one with interference and fading. 
Moreover, there are many practical problems facing the modulation recognition 
process. Some of these problems are due to the radio communication channel and the 
intercept receiver. These problems are such as: multi-path fading, signal distortion, 
frequency instability, and interference from adjacent channels. These problems should 
be solved in the receiver front-End stage. The other problems are due to the nature of 
the received signal. These pYoblems are such as: weak segments of a signal, carrier 
absent or reduced, lower SNR reception, and the high sampling rate and the required 
computational speed. The details for some of these problems and the suitable 
solutions are discussed in111. 
Generally, there are thvee philosophies for approaching the modulation recognition 
process in the available references namely 1) a decision-theoretic approach, 2) a 
statistical pattern, recognition approach and 3) an artificial neural networks (ANNs) 
approach [1]. The modulation recognizers, in the available references, were developed 
according to any of these approaches. There are also some recognizers combining 
some of these approaches. Also, there are five techniques for solving the modulation 
recognition problem. These are: 1) spectral processing, 2) instantaneous amplitude, 
phase, and frequency parameters, 3) instantaneous amplitude, phase, and frequency 
histograms, 4) combination of the previous three techniques and 5) universal 
demodulators. In this paper, the features used in the proposed algorithm are extracted 
from the complex envelope of a signal and the decision criterian is derived from the 
number of states in the signal constellation. Extracting the features from the complex 
envelope representation rather than the instantaneous phase avoid the problems 
related to the phase computation such as: the division operation, the linear phase 
component, the phase wrapping. So, the processing speed of the developed 
algorithms may be higher than those utilize the instantaneous phase. 
In this section, an overview for some of the more recently published recognizers for 
digital modulations is presented. Liedtke [2] proposed a modulation recognizer for 
some types of digital modulations - ASK2, FSK2, MPSK (M=2, 4, 8) and CW. This 
recognizer utilizes the universal demodulator technique. The key features used to 
discriminate between these types are the amplitude histogram, the frequency 
histogram, the phase difference histogram, the amplitude variance, and the frequency 
variance. In [2], it is claimed that an error free signal, i.e. all the signal parameters are 
exactly known, can be recognized at SNR >18 dB. Polydoros and Kim [3] introduced 
a modulation recognizer, following the decision-theoretic approach, using the log-
likelihood ratio to discriminate between PSK2 and PSK4. It is claimed that that 
recognizer can be extended to address MPSK signals classification with M > 4. 
Hsue and Soliman [4] introduced a modulation recognizer for constant amplitude 
signals such as CW, MPSK, and MFSK. It utilizes the zero-crossings characteristic of 
the intercepted signals; to derive the phase and frequency information. The decision 
about the modulation type is based on the variance of the zero-crossing interval 
sequence as well as the frequency and phase difference histograms. In this 
recognizer, the classification strategy comprises two main steps; first discrimination of 
single-tone (CW and MPSK) from MFSK signals, and secondly determination of the 
number of states (M). The determination of the number of states in single-tone signals 
is achieved ;.)}, measuring the similarity of the normalized phase difference histogram. 
Finally, the performance of this recognizer was derived from 100 realizations for each 
modulation type of interest. In [4] it is claimed that a reasonable average probability of 
correct classification is achievable for SNR > 15 dB. Also, Soliman and Hsue [5] 
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introduced another modulation recognizer based on the statistical moments of the 
intercepted signal phase. In this recognizer, the even order moments of the signal 
phase are used to estimate the number of levels, M, in MPSK signals. In [5], it is 
claimed that the second order moment is sufficient to discriminate the CW from the 
MPSK signals and, the eighth order moment is adequate to identify BPSK signals with 
reasonable performance at low SNR. 
Nagy [6] introduced a suggested procedure for modulation classification of 
multichannel systems. This classifier was accomplished by dividing the analyzed 
signal into individual components and each signal component is classified using a 
single tone classifier. The types that have been classified by this recognizer are CW, 
ASK, PSK2, PSK4 and FSK2. In [6] the performance of the developed recognizer was 
derived from 100 realizations for each modulation type of interest. Finally, it is claimed 
that all the single-tone types (CW, ASK2, PSK2 and PSK4) have been classified with 
success rate > 90.0 % at 10 dB SNR except the ASK2 (=87.0 %). 
Azzouz and Nandi [7] proposed a modulation recognizer for the digital modulation 
types up to 4-levels (ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4). The key features 
used are derived from the instantaneous amplitude, the instantaneous phase, and the 
instantaneous frequency of a signal. In [7], all the digital modulation types of interest 
have been classified with success rate > 90.0 % at the SNR of 10 dB except PSK4 
(89.25 % success rate). At the SNR of 20 dB all the modulation types of interest have 
been classified with success rate > 96.0 %. Moreover, Nandi and Azzouz proposed a 
modulation recognizer which utilizes the ANN approach [8]. It is based on a single 
hidden layer ANN and the same data set used in [7]. It was found that all the 
modulation types of interest have been classified with success rate > 93.0 %. at 10 dB 
SNR and with success rate > 97.0 % at 20 dB. In [1], Azzouz and Nandi introduced a 
double hidden layer ANN modulation recognition algorithm. Using the same data set 
in [6] and [7], it was found that all the modulation types of interest have been classified 
with success rate > 96.0 % except FSK2 (=92.5%) at the SNR of 10 dB but at SNR of 
20 dB, the success rate is > 99.0%. However as the number of levels, M, increases 
the classification problem becomes more complicated, especially in the dense noise. 

II- PROPOSED ALGORITHM FOR MPSK SIGNALS CLASSIFICATION 

Recently, the modern communication systems prefer the phase shift keying with 
different levels M=2, 4, and 8. The interference phenomena confuse the COMINT 
receiver to decide which scheme is used in the intercepted signals - binary, 
quadrature, octal, 	etc. Figure 1 illustrates the problem. One can see from Figs. 1 a, 
b, and c the phase state constellation for ideal MPSK with M= 2, 4, and 8 respectively. 
However, the received signal will be constelated as shown in Fig. 1-d where it is not 
easy to decide which scheme is used. In this paper, an algorithm is developed to 
decide reliably about the number of levels of MPSK signals. The proposed procedure 
for number of levels estimation comprises the following steps: 
1- Computing the smoothed real and imaginary parts of the complex envelope of a 

signal as shown in Fig. 2 and obeying the following steps: 
• Computing the analytic representation, z (t), of the intercepted signal, x (t), as 

z (t) = x (t) + j y (t), 	 (1) 
Where y (t) is the Hilbert transform of x (t) 
• Computing the complex envelope of the signal x (t) as 
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a (t)=-: z (t) exp. {-j 2 ,r f t} 	 (2) 
Where fc  is the carrier frequency . Also, a (t) can be expressed as 

a (t) =R (t) + j I (t) 	 (3) 
The real and imaginary parts of the complex envelope as well as the phase states 
of MPSK signals are presented in Appendix A. 
• Applying median filters on the real and imaginary parts, R (t) and I (t) 

respectively. 
2- Constructing the signal constellation from the derived real and imaginary parts of 

the complex envelope. Plotting the imaginary part versus the real part of the 
complex envelope of a signal performs the signal state constellation. 

3- Dividing the states space into nine regions (eight on a unit circle and one at the 
origin (corresponding to noise and band limitation effects)). It is known that the 
phase state of MPSK signals (constant amplitude signal) lie on a unit circle. Thus, 
dividing the state space by this way gives the ability to estimate the number of 
levels of MPSK signals with M=2, 4, and 8. 

4- Clustering the phase states in each region according to the procedure presented 
in the flowchart shown in Fig 3. 

5- Counting the number of clustered states in each region and ignores the regions 
that contain number of samples less than a chosen threshold (e. g. number of 
samples per bit duration). 

HI- COMPUTER SIMULATIONS & PERFORMANCE EVALUATIONS 

Let the carrier frequency, fc, the sampling rate fs, and the symbol rate re  were assigned 
the values 100 kHz, 1000 kHz, and 9.6 kHz respectively. The modulating symbol 
sequence was derived from Ns  independent random numbers to increase the degree 
of realism. The MPSK signals were derived from a general expression [1] and it is 
explained in Appendix A. Also, as it is usual in practice and to increase the degree of 
realism, the simulated modulated signals were band-limited to make them 
representing more realistic test signals. In this case the simulated digitally modulated 
signals were band-limited to bandwidth containing 97.5% of the total average power. 
Any way, a complete illustration for computer simulations of band-limited MPSK signal 
was presented in [1]. The results of the performance evaluation of the proposed 
procedure for MPSK classification are derived from 400 realizations, each with 4096 
samples, for each modulation type. Sample results are presented at two values of 
SNR (5, and 10 dB) in Tables 1, and 2. Consider Table 1 for example; It can be 
observed that all modulation types of interest have been classified with success rate > 
95.0%. The results, in Table 2 correspond to the SNR of 10 dB. It is clear that the 
probability of correct MPSK classification has been increased with increased SNR and 
now all the moc'Aulation types of interest have been classified with 100% success rate. 

Table, 1. Success rate of different modulation type at the SNR of 5 dB. 

I,-- 	Simulated Modulation 
Types 

Deduced Modulation Types 
PSK2 PSK4 PSK8 

PSK2 96.0% 4.0% 
PSK4 98.0% 2.0% 
PSK8 100% 
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Table 2. Success rate of different modulation type at the SNR of 10 dB. 

Simulated Modulation 
Types 

Deduced Modulation Types 
PSK2 PSK4 PSK8 

PSK2 100% 
PSK4 100% 
PSK8 100% 

IV- CONCLUSIONS 

The aim of this paper is to introduce a fast and reliable algorithm for MPSK 
classification. The current approach is to carry out this task utilizing the pattern 
recognition approach. An extensive number of simulations for different types of MPSK 
is introduced to measure the performance of the developed algorithm. It is found that 
the threshold SNR for modulation recognition at a success rate > 95% is about 5 dB, 
which is a better result, compared with those in the referenced papers. Furthermore, 
the used key features are derived from the complex envelope which make the 
developed algorithm faster than those utilize the instantaneous phase in addition to 
avoid the problems related to the phase computation such as : the division operation, 
the linear phase component, the phase wrapping. Now the work is under going for 
implementing and testing the developed algorithm on real signals and applying the 
same ideas for recognition of QAM signals. 
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(d) 
	Noisy Intercepted PSK Signal 

Fig. 1. Phase states constellation for MPSK signals 
[a, b, c] Ideal and [d] Noisy 
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Fig. 2. Extraction of real and imaginary parts of the complex envelope 
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Fig. 3. Functional flowchart for clustering the signal states. 

Where, N, is the number of samples per frame, 
Cl is a counter for the sample number in the frame, 
S1-S9 are counters for the signal states, and 
R and I are the real and Imaginary parts of the complex envelope of a signal. 
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Appendix A 

Real and imaginary parts of the complex envelope of MPSK signals 

The MPSK signals can be expressed by [1] 

S, (t) = A Cos [ 2 g f c  t +4) , (t)} ; i = 1, 2, ..., M 	 (A. 1) 

By straight forward analysis, the associated complex envelope, a , (t), is given by 
a , (t) = A Exp (j (I) , (t)) 	 (A. 2) 

Thus, the real and imaginary parts are given by 
R (t) = A Cos [(I) , (t)] and 1 (t) = A Sin [4) , (0] 	(A. 3) 

The values of phase states, and the real and imaginary parts of the complex 
envelope are shown in the following table. 

Table A.1. Phase states, and the real and imaginary parts of the complex 
envelope of MPSK signals 

Modulation Types 11,  i (t) R(t) I (t) 
BPSK 0 1 0 

7t  -1 0 
0 1 0 

QPSA rc/2 0 1 
It -1 0 

3 7c/2 0 -1 
0 1 0 

7c/4 0.707 0.707 
7t/2 0 1 

3 7c/4 -0.707 0.707 
8-PSK n -1 0 

5 7c/4 -0.707 -0.707 
3 7t/2 0 -1 

_ 7 7t/4  0.707 -0.707 
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