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ABSTRACT 

The equivalent plate modeling formulation of composite wings, described in Part 
One, is extended in this paper to include the explicit analytic expressions for terms of 
the mass and aerodynamic matrices. Analytic sensitivities of the mass and 
aerodynamic matrices with respect to panel shape, thickness and fiber orientations 
are derived. Before proceeding in the study of analytic sensitivities using the derived 
expressions, the accuracy of its panel flutter analysis was numerically tested for 
simply supported panels of trapezoidal and skewed shape, of isotropic and 
composite materials and variable fiber orientations. The nondimensional critical 
dynamic pressure and critical frequency of flutter are compared with the results of 
finite element flutter analysis of composite skew panels by Chowdary, T.V.R. and al 
given in "Computers and Structures", (1996). The correlation of the results is good 
for moderate in-plane loading. Accuracy of the approximations is studied for the 
integration with nonlinear programming/approximation concept aeroelastic design 
synthesis methodology. 
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NOMENCLATURE 

[Adiff] : aerodynamic stiffness matrix 
[Ademp] :aerodynamic damping matrix 
[C] : damping matrix 
DV: design variable 
[F1], [F2], [F3] : matrices containing admissible functions and their derivatives 

* Staff Member, Aerospace Department, Military Technical College, Cairo 
** Engineer, Egyptian Armed Forces. 



Proceedings of the 8th  ASAT Conference, 4-6 May 1999 	Paper SM-05 	240 

fi(x,y) : admissible functions 
h(x,y) : total thickness of panel 
ITB  : integral of a simple polynomial term over the trapezoidal panel area 
[K] : stiffness matrix 
[KG] : geometric stiffness matrix 
[K*] : generalized stiffness matrix including structural and aerodynamic effects 
[M]: mass matrix 
M., : flight Mach number 
m, n: powers of x and y in a polynomial 
mtk, ntk: powers of x and y in polynomial series for thickness of layer I 
mwk, nwk: powers of x and y in Ritz functions 

nvj, nui: powers of x and y in polynomial terms of FB(x,y) 
Ni  : number of terms in the thickness polynomial foe layer 1 
NL  : number of layers 
Nx, NY, Nxy: in-plane loads per unit length 

p : pressure difference distribution 
{QA} : generated aerotmarni6 forCtiMatriX 
[Qsm] : Mach independent aerodynamic stiffness matrix 
[Qciamp] : Mach independent aerodynamic datoping matrix 
qD  : flight dynamiC preSsure 
qc;iticai : critical dynamic pressure 
{cf.} : vector of generalized displacements for panel. 

: the ith coefficient in the polynomial series for thickness of the kth layer 
U., : flight speed 
w(x,y) : panel out-of-plane displacements 
A, fl : normalized dynamic pressure and frequency 
X . eigenvalues 

: direction of incoming flow 
pm : plate material density 
pa, : air density 
{(1)} : right eigenvector 
{►) : left eigenvector 

Subscripts 

A : aft (rear) 
crit : critical dynamic pressure 
F : front 
flutter: flutter dynamic pressure 
L : left 
R : right 



Proceedings of the 8th  ASAT Conference, 4.6 May 1999 	Paper SM-05 	241 

INTRODUCTION 

An extensive work and consequently substantial knowledge and experience have 
been accumulated over the past four decades regarding the aeroelasticity of panels 
in supersonic flow, [1] and [2]. Different numerical techniques have been used 
together with exact solutions including Galerkin, Rayleigh-Ritz and finite element 
techniques, [3], [4] and [5]. As an aeroelastic research problem, it includes linear 
and nonlinear stability and dynamic response, dynamics of systems with random 
parameters,[6], and interactions between static and dynamic instabilities in the 
presence of in-plane loads and thermal effects,[7] and [8]. Panel flutter has been 
used to study applications of composite materials, [9] and [10], and transverse shear 
effects,[11]. Most of the studies, however, are confined to rectangular panels. 
Solution techniques and results for quadrilateral and trapezoidal panels have been 
discussed in only a small number of articles, [12], [13] and [14]. 

Skin panels in typical aircraft wing structures are very often trapezoidal in shape. 
Moreover, during the shape optimization of such wing structures, internal spars, ribs 
and stiffeners may move to form trapezoidal skin panels, and these panels may 
change shape during optimization in addition to changing thickness and material 
properties. The capability to efficiently evaluate the aeroelastic stability of 
trapezoidal skin panels under combined in-plane loads, as well as sensitivities with 
respect to sizing, material and shape design variables, constitute an important 
building block in an overall structural/aeroelastic optimization capability. 

The optimization of panels, subject to aeroelastic constraints, has been studied in 
cases involving isotropic and composite structures,[15], [16], [17] and [18]. These 
studies are limited to the treatment of an isolated rectangular panel, excluding its 
interaction with the structure containing it. In the effort to develop effective 
aeroservoelastic synthesis techniques for stressed skin aerospace structures, the 
area of airframe shape optimization becomes important, because of the need to 
make rigorous design optimization available to the designer at an early stage of the 
design process, where overall shape of the aircraft is still evolving. Analytic shape 
sensitivities have been developed for wing box structural modeling,[19], integrated 
wing box/panel buckling analysis in part one of this paper and unsteady 
aerodynamics in both subsonic and supersonic flight,[20]. This second part of the 
paper focuses on the integrated wing box/panel flutter analysis and sensitivity 
problem with emphasis on the needs of planform shape optimization. 

This paper uses the panel modeling and the use of simple polynomials as admissible 
functions in the Ritz analysis given in part one of the paper. In part two of-the paper, 
it is shown how this formulation leads to the expression of mass and aerodynamic 
matrix terms as linear combinations of members of a single table of area integrals, 
obtained explicitly over the trapezoidal area of the panel. Analytic sensitivities with 
respect to thickness, fiber orientation and panel shape are derived. Test cases and 
results conclude this article. 
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MASS MATRIX 

When the kinetic energy of the panel in transverse motion is expressed in terms of 
the Ritz function, equation 9150 of part one of this paper, the mass matrix is found to 
be: 

[M]= ff p.h[F IT  [F1 ]dxdy 
	

(1) 
sera 

where pm  is the material density, h(x,y) is the panel thickness, and the matrix [F1 ] 
contains the admissible functions, and is, thus, also a function of x and y. The rs 
element of the mass matrix is given by; 

Mrs  = f f  prmhfr fsdxdy 	 (2) 
area 

The thickness series used for the different skin layers, equations (2) and (3) of part 
one of this paper, shows that if the thickness distributions of all layers are expressed 
by complete polynomials of the same order, then all layers will have the same 
number of terms NL and the same powers mtk and n`k in their respective thickness 
series. A new vector of thickness coefficients T*k is defined to add all rk terms 
associated with the same powers of x and y. 

Ny 

Tk  = 	T1: 
i=1 

Now, the total panel thickness is expressed as: 
N, 

h(x, y) = 	- kx40 
k=1 

Substituting into Eq.(2) leads to: 

rit _  
Mrs  = 	Tk 

„ 
 frcel  Odxdy 	 (5) 

k=1 	we. 
When the polynomial admissible Ritz functions are used in Eq.(5), then the explicit 
form of mass matrix elements is obtained: 

NI 3 6 3 6 
Mrs  = Pm  EZ 	TkUiVJUi~ll!f xmyndxdy 	(6) 

k=1 	i=1 	j 1 	ii=1 jj=1 	area 

where the powers m and n are: 

(3)  

(4)  
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m = m jv +m + mrw + m: + mkt 
(7) 

n= niu 	+ niv +n; +nrw +n$w +ntk  

Note that all of the elements of the mass matrix are linear combinations of area 
integral ITR(m,n) of simple polynomials over the trapezoidal panel. The mass matrix is 
dependent on the material density, the thickness terms rk and the panel shape 
variables (through U, and Vj  as given by equation (11) of part one of this paper). 

AERODYNAMIC FORCE MATRICES 

When the virtual work due to surface pressure difference distribution Ap(x,y) is 
expressed in terms of the Ritz functions, equations (13) and (14) of part one of this 
paper, the vector of generalized aerodynamic forces is obtained, [6] and [7). 

{QA } = ff [FdT  Ap(x, y)dxdy 	 (8) 
area 

First-order linear piston theory approximates Ap(x,y) by: 

pcoU.2 	1142  - 2 1 
he 

Ap(x, y) - 	{w x4  + ; 
 - 1 	

W t  V co  -  
where pm, U,, and K., are the free stream density, velocity and Mach number, 
respectively, and is the flow direction. 

Panels are aligned so that their left and right sides are parallel to the x-axis. When 
the in-coming flow is yawed with respect to the x axis, creating an angle cp with the x-
axis, then the slope of panel deformation along the flow direction E  is given by: 

a =c0s0- 
e  
—e,x+sincd 

d y 	
(10) ax 

The pressure difference according to first-order piston theory can now be rewritten 
as: 

	

Ap(x, y, t) = Pecos0 w, + Fpsin0 w Y  + Pt w,, 	(11) 
where 

(9) 

(12)  

(13)  
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Equation (15) of part one of this paper is now differentiated with respect to x and 
then with respect to y to give: 

w,x(x,  Y) = [F,,xl{q} 	 (14) 

w.y (x, y) = [Fty  ]{g} 

Differentiating  the same equation with respect to time leads to: 

w,t (x, Y) 	[Fi]{cl,t) 	 (16) 
Substituting  Eqs. (14), (15) and (16) into Eq. (11) gives: 

{Q k } = Pxcosf if [Fl]T[Fl, ]{q}dxdy + Pxsinf f f [F1 ]T[F1y  ]{q}dxdy 
area 	 area 

+Pt  Si" [FdT[Fd{q,t}dxdy 	 (17) 
area 

At this point, it is possible to define an aerodynamic stiffness matrix and an 
aerodynamic damping  matrix: 

{Q A } r:"[C) stiff ]{g} + Pt [CI damp ]{Rt 	 (18) 
where the rs elements are given by: 

()stiff,. = cos0 	fr fs,xdxdy + sin0 ff fr fs.ydxdy 	(19) 
area 	 area 

Qd., = IS frfsdxdy 	 (20) 
area 

where fr and f5 are the rth  and the 5th  admissible functions. The first derivatives of the 
admissible functions with respect to x and y are: 

3 6 

=E, E uivi(mv mpw)x(r -1)y(ryr+nr.nr') 	(21) 
i=1 

3 6 

P,Y
= I E UiVi(niu + 	+ npw)x(mr+r1)y(nr+nr+1-1) 	(22) 

Substituting  these into Eqs.(19) and (20) leads to the final expression for the 
elements of the aerodynamic stiffness and damping  matrices: 

3 6 3 6 

Q = cos OE E E E u,v,u,ivinv+re:)ff xm-lynclxdy 
1=1 J=1 e=1 jj=1 	 area 
3 6 3 6 

+ sin 0E E E E U; VjUiVii(nri  +nll + nnff xinyn-ldxdy (23) 
j=1 ii=1 jj 	 area 

3 
damp 	

6 3 6 

r, = 	 xmyndxdy 
i=1 j=1 ii=1 jj.1 	 area 

(15) 

fpx 

(24) 

where the powers m, n are given by: 
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m = m!) 	+m,,"  +m:,"  

(25) 
n 	+n,̀: +n!̀, +niiv  +nwr  +n:"  

The elements of the aerodynamic stiffness and damping matrices are, thus, linear 
combinations of the same area integrals as the mass, stiffness and geometric 
stiffness matrices. The aerodynamic stiffness matrix is dependent on the air stream 
yaw angle cp, the dynamic pressure and Mach number through and the panel 
shape variables through Li; and 1/J. The aerodynamic damping matrix is dependent 
on the dynamic pressure and Mach number through Pt, and on the panel shape 
variables through U, and Vi. 

For aeroelastic stability analysis, it is convenient to express the aerodynamic 
matrices in the form: 

1  
[A miff]   (Q stiff 1 

(26) 

1 	M2  - 2 
[A  damp   ; 	damp [ 

	

1 	a 

which leads to an expression for the aerodynamic generalized forces in the form: 

{Q A  = 	damp  1{q3} + coUl[A off  ]{q} 	 (27) 

From Eqs.(23) and (24), the matrix [Q,tiff] is skew-symmetric and the matrix [(Lamp] is 
symmetric. Moreover, if the panel is made of a single material and has a constant 
thickness, then the aerodynamic damping matrix is proportional to the mass matrix. 

AEROELASTIC STABILITY ANALYSIS 

Using the expressions for the generalized aerodynamic forces, the equations of 
motion for the panel are: 

[M]{* - r.U.[A damp ]{ai) [ [K] [K 0] - rcoW„,[A stiff lig) = {0} 	(28) 
or 

[M]{q} + [C]{q} + [K]{q} = 0 	 (29) 

Only aerodynamic damping is taken into account in the previous equations. If 
viscous structural damping is to be added, the matrix [C] should be modified,[21]. 
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At a given altitude, Mach number, and corresponding speed, and for a given set of 
in-plane loads obtained from a wing box stress solution for the maneuvering 
airplane, the poles of the linear panel model can be found to determine whether the 
panel is aeroelastically stable or unstable. Laplace transforming Eq.(29) leads to: 

[ [M]s2  + [C]s + [K] ]{q(s)} = {0} 	(30) 

This quadratic NxN eigenvalue problem can be solved either directly or by an 
equivalent first-order generalized 2Nx2N eigenproblem: 

[l] [0] 1)(11 i[0] 
(31) s_[0] 	[M] x2 [K] [0]_1)(21- 

where 

{xi}={q} 
	and 	{x2 } = s{q} 

	
(32) 

The problem can be written in simpler notation as: 

[U]{0 } 	[V]{0} 	 (33) 

where X , {(1)} is an eigenvalue/right-eigenvector pair, and the matrices [1,1*] [V*] are 
2Nx2N and e defined by Eqs.(28), (29) and (31). 

Stability analysis at constant Mach number is carried out by gradually increasing the 
dynamic pressure and following the resulting movement of aeroelastic poles in the 
Laplace domain. Flutter instability (at the flutter dynamic pressure qfiutter) corresponds 
to a pole crossing the imaginary axis from left to the right side of the s-plane at some 
nonzero frequency. Divergence instability corresponds to a pole crossing into the 
right-hand side of the s-plane on the real axis (with zero frequency). When no 
damping is included in the mathematical model (either structural or aerodynamic), 
aeroelastic poles move on the imaginary axis as dynamic pressure is increased until 
a point Cicriti„i, at which two poles coalesce and move off the imaginary axis to lie left 
and right of the imaginary axis,[22]. 

ANALYTIC SENSITIVITIES 

Analytic sensitivities of stiffness and geometric stiffness matrices were presented in 
part one of this paper. Sensitivities with respect to thickness design variables and 
composite fiber angles have been obtained as well as sensitivities with respect to 
planform shape design variables. The key to obtaining analytic sensitivity 
expressions is the explicit closed-form nature of the expressions for stiffness and 
geometric stiffness matrix terms. Analytic formulas are available for the area 
integrals,[19], and it shows that the shape derivatives of members of the table of 
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integrals ITR(m,n) can be expressed in terms of order members of the same table of 
integrals. Thus, once the table of integrals is generated (with m and n covering all 
powers required for the aeroelastic analysis of the panel) it can be used for both 
analysis and sensitivity. 

Mass matrix sensitivities 

1) Mass matrix sensitivities with respect to thickness design variables 
The mass matrix is dependent on T k, the sizing variable corresponding to the kth 
term of the ith  layer, Eqs.(3) and (4). The derivative of a mass matrix term is given as: 

g 	e m. aTk  
(34) 

- 	T -k •  e T1! 
Based on the definition of Pk, Eq.(3), then, for a given layer i and thickness term k: 

1 	 (35) 

Substituting this back into Eq.(34) shows that differentiation with respect to the kth 
thickness term of any layer i is the same as differentiating the mass matrix with 
respect to the kth  term of the overall thickness series: 

0 M r, _ aMB  
aTk - a Tk  

Differentiating Eq.(6) for any specific k and i gives: 

(36) 

3 6 3 6 Mrs  
Ti  = prnE E E E uivjuivi  xm yndxdy 	(37) 

j=1 h., jj=1 area 

where 

m = m +m + (11 rri  + M 

(38) 
n = neu + +nyi  +nvii  +nwr  + nsw +nk  

2) Mass matrix sensitivities with respect to shape design variables 
The mass matrix is dependent on the shape variables through the coefficients U, and 
1/1  and the area integrals IRT(m,n). Analytical sensitivities for U, and Vj  are obtained 
through direct differentiation of equation (11) of part one of the paper. The 
derivatives of the area integrals with respect to x, where x is any shape variable, are 
to be prepared. With this information, the derivative of the mass term Mr, is 
calculated as follows: 

MB 
	PA 	3 a 3 5 	 g (UiVjU6ViO 	- PmE EEEE {ui viu„vii  e x  + 	 1TR  (39) 

j=1 	jj=1 	 x 



CI stiff 	 3 	6 	3 	6 	0 (U jU 
	= cosol E E E 	 I ry,V 

	

jj 	Tr(m-1,n) x c9 X i=1 	j=1 	 jj=1 

I TR(m-1 ,n)  UiVjUiiVii  (M iiv rn ) 
0 X 

3 6 3 6 121 	 v  
Sin cbI 	/ I{ 	ex 	(n +nii +ns

w 
)17R(n.n_1)  1=1 	ii=1 11=1 
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0 
+n!„ + n's") 	} 

" 	Ox 
(40) 

Aerodynamic matrix shape sensitivities 

Shape derivatives of the aerodynamic damping and stiffness matrices are obtained 
by explicitly differentiating Eqs.(23) and (24): 

0 Q 	 6 	3 	6 	0(UIVUliVii 	 a I TR(m,n-1) Q damp„  _E 	 8,x  	,TR.0  e x  } 	(41) 0 x 	j=1 ii=1 jj=1 

where the powers m and n are given by Eq.(25). 
Recall from Eqs.(26) that the coefficients relating [Astiff] and [Adamp] to [Qstiff] and 
[Qdamp] are functions of the Mach number only. Therefore, the sensitivities of [Amid 
and [Adamp] are: 

	

a A stiff 	1 	a Qstiff  
a DV  VW:0  1 a DV 

A damp 1 	M2 2 d  C)  damp 
DV — VM2 _.1 . Wo  —1 .  a DV 

Since [Q,thy} and [Qdamp] are not affected by the Mach number, it is straightforward to 
obtain sensitivities with respect to Mach number as follows: 

0 Astiff  

0 M. 
	 Q stiff 

(42)  

(43)  

(44a) 



A damp  
M 

1  M2  2 - 
11M2. -1 .  M. -1 )  

(44b) 0 M. 	Qdamp 
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Flutter eigen value sensitivities 

The eigen vectors {(11.) are defined in Eq.(33), and {v} are obtained from the adjoin 
eigen value problem: 

	

{oT[u] = {v} T[v ] 
	

(45) 

Differentiating Eq.(33) with respect to any design variable and pre-multiplying by the 
left eigen vectors, leads to the derivative of an eigen value with respect to any 
design variable: 

r T  0[U) 	d[V]  

(9 DV 	{VY[Ci]{0) 
	 °Dv a DV 	 (46) 

where the derivatives of the system matrices are obtained from: 

a[U]  
0 DV 

[0] 
a[K] 	a[c]  
a DV 	0 DV_ 

(47) 

  

- 
a[V]

[0] 
 

DV [0] (48) 

[C] 0 	
- - 	e[A damp] 

DV 	a DV 

O[k]  d[K]  8[KG] 	2  e[A suff  
e3DV c3DV ODV - 	ODV 

In panel flutter optimization studies it has been common to use a flutter dynamic 
pressure constraint in search of an optimal panel with a given critical dynamic 
pressure. Let the real and imaginary parts of the aeroelastic poles be given by. 

(49) 

(50) 
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= a + j co 	 (51) 

The real part a and the imaginary part CO are functions of dynamic pressure go, Mach 
number, and any sizing or shape design variables. At a given Mach number a = a( 
q0, DV) and at the flutter dynamic pressure a = qflutter(DV), DV), defined at 
whatever value of damping used to determine flutter. Differentiating with respect to 
DV and setting the derivative to zero to enforce the flutter criterion: 

0a 0 a- 	a 	a Aflutter  =o 
 

- 0 DV 	0 q Niter  dDV 
(52) 

S DV(at flutter) 

Thus, 

0 ch.., = 
O DV 

• a 	 0A  

	

( DV) 	Re(ODV)  = _ 
O o- 	 0 A, 
	) 	Re (a

q flutter 	qnutter 

(53) 

The numerator is already known from Eq.(46). To obtain the denominator, Eq.(33) is 
differentiated with respect to dynamic pressure at the flutter dynamic pressure: 

0A  

(9  q D(at flutter) 

	

T  S[U] 	S[V] 
(V} 	- 	{95 } 

	

0 qp 	0 DV  
tvIT [v] {o} 

(54) 

TEST CASES AND RESULTS 

Before proceeding to study analytic sensitivities and approximations using the 
present capability, it is important to assess the accuracy of its panel flutter results. 
For this, results of the present analysis technique for simply supported panels have 
been compared to reported results using other solution techniques. Correlation with 
the results of [14] are shown to demonstrate the capability of the present technique 
to calculate flutter dynamic pressures accurately for skewed, composite simply 
supported panels. 

The simply supported panels studied in [14] are skewed with skew angles varying 
from 0 to 45 degrees. A unidirectional fiber composite material is used with fiber 
angle varying from 0 to 90 degrees. Sides of the panels are equal in length. Material 
properties are E1 = 137x109  Pa, E2 = 9.7x109  Pa, G12 = 5.5x109  Pa, v12 = 0.3 and pm  
= 1580 kg/m3. Critical dynamic pressure and frequency are nondimensionalized as: 
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2 c,a3 
A,„ 

E2  h 	--1 

f2,,,.„ = co.., cr 2 	Pm  
' 	E212 2  

where a is the side of panel and h its thickness. Both critical and flutter dynamic 
pressures have been calculated and the comparison of critical dynamic pressure and 
critical frequency with the results of [14] are shown in Fig.1 and Fig.2. As the figures 
show, the correlation is good over a considerable range of skew and fiber angles, 
except for cases in which skew angles and fiber angles are simultaneously large. In 
the flutter analysis case discussed here, mass and aerodynamic matrices play an 
important role in addition to the stiffness and geometric stiffness matrices. 

To assess the accuracy of the polynomial Ritz flutter analysis in cases involving in-
plane loading, results obtained with the present capability are compared with finite 
element results from [12]. Square all-aluminum simply supported panels are 
analyzed, subject to different in-plane loading. A nondimensional in-plane force is 
defined as: 

r,/  = (N I 71.2  )(a 2  I  D) 

and Table 1 summarizes the results, where the normalized critical dynamic pressure 
is defined by: 

A,„ 
2 ck..a 3  

 

DVM.23  —1 

The correlation is good for moderate in-plane loading. In the case of Nn, loading 
(pure shear), the correlation becomes worse as intensity of in-plane loads increases. 

vii 	T  Ref.(12)  Present % difference 
r„ = -3 275.7 265.1 3.85 
r,.„ = 	0 518.2 512.6 1.08 
r,,, = 	3 789.0 793.1 0.50 
rn, = 2 487.0 473.1 2.85 
rw  = 4 418.9 381.7 8.90 
I'm, = 	6 321 274.3 14.7 

Table 1: Normalized critical dynamic pressures for aluminum 
square panels under in-plane loads 
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--•—ref(14), skew angle 15 Degrees --II— present, skew angle 15 degrees 
—a—ref(14), skew angle 30 degrees 	present, skew angle 30 degrees 

ref(14), skew angle 45 degrees --II— present, skew angle 45 degrees 
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Fig.1: Normalized critical dynamic pressure comparisons with 
ref(14) for a range of skew angles and fiber orientation angles 
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Fig.2: Normalized critical frequency comparisons with ref(14) 
for a range of skew angles and fiber orientation angles 
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With analytic derivatives available, it is possible to assess the accuracy of finite 
difference derivatives and examine the range of acceptable step size. As has been 
shown for the case of polynomial Ritz analysis of wing box structures,[19], ill 
conditioning (when high-order polynomials are used) can lead to erroneous finite 
difference derivatives, even in cases when the analysis itself is adequate. In panel 
flutter analysis cases studied here, and with the order of Ritz polynomials used, no 
ill-conditioning problems were encountered. 

Finite difference derivatives were used to verify the analytic derivatives for a variety 
of cases including different design variables (thickness, material and shape) and 
different behavior functions (such as aeroelastic poles, or critical and flutter dynamic 
pressures). Using the analytic derivatives, it became possible to examine first-order 
Taylor series approximations in various cases and to gain some experience as to the 
move limits that might be required. In Fig.3, the analytic sensitivity of flutter dynamic 
pressure with respect to fiber angle is used to construct first-order approximation for 
a 15 degree skewed panel. In Fig.4, a first-order Taylor approximation is constructed 
based on the analytic sensitivity of flutter dynamic pressure with respect to a 
magnification factor applied to the system of combined in-plane loads on a skewed 
panel. An isotropic panel with a skew angle of 30 degrees, equal sides of I (m) and 
thickness of 3 (mm) is subjected to NI, = -2000 (N/m) and Ny  = -1000 (N/m). The 
geometric stiffness matrix corresponding to this in-plane loading is [KG]ref, and the in-
plane loads are varied so that the actual geometric stiffness matrix [KG] = ri[KG]rof 
is a multiplication factor increasing or decreasing a system of in-plane loads). It is 
easy to obtain the derivative of [KG] with respect to Ti in this case, and the results 
simulate a situation where aeroelastic stability of a skin panel is influenced by 
changes in load distribution in the larger structure containing this panel. 

CONCLUSIONS 

The capability to include configuration shape-design variables, in any 
multidisciplinary design optimization of airplanes in the conceptual or preliminary 
design stages, is essential. The present work has focused on the design-oriented 
aeroelastic analysis of optimized skin panels in supersonic flow. Since, in typical 
optimum aeroelastic synthesis of wing structures, many skin panels can be buckling 
critical, and since stressing a panel up to a point close to its buckling load may have 
considerable effect on its aeroelastic stability, it becomes important to develop 
efficient analysis and sensitivity capabilities for panel flutter constraints. 

It is shown in this work how modeling and Ritz formulation based on simple 
polynomial functions in global coordinates lead to the efficient evaluation of panel 
stiffness, geometric stiffness, and mass, as well as aerodynamic damping and 
aerodynamic stiffness matrices. Using analytic formulas for area integrals of 
polynomial terms over general trapezoidal area shapes, it is shown that no 
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numerical integration is needed for evaluating panel structural or aerodynamic 
matrices. A table of area integrals for the panel needs to be evaluated only once for 
a given panel shape,[19]. Then, structural and aerodynamic matrices, as well as 
their analytic sensitivities with respect to sizing, material, and shape design 
variables, can be obtained by linear combinations of members of this table of 
integrals. 

Systematic evaluation of the resulting panel flutter prediction capability was carried 
out, comparing results from the present work with results from other references. 
Overall, the current capability led to good correlation with other prediction 
techniques up to panel leading-edge sweep angles of 30 degrees. 

Expressions for analytic sensitivity of panel aeroelastic poles and resulting flutter 
dynamic pressure have been obtained and checked against finite difference 
sensitivities. Excellent correlation and a wide range of step sizes adequate for the 
finite difference derivatives has been found. Used, in turn, in Taylor series 
approximations for the flutter dynamic pressure, the flutter and sensitivity results 
have been shown to lead to robust approximations over a wide range of design 
variable changes. The work has also shown how to integrate the panel aeroelastic 
analysis and sensitivity predictions with a wing box analysis and sensitivity 
capability, where in-plane loads determined by the wing box behavior serve as 
inputs to the panel aeroelastic behavior. 
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