
Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper GN-8 1017

Military Technical College
Kobry El-Kobbah

Cairo, Egypt
A 111 A T
**1105

le International Conference
On Aerospace Sciences&

Aviation Technology

APPLYING NEWTON ALGORITHMS WITHIN A
SUPERVISED FEED FORWARD NEURAL NETWORK

ARCHITECTURE TO FORECAST A MISSILE TRAJECTORY

TAREK A. TUTUNJI

ABSTRACT

A Neural Network is trained to forecast a moving trajectory. The neural
network training is formulated as a nonlinear programming problem and a
Newton method is used to find the optimal weights. The learning Algorithm is
derived using a Recursive Prediction Error Method that approximates the
inverse of the Hessian. Furthermore, box Constraints are added to the
network weights to avoid network paralysis and a constraint nonlinear
programming problem is formulated. Logarithmic Barrier methods which are
a class of Interior Point Methods are presented. Interior point methods have
good convergence properties because the weights move on a center path in
the interior of the feasible weight. The logarithmic barrier method is combined
with the Newton method to form a Newton-Barrier method.

The moving missile trajectory is simulated using differential equations and the
proposed algorithm is used to train the network in order to forecast the missile
position at any given time.

KEY WORDS

Neural Networks, Nonlinear Programming, Newton Algorithm, Logarithmic
Barrier Method, Interior Point Methods, Recursive Prediction Error Method,
Ballistic Missile Trajectory

Assistant Professor, Department of Mechatronics Engineering, University of Philadelphia University,
Jordan

Proceedings of the 1Ou' ASAT Conference, 13-15 May 2003 	Paper GN-8 1018

1. INTRODUCTION

Artificial Neural networks are mathematical models that mimic the biological
neuron connections. They consist of processing units called neurons,
weights, and directed connections. Each unit receives input signals from
weighting incoming connections and responds by sending its signal to other
connected units. By comparing the input and the output patterns, a neural
network updates its weights to give the desired output.

Neural networks have been used successfully in many areas such as pattern
recognition, function approximation, system identification, control, and speech
recognition.

A well-known learning algorithm for neural networks is back propagation,
Werbos [12], that is based on the classical gradient descent method.
Unfortunately, the slow convergence of the back propagation algorithm often
results in training times exceeding hours of computer time

Newton-type based minimization techniques have been quite successful in
speeding up the traditional back propagation scheme, Tutunji [10] and
Watrous [11].

Barrier methods form a class of Interior point methods that are used for
solving linear and nonlinear constrained optimization problems.
Breakthroughs in interior point methods for solving large-scale optimization
problems, Lustig et al [6], Gonzaga [4], Nash and Sofer [7], has gained much
attention.

Supervised neural network training can be modeled as a nonlinear
optimization problem. Specifically, minimizing a nonlinear error function with
respect to the parameter weights. A wide variety of techniques from
nonlinear optimization, Hertz et al [5], have been used for solving the learning
optimization problem in Artificial Neural Networks. If weight constraints are
added, the network can be also modeled as a nonlinear constraint
optimization problem and logarithmic barrier functions can be combined with
Newton methods to train the network.

In previous work, we introduced deterministic and stochastic Newton-Barrier
methods and showed their performance on pattern recognition and function
approximation problems, Tutunji [10], Trafalis and Tutunji [9]. The results
proved to be superior over backpropagation.

In this paper, we represent two methods: Newton and Newton-Barrier with
results for training neural networks to forecast trajectories. The trajectory
considered is a simple ballistic missile. The Newton method was sufficient to
forecast the trajectory in little time with insignificant error. Furthermore, the

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper GN-8 1019

Newton-Barrier Method was used to forecast a missile trajectory with thruster
forces.

2. NEWTON-TYPE METHODS

Multi-layer neural networks are usually trained to perform a particular task by
the backpropagation algorithm which is a version of the gradient algorithm.
This type of method uses the negative gradient as the search direction. It is
well-known however that this type of algorithm suffers from the drawback of
slow convergence. The gradient descent algorithms make slow progress as
they get closer to the minimum. The inefficiency of gradient descent is due to
the fact that it moves in perpendicular steps, Bazaraa and Shetty [1].
Researchers have used Newton-type methods to update the network weights.

Given a function f(w), general Newton method can be used to find the
optimum variable, w, to minimize the function f(w). The variable can be
updated iteratively using the following formula

wk +1 	 fywk f(wk) 	 (1)

where w1 is the variable at iteration k. If more variables are involved in the
function, then a vector of variables, their gradient, and Hessian is used

iv"' = wk + dk 	 (2)

d k = -H(g(w')
	

(3)

where w now is a vector, d is the search direction, g is the gradient and H is
the Hessian

The major step in those methods is calculating the inverse of the Hessian, H1
. On large problems, calculating this inverse is considered to be too
expensive. Another two major problems in calculating the inverse of the
Hessian is ill-conditioning and positive definiteness.

In order to avoid the direct computation of the second derivatives (i.e
Hessian), Quasi-Newton methods were developed, Fletcher [3]. In this class
of methods, the inverse Hessian matrix is approximated iteratively using only
information about the gradient. Also, for good approximations, the positive
definiteness property is maintained.

Proceedings of the lath ASAT Conference, 13-15 May 2003 	Paper GN-8 1020

The Quasi-Newton methods differ in the update strategy for the approximate
inverse Hessian. The general approach is to consider various update families
that meet the Quasi-Newton variable metric condition

pk+lyk = s k 	 (4)

where P is the approximate inverse Hessian, / = gk+I - grk, and sk = 	-
By 	we denote the gradient of the error at the point 	Thus, the inverse
Hessian maps a change in gradient to a change in position.

Recursive Prediction Error Method (RPEM) is a Newton-type algorithm. It
approximates the Hessian iteratively using the following formula, Soderstrom
[8]

H k'' = 	g +I (g k*I 	 (5)

where 2 is the forgetting factor. By using the above approximation, we
guarantee the Hessian to be positive definite and we avoid singularity
problems. Then, the Sherman-Morrisson-Woodbury formula, Soderstrom [8]
and Bazaraa et al. [1], is used to compute an approximation to the inverse of
the Hessian which gives

irph 	 (gk .1)Tpkg4.+1 + 2 d glt*Ipl.)/2 	 (6)

2.1 Newton Method for Neural Network Training

Consider a 3-layer neural network which receives an input signal X,
processes it to the hidden layer which gives an output Y. Then, to the output
layer that gives an output Z. Let

Xp = 0Cp1 , 42 , 	, Xpd,
Yp (Yp I Yp2 •-• YPm),
4 = (4, , Zp2 , ... , z)

denote the input vector, the hidden output vector, and the output vector
respectively for a certain pattern p, where q, m and n are the number of
nodes at these layers. Let V and W be the weight matrices between the input
hidden and the hidden output layers respectively. The outputs of the hidden
and output nodes can be computed as follows

y, = f(E 	 (7)

Proceedings of the 10ffi ASA T Conference, 1345 May 2003 	Paper GN-8 1021

z h = f (E w jhy j)
	

h=1,...,n 	 (8)

where f(x)- 1

Although we did not use a bias weight, this term can be easily incorporated in
the equations. Let Dp = (dp1 , do , 	, dpn) be the target vector representing
the desired output of the network. The learning objective is to determine the
W and V values that minimize the difference between the desired output Dp
and the computed output Zp for all the patterns. Let the error criterion be
defined as follows

1 E(v,w)= -EL(z,,„ -do)
2 ,,_i h=i (9)

We will refer to this error as E(w) since w is the variable that is updated using
the gradient error information. The gradient of the error will have the following
entrees

= (z, —dh)z, (1 — z,)y J 	 (10)
AV 111

The hidden error is calculated using backpropagation and referred to as En.
Specifically,

Eh, = y,(1—y)tE,N 	where i is the ith hidden neuron 	 (11)
1-i

The hidden gradient

—OE
-(y, 	 -d,)z, (1 - zh)w

el)

Now, consider the following constrained optimization learning problem for the
case of an input-output feed-forward neural network.

min E(w)

The weights will be updated using the RPEM update equations (for
convenience, we represent the matrix Was a column vector w).

w"' = + akd k 	 (13)

(12)

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper GN-8 	1022

= 	(V En 	 (14)

• = 	- P, V E,k,,((V E,'„)T P,1:-IV 	+ .11) 1 (V E,',`)T P„k,} I 	 (15)

the above equations are repeated pattern by pattern (i.e. batch mode). Here,
a is the step size, V E ,k„ is the gradient of the error for a single pattern and P„*
is a positive definite matrix approximation to the inverse of the Hessian.

The weights at the hidden layer are updated using similar equations with GE„

instead of 17E,, and v instead of w. The equations used for updating the

hidden weights are the same as equations (13)-(15) and are repeated for

completion

v" = + 	 (16)

• = --PP' (VE,k.) 	 (17)

• = 	P, /,' V E,,k ((7 E,'')T P, /,`"-I V 	+ 	(V 	13,,̀` } / 	 (18)

2.2 Newton Algorithm Description

step 0 	set eps = accuracy, p=1 (15t pattern), k=0 (1st iteration), W=W°,
V=V°, H=cl, c is a large number and I is the identity matrix.

step 1 	Evaluate the error using equation (9)
If E < eps then stop. Else go to step 2

step 2 	Given Xp, calculate Yp and zp using equations (7) and (8)
step 3 	Compute of using equation (10)
step 4 	Compute Pk using (15)
step 5 	Update W using equation (13) for all of the output neurons
step 6 	Compute VEh using equation (12)
step 7 	Compute (Ph)k using (18)
step 8 	Update V for all the hidden neurons in a similar fashion using

equation (16)
step 9 	If p=P (last pattern) set p=1, k=k+1 and go to step 1

else p=p+1 and go to step 2.

Proceedings of the 10m ASAT Conference, 13-15 May 2003 	Paper GN-8 1023

3. BARRIER METHODS

Barrier functions are used to transform a constrained problem into an
unconstrained problem or into a sequence of unconstrained problems. If the
optimal solution occurs at the boundary of the feasible region, the procedure
moves from the interior of the feasible region to the boundary. Consider the
following constrained optimization problem

min E(w)
	

(20)
s.t. c(w) 0

where w is a vector and c is a vector function whose components are c17 c2
, c,,,. Now, we can form the barrier problem as

min /3(w,) = E(w) + pB(w) 	 (21)
s.t.

where ,u is the barrier parameter and B is the barrier function that is
nonnegative and continuous over the region { w: c(w) < 0 }, and approaches
infinity as the boundary of the region { w: c(w) 0 } is approached from the
interior. More specifically, the barrier function B is defined by

B(w) = torqc,(w)1 	 (22)

where 0, is a function of one variable that is continuous over { y: y < 0 } and
satisfies

4:1)(y)?.. 0 if y<0

1 m 1:121(y)= co

One barrier function is known Logarithmic Barrier Function, Bazaraa et al. 11],

B(w)=-Ziogf-c,(w)]
	

(23)

Ideally, we would like the function B to take value of zero on the region { w:
c(w) < 0 } and value infinity on its boundary. This would guarantee that we
would not leave the region {w: c(w) 0}, provided that the minimization
problem started at an interior point. However, this discontinuity poses serious
difficulties for any computational procedure. Therefore, this ideal construction

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper GN-8 1024

of B is replaced by the more realistic requirement that B is nonnegative and
continuous over the region { w: c(w) < 0 } and that it approaches infinity as the
boundary is approached from the interior. Note that 1.1B approaches the ideal
barrier function described above as p. approaches zero.

3.1' Genera! Barrier Algorithm

Initialization Step
Let E > 0 be a termination scalar, and choose a point wi with c(w') < 0.

Let 0.1 >/../I > 0, pstep e (1,1000), let k=1, go to main step
Main Step

1. Starting with wk, solve the following problem:

mink (w,,t?)= f (w)- pk Elog(-cf w))

Let wk.' be an optimal solution, and go to step 2.
2. if 	/ kik •

) < E, stop.
Else ,J< = / pstep, k=k+1 and repeat step 1.

32. Newton-Barrier Method for Neural Network Training

Consider the following constrained optimization learning problem for the case
of an input-output feed-forward neural network

min E(v, w) 	 (24)
-M < < M

Heuristics are used for choosing those box constraints, M is a constant
number. Then, the logarithmic barrier method can be used to transform it into
an unconstrained problem as follows

min /3(v,w,p) = - z„, _pEElogc1/12 	pZIlog(M 2 -1,2)
2 	 /I 	 I

(25)

The derivatives of the above logarithmic error function with respect to the
weights are (for convenience we used only one pattern)

2w„
= (z„ 	z,h), 	2 	2 	 (26)

tivp, 	 -w,„
2v,.,

(yi - .}12,)x,E(- d 	zOw ,+
M 2 - 	

(27)
V 2

The above equations can then be used for updating the neurons weights by
using the new error 	defined in equation (25) to replace the original error

s.t. 	-M < win < M

Proceedings of the le ASAT Conference, 13-15 May 2003 	Paper GN-8 1025

defined in equation (9). This will result in a combination between the Newton
algorithm described in section 2.2 	and the general barrier algorithm
described in 3.1. The resulted algorithm is referred to as the Newton-Barrier
Algorithm. Previous work, Trafalis and Tutunji [9], has shown that the
Newton-Barrier Algorithm has better convergence properties over the Newton
Algorithm for complicated problems.

4. TRAJECTORY MODEL

A ballistic missile, like a bullet or an artillery shell, has no internal propulsion
system. Once it is launched, it is has a projectile, following the trajectory
dictated by Eqs. (28) and (29) below. Those parametric equations are derived
from elementary differential equations.

x = (v0 cosa)t
	 (28)

Y = (Yo sina)t — 0.5*g*t2
	

(29)

Where (x,y) are the two dimensional vector space coordinates. Both are
functions of time. yo is the initial velocity, a is the firing angle, and g is the
gravity force. For simplicity, the above equations assume that the only force
acting on the projectile during the flight is the constant force of gravity.

A one-dimensional thrust force is added to equation (29) to establish a
second model

Y = 	sina)t —0.5*g*t2+ T(t) 	where T is the Thruster force added 	(30)

Future work will test the described algorithms on cruise missile trajectories,
which are rockets with their own guidance and propulsion systems. Other
variables such as wind and pressure will also be added to the environment.

5. SIMULATION

The missile trajectory governed by equations (28) and (29) was simulated
with an initial velocity of 600 Km/minute and a firing angle of 60 degrees. The
trajectory over 100 minutes is shown in figure 1.

The proposed Newton algorithm described was used within a feed-forward
neural network with the following architecture: 8 input neurons, 5 hidden
neurons, and 2 output neurons. Each pattern used had 4 inputs for the x
position and 4 inputs for the y position (i.e. 8 input neurons). Each output
pattern had two outputs: the x and y position. As an example for each

Proceedings of the 10m ASAT Conference, 13-15 May 2003 	Paper GN-8 1026

pattern, the values at x; and yiwhere forecasted using xi-4, xi-3, xi-2, Xi-1, y,-1, Yi-21
yi-3, and yi.4. This resulted in a total of 96 patterns.

Several runs were tried with different initial weights. 	In all cases, the
described Newton algorithm was successful in approximating the trajectory
function and forecasting the missile position. Figure 2 shows the trajectory
approximation while figure 3 shows error function convergence to a value of
0.00001 in only 8 iterations.

Another missile simulation similar to the previous model was run. This time
however, thruster forces (in a weighted lookup table) were added, equation
(30), to the ballistic trajectory in order to change its simple ballistic path as
shown in figure 4. 	Here, the Newton-Barrier algorithm was used for
forecasting as shown in figure 5.

6. CONCLUSIONS AND FUTURE RESEARCH

Two algorithms: Newton and Newton-Barrier were used within a feed-forward
neural network to approximate a ballistic missile trajectory. The neural
network problem was formulated as a nonlinear optimization problem and a
detailed description of both algorithms was provided. In both algorithms a
recursive prediction error method was used to approximate the inverse of the
Hessian iteratively using only first derivative information. Simulation results
show that the algorithms were successful in forecasting the missile position in
only several iterations.

The described algorithms can be used in a fully integrated missile interceptor
system as shown in figure 6. The radar will track the missile position at
different times, the algorithm will then use this on-line information to forecast
the missile trajectory at future times. The forecasted position of the missile
will then be supplied to an interceptor launcher that will be fired in the
direction of the forecasted missile position.

Future research will use the described algorithms to approximate more
involved trajectories such as guided missiles within complex environment.

0.3 	0,4 	0.6 	0,6 	0,7 	0.5 	0 9
horizontal position (nOnnzaZaril)

0.1 	0.2

14000

12000

10000

6000

6000

4000

2000

Figure 1. Ballistic Missile Trajectory Simulation

Po a•coteal rolistalla Trajoetontr using. r455655.45•6►.^52614 06 	
0.48

0.35
0 3

0.25
0.2

"Z 0.15
0.1

0.06

FI, within Neural Illatarank

a Craintorn•ci I-
Des ir•cl

L 	■ 	

nontontial position (rnstrarx)
2- 	2.5 	3

x 10.

Proceedings of the 10" ASAT Conference, 13-15 May 2003 	Paper GN-8 1027

ItlagbYysctcy for iaLtallionin

Figure 2. Forecasted Missile Trajectory using the Newton Algorithm

error Convorgxriart
40

20

I.

Its

Figure 3. Error Convergence

-20 	

-40 	

-60 	

-00 -

	

100, 	 2 a

Sirriulaitee Trajectory for a Miami.. with 71trustera

Forecasted
0.04

0_036

0.03
cg-

0_025

o oz

o.ois

Trajectory usinO NarVA041-130,10, Algorithm within Neural Net

Oesti•O
it 	Calor..lasted

II

0.01

2 	0.3 	0.4 	0.5 	0.5 	0.7
horizontal po•Ition (normalized)

0.006

Figure 5. Forecasted Missile Trajectory using Newton-Barrier Algorithm

Missile Trajectory

,

Radar
System

Workstation
using

on-line
Neural Network

Algorithms

Interceptor
Launcher

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper GN-8 	1028

Figure 4. Missile Trajectory with Thruster force Simulation

Figure 6. Fully Integrated Missile Interceptor System

Proceedings of the 10u' ASAT Conference, 13-15 May 2003 	Paper GN-8 1029

REFERENCES

[1] Bazaraa, M.S., Sherali, H.D., and Shetty, C.M., (1993), Nonlinear
Programming Theory and Algorithms , Wiley, NY.

[2] Davidon, W. C. (1976), "New Least-Square Algorithms", Journal of
Optimization Theory and Applications, Vol. 18, no. 2, pp.187-197, Feb.
1976.

[3] Fletcher, R. (1990), Practical Methods of optimization , 2nd edition, Wiley.
[4] Gonzaga, C. C. (1991), "Large Step Path-following Methods for Linear

Programming, Parts 1 & 2", SIAM Journal of Optimization 1 ,268-280.
[5] Hertz, J., Krogh, A., and Palmer, R. G. (1991), Introduction to the Theory

of Neural Computation , CA: Addison-Wesley, Redwood City .
[6] Lustig, I. J., Marsten, R. E., and Shanno, D. F (1994), "Interior Point

Methods for Linear Programming: Computational State of the Art", ORSA
Journal on Computing, 6 (1),1-14.

[7] Nash, S. G. and Sofer, A. (1993),"A Barrier Method for Large-scale
Constrained Optimization", ORSA Journal on Computing , vol. 5, No. 1,
pp. 40-53.

[8] Soderstrom, T. and Stoica, P. (1989), System Identification , Prentice Hall
International (UK), Englewood Cliffs, NJ

[9] Trafalis, T. B. and Tutunji, T. A. (1995), "Deterministic and Stochastic
Logarithmic Barrier Function Methods for Neural Network Training",
Parallel Computing in Optimization, (A. Migdalas, P.M. Pardalos and S.
Storoy, Eds) Kluwer Academic Publishers, Chapter 13, pp. 519-574, 1997

[10] Tutunji, Tarek A. (1996), Logarithmic Barrier Functions and Newton-type
Methods with Applications to Neural Network Training, Dissertation ,
School of Industrial Engineering , University of Oklahoma.

[11] Watrous, R. L. (1987), "Learning Algorithm for Connectionist -Networks:
Applied Gradient Methods of Nonlinear Optimization", IEEE First
International Conference on Neural Networks, San Diego, CA, 619-628.

[12] Werbos, P. (1974), „ Beyond Regression: New tools for Prediction and
Analysis in the Behavioral Sciences”, Ph.D. Thesis, Committee on Applied
Mathematics, 	Harvard University, Cambridge, MA, reprinted by Wiley,
"The Roots of Back Propagation", 1994.

Author background:

Dr. Tarek A. Tutunji is a full-time assistant professor at Philadelphia University
in Jordan. He received his PhD (Industrial Engineering) in 1996 and his MS
(Electrical Engineering) in 1993. Both degrees were received from the
University of Oklahoma, USA. He has six years work experience prior to
joining Philadelphia University. He worked as a manufacturing engineer (2
years) and as an optimization algorithm developer (2 years) for Halliburton
Energy Services in Texas. He later worked as a design engineer (2 years) for
Seagate Tech in Oklahoma City.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

