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ABSTRACT 

A Neural Network is trained to forecast a moving trajectory. The neural 
network training is formulated as a nonlinear programming problem and a 
Newton method is used to find the optimal weights. The learning Algorithm is 
derived using a Recursive Prediction Error Method that approximates the 
inverse of the Hessian. Furthermore, box Constraints are added to the 
network weights to avoid network paralysis and a constraint nonlinear 
programming problem is formulated. Logarithmic Barrier methods which are 
a class of Interior Point Methods are presented. Interior point methods have 
good convergence properties because the weights move on a center path in 
the interior of the feasible weight. The logarithmic barrier method is combined 
with the Newton method to form a Newton-Barrier method. 

The moving missile trajectory is simulated using differential equations and the 
proposed algorithm is used to train the network in order to forecast the missile 
position at any given time. 
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1. INTRODUCTION 

Artificial Neural networks are mathematical models that mimic the biological 
neuron connections. They consist of processing units called neurons, 
weights, and directed connections. Each unit receives input signals from 
weighting incoming connections and responds by sending its signal to other 
connected units. By comparing the input and the output patterns, a neural 
network updates its weights to give the desired output. 

Neural networks have been used successfully in many areas such as pattern 
recognition, function approximation, system identification, control, and speech 
recognition. 

A well-known learning algorithm for neural networks is back propagation, 
Werbos [12], that is based on the classical gradient descent method. 
Unfortunately, the slow convergence of the back propagation algorithm often 
results in training times exceeding hours of computer time 

Newton-type based minimization techniques have been quite successful in 
speeding up the traditional back propagation scheme, Tutunji [10] and 
Watrous [11]. 

Barrier methods form a class of Interior point methods that are used for 
solving linear and nonlinear constrained optimization problems. 
Breakthroughs in interior point methods for solving large-scale optimization 
problems, Lustig et al [6], Gonzaga [4], Nash and Sofer [7], has gained much 
attention. 

Supervised neural network training can be modeled as a nonlinear 
optimization problem. Specifically, minimizing a nonlinear error function with 
respect to the parameter weights. A wide variety of techniques from 
nonlinear optimization, Hertz et al [5], have been used for solving the learning 
optimization problem in Artificial Neural Networks. If weight constraints are 
added, the network can be also modeled as a nonlinear constraint 
optimization problem and logarithmic barrier functions can be combined with 
Newton methods to train the network. 

In previous work, we introduced deterministic and stochastic Newton-Barrier 
methods and showed their performance on pattern recognition and function 
approximation problems, Tutunji [10], Trafalis and Tutunji [9]. The results 
proved to be superior over backpropagation. 

In this paper, we represent two methods: Newton and Newton-Barrier with 
results for training neural networks to forecast trajectories. The trajectory 
considered is a simple ballistic missile. The Newton method was sufficient to 
forecast the trajectory in little time with insignificant error. Furthermore, the 
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Newton-Barrier Method was used to forecast a missile trajectory with thruster 
forces. 

2. NEWTON-TYPE METHODS 

Multi-layer neural networks are usually trained to perform a particular task by 
the backpropagation algorithm which is a version of the gradient algorithm. 
This type of method uses the negative gradient as the search direction. It is 
well-known however that this type of algorithm suffers from the drawback of 
slow convergence. The gradient descent algorithms make slow progress as 
they get closer to the minimum. The inefficiency of gradient descent is due to 
the fact that it moves in perpendicular steps, Bazaraa and Shetty [1]. 
Researchers have used Newton-type methods to update the network weights. 

Given a function f(w), general Newton method can be used to find the 
optimum variable, w, to minimize the function f(w). The variable can be 
updated iteratively using the following formula 

wk +1 	 fywk f(wk ) 	 (1) 

where w1  is the variable at iteration k. If more variables are involved in the 
function, then a vector of variables, their gradient, and Hessian is used 

iv"' = wk + dk 	 (2) 

d k  = -H( 	g(w' ) 
	

(3) 

where w now is a vector, d is the search direction, g is the gradient and H is 
the Hessian 

The major step in those methods is calculating the inverse of the Hessian, H1  
. On large problems, calculating this inverse is considered to be too 
expensive. Another two major problems in calculating the inverse of the 
Hessian is ill-conditioning and positive definiteness. 

In order to avoid the direct computation of the second derivatives (i.e 
Hessian), Quasi-Newton methods were developed, Fletcher [3]. In this class 
of methods, the inverse Hessian matrix is approximated iteratively using only 
information about the gradient. Also, for good approximations, the positive 
definiteness property is maintained. 
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The Quasi-Newton methods differ in the update strategy for the approximate 
inverse Hessian. The general approach is to consider various update families 
that meet the Quasi-Newton variable metric condition 

pk+lyk = s k 	 (4) 

where P is the approximate inverse Hessian, / = gk+I  - grk, and sk  = 	- 
By 	we denote the gradient of the error at the point 	Thus, the inverse 
Hessian maps a change in gradient to a change in position. 

Recursive Prediction Error Method (RPEM) is a Newton-type algorithm. It 
approximates the Hessian iteratively using the following formula, Soderstrom 
[8] 

H k'' = 	g  +I ( g k*I 	 (5) 

where 2 is the forgetting factor. By using the above approximation, we 
guarantee the Hessian to be positive definite and we avoid singularity 
problems. Then, the Sherman-Morrisson-Woodbury formula, Soderstrom [8] 
and Bazaraa et al. [1], is used to compute an approximation to the inverse of 
the Hessian which gives 

irph 	 (gk .1 )Tpkg4.+1 + 2 d glt*Ipl.)/2 	 (6) 

2.1 Newton Method for Neural Network Training 

Consider a 3-layer neural network which receives an input signal X, 
processes it to the hidden layer which gives an output Y. Then, to the output 
layer that gives an output Z. Let 

Xp = 0Cp1 , 42 , 	, Xpd, 
Yp (Yp I Yp2 •-• YPm),  
4 = (4, , Zp2 , ... , z ) 

denote the input vector, the hidden output vector, and the output vector 
respectively for a certain pattern p, where q, m and n are the number of 
nodes at these layers. Let V and W be the weight matrices between the input 
hidden and the hidden output layers respectively. The outputs of the hidden 
and output nodes can be computed as follows 

y, = f(E 	 (7) 
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z h = f (E w jhy j ) 
	

h=1,...,n 	 (8) 

where f( x)- 1 

Although we did not use a bias weight, this term can be easily incorporated in 
the equations. Let Dp = (dp1 , do , 	, dpn) be the target vector representing 
the desired output of the network. The learning objective is to determine the 
W and V values that minimize the difference between the desired output Dp 
and the computed output Zp for all the patterns. Let the error criterion be 
defined as follows 

1 E(v,w)= -EL(z,,„ -do ) 
2 ,,_i h=i (9) 

We will refer to this error as E(w) since w is the variable that is updated using 
the gradient error information. The gradient of the error will have the following 
entrees 

= (z, —dh  )z, (1 — z, )y J 	 (10) 
AV 111 

The hidden error is calculated using backpropagation and referred to as En. 
Specifically, 

Eh, = y,(1—y)tE,N 	where i is the ith  hidden neuron 	 (11) 
1-i 

The hidden gradient 

—OE 
-(y, 	 -d, )z, (1 - zh )w 

el) 

Now, consider the following constrained optimization learning problem for the 
case of an input-output feed-forward neural network. 

min E(w) 

The weights will be updated using the RPEM update equations (for 
convenience, we represent the matrix Was a column vector w). 

w"' = + akd k 	 (13) 

(12) 
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= 	(V En 	 (14) 

• = 	- P, V E,k,,((V E,'„)T  P,1:-IV 	+ .11) 1  (V E,',`)T P„k,} I 	 (15) 

the above equations are repeated pattern by pattern (i.e. batch mode). Here, 
a is the step size, V E ,k„ is the gradient of the error for a single pattern and P„*  
is a positive definite matrix approximation to the inverse of the Hessian. 

The weights at the hidden layer are updated using similar equations with GE„ 

instead of 17E,, and v instead of w. The equations used for updating the 

hidden weights are the same as equations (13)-(15) and are repeated for 

completion 

v" = + 	 (16) 

• = --PP' (VE,k.) 	 (17) 

• = 	P, /,' V E,,k  ((7 E,'')T  P, /,`"-I  V 	+ 	(V 	13,,̀` } / 	 (18) 

2.2 Newton Algorithm Description 

step 0 	set eps = accuracy, p=1 (15t  pattern), k=0 (1st  iteration), W=W°, 
V=V°, H=cl, c is a large number and I is the identity matrix. 

step 1 	Evaluate the error using equation (9) 
If E < eps then stop. Else go to step 2 

step 2 	Given Xp, calculate Yp  and zp  using equations (7) and (8) 
step 3 	Compute of using equation (10) 
step 4 	Compute Pk  using (15) 
step 5 	Update W using equation (13) for all of the output neurons 
step 6 	Compute VEh  using equation (12) 
step 7 	Compute (Ph)k  using (18) 
step 8 	Update V for all the hidden neurons in a similar fashion using 

equation (16) 
step 9 	If p=P (last pattern) set p=1, k=k+1 and go to step 1 

else p=p+1 and go to step 2. 
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3. BARRIER METHODS 

Barrier functions are used to transform a constrained problem into an 
unconstrained problem or into a sequence of unconstrained problems. If the 
optimal solution occurs at the boundary of the feasible region, the procedure 
moves from the interior of the feasible region to the boundary. Consider the 
following constrained optimization problem 

min E(w) 
	

(20) 
s.t. c(w) 0 

where w is a vector and c is a vector function whose components are c17 c2 
, c,,,. Now, we can form the barrier problem as 

min /3(w, ) = E(w) + pB(w) 	 (21) 
s.t. 

where ,u is the barrier parameter and B is the barrier function that is 
nonnegative and continuous over the region { w: c(w) < 0 }, and approaches 
infinity as the boundary of the region { w: c(w) 0 } is approached from the 
interior. More specifically, the barrier function B is defined by 

B(w) = torqc,(w)1 	 (22) 

where 0,  is a function of one variable that is continuous over { y: y < 0 } and 
satisfies 

4:1)(y)?.. 0 if y<0 

1 m 1:121( y)= co 

One barrier function is known Logarithmic Barrier Function, Bazaraa et al. 11], 

B(w)=-Ziogf-c,(w)] 
	

(23) 

Ideally, we would like the function B to take value of zero on the region { w: 
c(w) < 0 } and value infinity on its boundary. This would guarantee that we 
would not leave the region {w: c(w) 0}, provided that the minimization 
problem started at an interior point. However, this discontinuity poses serious 
difficulties for any computational procedure. Therefore, this ideal construction 
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of B is replaced by the more realistic requirement that B is nonnegative and 
continuous over the region { w: c(w) < 0 } and that it approaches infinity as the 
boundary is approached from the interior. Note that 1.1B approaches the ideal 
barrier function described above as p. approaches zero. 

3.1' Genera! Barrier Algorithm 

Initialization Step 
Let E > 0 be a termination scalar, and choose a point wi  with c(w') < 0. 

Let 0.1 >/../I  > 0, pstep e (1,1000), let k=1, go to main step 
Main Step 

1. Starting with wk, solve the following problem: 

mink (w,,t? )= f (w)- pk Elog(-cf w)) 

Let wk.' be an optimal solution, and go to step 2. 
2. if 	/ kik • 

) < E, stop. 
Else ,J<  = / pstep, k=k+1 and repeat step 1. 

32. Newton-Barrier Method for Neural Network Training 

Consider the following constrained optimization learning problem for the case 
of an input-output feed-forward neural network 

min E(v, w) 	 (24) 
-M < < M 

Heuristics are used for choosing those box constraints, M is a constant 
number. Then, the logarithmic barrier method can be used to transform it into 
an unconstrained problem as follows 

min /3(v,w,p) = - z„, _pEElogc1/12 	pZIlog(M 2  -1,2 ) 
2 	 /I 	 I 

(25) 

The derivatives of the above logarithmic error function with respect to the 
weights are (for convenience we used only one pattern) 

2w„ 
= (z„ 	z,h), 	2 	2 	 (26) 

tivp, 	 -w,„ 
2v,., 

(yi  - .}12, )x,E( - d 	zOw ,+ 
M 2  - 	

(27) 
V 2  

The above equations can then be used for updating the neurons weights by 
using the new error 	defined in equation (25) to replace the original error 

s.t. 	-M < win < M 
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defined in equation (9). This will result in a combination between the Newton 
algorithm described in section 2.2 	and the general barrier algorithm 
described in 3.1. The resulted algorithm is referred to as the Newton-Barrier 
Algorithm. Previous work, Trafalis and Tutunji [9], has shown that the 
Newton-Barrier Algorithm has better convergence properties over the Newton 
Algorithm for complicated problems. 

4. TRAJECTORY MODEL 

A ballistic missile, like a bullet or an artillery shell, has no internal propulsion 
system. Once it is launched, it is has a projectile, following the trajectory 
dictated by Eqs. (28) and (29) below. Those parametric equations are derived 
from elementary differential equations. 

x = (v0 cosa)t 
	 (28) 

Y = (Yo sina)t — 0.5*g*t2 
	

(29) 

Where (x,y) are the two dimensional vector space coordinates. Both are 
functions of time. yo is the initial velocity, a is the firing angle, and g is the 
gravity force. For simplicity, the above equations assume that the only force 
acting on the projectile during the flight is the constant force of gravity. 

A one-dimensional thrust force is added to equation (29) to establish a 
second model 

Y = 	sina)t —0.5*g*t2+ T(t) 	where T is the Thruster force added 	(30) 

Future work will test the described algorithms on cruise missile trajectories, 
which are rockets with their own guidance and propulsion systems. Other 
variables such as wind and pressure will also be added to the environment. 

5. SIMULATION 

The missile trajectory governed by equations (28) and (29) was simulated 
with an initial velocity of 600 Km/minute and a firing angle of 60 degrees. The 
trajectory over 100 minutes is shown in figure 1. 

The proposed Newton algorithm described was used within a feed-forward 
neural network with the following architecture: 8 input neurons, 5 hidden 
neurons, and 2 output neurons. Each pattern used had 4 inputs for the x 
position and 4 inputs for the y position (i.e. 8 input neurons). Each output 
pattern had two outputs: the x and y position. As an example for each 
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pattern, the values at x; and yiwhere forecasted using xi-4, xi-3, xi-2, Xi-1, y,-1, Yi-21 
yi-3, and yi.4. This resulted in a total of 96 patterns. 

Several runs were tried with different initial weights. 	In all cases, the 
described Newton algorithm was successful in approximating the trajectory 
function and forecasting the missile position. Figure 2 shows the trajectory 
approximation while figure 3 shows error function convergence to a value of 
0.00001 in only 8 iterations. 

Another missile simulation similar to the previous model was run. This time 
however, thruster forces (in a weighted lookup table) were added, equation 
(30), to the ballistic trajectory in order to change its simple ballistic path as 
shown in figure 4. 	Here, the Newton-Barrier algorithm was used for 
forecasting as shown in figure 5. 

6. CONCLUSIONS AND FUTURE RESEARCH 

Two algorithms: Newton and Newton-Barrier were used within a feed-forward 
neural network to approximate a ballistic missile trajectory. The neural 
network problem was formulated as a nonlinear optimization problem and a 
detailed description of both algorithms was provided. In both algorithms a 
recursive prediction error method was used to approximate the inverse of the 
Hessian iteratively using only first derivative information. Simulation results 
show that the algorithms were successful in forecasting the missile position in 
only several iterations. 

The described algorithms can be used in a fully integrated missile interceptor 
system as shown in figure 6. The radar will track the missile position at 
different times, the algorithm will then use this on-line information to forecast 
the missile trajectory at future times. The forecasted position of the missile 
will then be supplied to an interceptor launcher that will be fired in the 
direction of the forecasted missile position. 

Future research will use the described algorithms to approximate more 
involved trajectories such as guided missiles within complex environment. 
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Figure 1. Ballistic Missile Trajectory Simulation 
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Figure 4. Missile Trajectory with Thruster force Simulation 

Figure 6. Fully Integrated Missile Interceptor System 
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