
Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 843

Military Technical College
Kobry El-Kobbah

Cairo, Egypt

10th International Conference
On Aerospace Sciences&

Aviation Technology

SOFTWARE SOURCE CODE: A QUALITY ASSURANCE

MEASUREMENT SYSTEM
Dr. Ismail A. Taha. 	 Dr. Kamel A. Elhadad.

ABSTRACT

Today software systems play a critical role in various aspects of human life, from rockets
to health care, and become part of everyday life. Many of these systems are relied upon
as being essential for the completion of day-to-day activities. The increased reliance on
computer applications, and organizations that produce software puts more and more
strain on software developers to produce high quality systems. For these reasons many
international standards, requirements, and constrains were established to assure quality
of software. This paper introduces a new software Source Code Quality Assurance
Measurement System named "SCQAM". In addition, it presents some of the most
important software quality assurance fundamentals used during the different phases of
software development life cycle. Particularly, the focus of this paper is bounded to the
coding phase, where in this phase the cure of software system will be established.
Therefore, the scope of this paper covers most of the related aspects of software quality
assurance of the coding phase including: software metrics, software quality factors, and
software quality models like McCall's model, Boehm's model, ISO 9126 model, and
SATC NASA model. As a result of analyzing these models, the proposed "SCQAM"
system was designed, developed, and tested. The proposed SCQAM can measure over
30-source code metrics, then group these metrics to compute nine distinct quality factors
and indicators, then an overall quality indicator of the input source code is calculated.
The experimental results show the superiority of the SCQAM system over Project
Analyzer, another quality assurance measurement system, specifically in the area of
source code quality measurement.

Key Words: Source Code Quality Assurance Measurement Systems, Quality
Assurance, Software Quality Assurance, and Software Engineering.

• Egyptian Armed Forces.

Proceedings of the 10'h ASAT Conference, 13-15 May 2003 	Paper CT-6 844

1. INTRODUCTION

Producing high quality software became a condition for software companies and
developers to stay in the market. This enforces them to think about quality improvement
activities, and quality assurance systems. This is probably the reason why so many
process improvement, experiments and measurement systems are initiated, but few of
them are successful. The basic difficulties in this paradigm are the vast number of
factors included in producing a high quality software product. These factors include
understanding the relationships among basic elements of the software to be produced.
For example, the procedures of producing the product, the resources involved in
software production, the selection of relevant quality attributes in each case, the metrics
to be applied for measuring the selected quality attributes, and the usage of the
measurements' results in order to improve software quality are all interrelated factors
[8,9]. There is variety of standards, models, best practices that should be enforced to
make high quality software products [3,4,5,10,19,29]. In fact, all of them are connected
to software quality assurance, but there is no unified view or model to tell software
producers/developers, how to produce an efficient software high quality system and how
to evaluate the quality of the produced source code [12].

The scope of this paper is to survey, understand and analyze the existing approaches to
software quality assurance and figure out the relationships among the different
approaches. Then and based on this analysis, a candidate solution (the proposed
"SCQAM" system) that would help a software developer to deal with quality assurance
for program source codes is introduced and tested.

2. SOFTWARE QUALITY ASSURANCE MODELS

2.1 Product Quality Assurance Models

The elements defining software product quality assurance and the relationships between
these elements have been summarized for the first time in two software quality models
developed in the USA. One of the models was developed in 1977 by a team of
researchers, lead by Barry W. Boehm [6]. The development of the other model is
connected to the work done in 1978 by James A. McCall [1,7]. The two quality models
focus on the software final product, and identify key attributes of the product, called
quality factors. The quality factors are high-level quality attributes, like reliability,
usability, and maintainability. Both models assume that the quality attributes are still on a
too high level to be meaningful or to be measurable. Therefore, further decomposition is
needed. The decomposition of the quality attributes is then called quality criteria. In a
third level of decomposition the quality criteria are associated with a set of directly
measurable attributes called quality metrics. These models are briefly sketched in Fig. 1.

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 845

The Boehm and McCall models are typical of fixed quality models [21]: we assume that
all important quality factors needed are a subset of those published in these two models.
To control and measure each attribute, we accept the models associated criteria and
metrics, and, most importantly, the proposed relationships among factors, criteria and
metrics.

Later, a new model named ISO 9126 was introduced [1,16,17]. This model is a
derivation of McCall's model. It defines software quality as "The totality of features and
characteristic of a software product that bare on its ability to satisfy stated or implied
needs." The standard claims that the quality is composed of 6 factors: functionality,
reliability, efficiency, usability, maintainability, portability, and that one or more of them
are enough to describe any component of software quality [1,14]. The deficiency of this
model is that it does not provide proper definition of the lower-level details and metrics
needed to attain a quantitative assessment of product quality. This lack of specifics in
these models offers little guidance to software developers who need to build quality
products. However, ISO 9126 is considered a software product evaluation standard. It
identifies six Software Quality Characteristics [17]:

1. Functionality: which covers the functions that a software product provides to
satisfy user needs.

2. Reliability: which relates to capability of software to maintain its level of
performance.

3. Usability: which relates to the effort needed to use software.

4. Efficiency: which relates to the physical resources used when the software is
executed.

5. Maintainability: which relates to the effort needed to the make changes to the
software.

6. Portability: which relates to the ability of software to be transferred to a
different environment.

ISO 9126 suggests sub-characteristics for each of the primary characteristics. They are
useful as they clarify what is meant by the main characteristics.

2.2 Process Quality Assurance Models

This part presents elements of another possible way of approaching software quality
assurance, called the process quality assurance approach.

Proceedings of the 10u' ASAT Conference, 13-15 May 2003 	Paper CT-6 846

A well-known framework for process assessment is the Capability Maturity Model of SEI
[1] and Bootstrap [24].

The Software Capability Maturity Model (CMM) developed at the Software Engineering
Institute (SEI) of Carnegie - Mellon University [13,33]. The Capability Maturity Model
describes software process management maturity relative to five levels [22,23], as
depicted in Fig. 2. The Bootstrap methodology is an extension of the CMM, developed
by a European Community ESPRIT project, between September 1991 and February
1993 [31].

3. THE PROPOSED SYSTEM

The objective of the proposed software Source Code Quality Assurance Measurement
System SCQAM is to measure the quality of application's source codes even if there is
no other information available but the source code. The proposed system measures the
quality of a given software source code through three consecutive layers of calculations:

1. The first layer: where the source code quality metrics are calculated.
2. The second layer: where some of the software quality factors are calculated

as a weighted sum of the obtained source code quality metrics obtained in
the first layer of the system.

3. The third layer: where an overall quality indicator for the given source code
is calculated as a weighted sum of the obtained quality factors obtained in
the second layer.

Fig. 3 depicts the three layers of quality assurance measurements of the proposed
SCQAM and their interrelationships.

Typically, software quality is measured using a weighted sum of criteria measurements
[21,25,30]. In the proposed SCQAM system, a set of standard formulas is used, in the
metrics calculation layer, to calculate each quality metric Ci. In the metrics calculation
layer, the proposed system measures 23 source code quality metrics as shown in Fig. 4.
Then each metric is scaled/normalized (0KscaleL.1). This normalization is done to avoid
any over-effect of some metrics over the others.

In the factors calculation layer, where 9 factors are measured [2], interrelated set of k-
measured quality metrics are used to calculate the source code quality factors affected
by these metrics using Equation 1. The effect of each quality metric C; on the measured
quality factor QPi is represented by a weight value Wi = <0,1>. The values of {V: 1:1..23}
are predetermined and assigned along with each source code quality metrics measured
by the SCQAM system. The system provides its knowledgeable users with the capability
of adapting the default values of {W,: L1..23} to indicate the importance of the metrics
with respect to the application nature of the source code in hand. For example, if the

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 848

quality assurance measurement system introduced in this paper allows Visual Basic
developers to evaluate their source code quality before the implementation phase.

4. EXPERIMENTAL RESULTS

The proposed SCQAM system was implemented to test applications written in Visual
Basic Programming language. This section presents the experimental results of
implementing the SCQAM system to measure a set of Visual Basic source code
applications. The SCQAM system was used to measure the quality metrics, factors, and
overall quality indicator of two different versions of a Visual Basic program, written by
two persons, to solve a simple application problem. The reason of making the
application problem simple was to validate the correctness of the measured quality
measures and indicator of the SCQAM. This simple application, which two persons were
asked to program using VB has an identical user interface compliance to our
requirements to the two programmers. This application purpose is to generate 10 integer
numbers, and store them in an array. These 10 numbers should then be sorted and
stored in another array. The programs should also extract the minimum and maximum
numbers then calculate the average of these 10 numbers.
Table (1), Fig. 5 and 6 show all source code metrics for each procedure used in both
examples, while Fig. 7, shows a set of SCQAM system snapshots. Other experiments to
test the proposed system were conducted including measuring the source code of the
proposed system itself [2].

5. CONCLUSION AND FUTURE WORK

This paper introduced a new software source code quality assurance measurement
system named SCQAM. The SCQAM is based on some of the previously developed
industry standards and models like Boehm, McCall, ISO 9126, CMM, and SATC NASA
models for software quality assurance models. The introduced SCQAM has three layers
of calculations, the metrics, the factors, and a unique overall software quality indicator
calculation layers. It can measure up to 31 software quality metrics; only 23 of them are
presented in this paper, and 9 software quality factors. Where each software quality
factor is calculated as a weighted sum of the set of measured metrics; after normalizing
them, that affects it. Similarly, the overall indicator is calculated as a weighted sum of the
measured software quality factors after normalized them. These weights assigned to the
software quality metrics and the factors are adaptive and can be set according to the
application nature.
Based on the research done and briefly presented in this paper we can say "Introducing
software quality assurance of the whole software development life cycle cannot be done
at once [27,28]. It takes time and it has to be done step by step according to the phases
of the life cycle of the developed system [26].
The implementation of the proposed system can easily expanded to measure the quality
of other programming languages; like C++, not just the VB language.

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 847

measured source code solves tasks related to military application, then it will use a set of
weights that is most probably different when it is used in a business application.

In addition, the proposed system provides its users with the capability of assigning a
minimum and maximum target values for each metric and factor. These minimum and
maximum vales are considers the boundaries of the acceptable limits for each metric
and factor.
Similarly, in the overall quality indicator calculation layer, a weighted sum of the
calculated software source code normalized factors are computed to provide an overall
indicator of the quality of the software source code in hand using Equation 2.

c: •
w,, 	El] ,

In equation 1, QF1 is the r quality factor, Wu is the effective weight of the normalized f h-

source code metric (Cf.) on the 	quality factor QFJ, and k is the number of metrics

affecting this QFJ. In equation 2, OFi is the normalized Jill Quality factor QF1, W is the
effective weight of the normalized 	Source code factor (QFI) on the overall quality
indicator of the software source code in hand, and m is the number of factors affecting
this source code.
Since the maintainability factor is affected by other metrics than those available from the
source code, then in the proposed system it was replaced by another term called
"maintainability index (Ml)" and calculated by Equation 3 [21].

MI =171- 3.42*1n(aveE)- 0.23 * CC -16.2* In(aveLOC)+ 50 s n(V2.4 *perCM) 	[3]

Where aveE is the average of "Halstead effort" per module, CC is the average of
"cyclomatic complexity" per module, aveLOC is the average "lines of code" per module,

and perCM is the average "percentage of lines of comments" per module. Generally,
software quality measurements may be fundamental or derived, i.e., measured directly
or derived by combining two or more measurements. Halstead Software Science
measurements have been discredited on both empirical and theoretical grounds.
However, it should be noted that the use of delivered source instructions and number of
unique operands might be useful measurements. Cyclomatic complexity can be a useful
measurement in the planning and assessment of testing. Outside this application area,
its usefulness may be limited because of its close relationship with LOC [11,15]. Quality
by itself is a vague concept and practical quality requirements have to be carefully
defined. Most of the qualities that are apparent to the users of software can only be
tested only when the system is completed [20,32,34].
Increasing in-line comments will increase readability. Comment lines and average value
of cyclomatic complexity affect the maintainability factor. The software source code

QFJ -

Q F.
Overall Quality Indicator - 	

[2]

Proceedings of the 10m ASAT Conference, 13-15 May 2003 	Paper CT-6 849

SCQAM was able to measure a very important reliability indicator even before installing
the software. Comparing SCQAM system with Project Analyzer [18]; another software
quality measurement system, it was found that SCQAM preponderates Project Analyzer,
by computing source code overall quality indicator and more quality factors.

REFERENCES
[1] ATLAS Quality Assurance Group, 2002, http://www.atlas.web.cem.ch.
[2] Ayman H. Odeh Taha, " Software quality assurance: Design and

implementation of software source code quality assurance
measurement system", M.Sc. thesis, Military Technical Collage, Cairo,
Egypt, 2002.

[3] Bob Hughes, "Practical software measurement", McGraw-Hill
Companies, 2000.

[4] Fenton N., "Software Metrics - A Rigorous Approach", Chapman &
Hall, London, 1991.

[5] Fenton N. and M., "Software Metrics and Risk", European Software
Measurement Conference, 1999.

[6] Grant Rule P., "The Importance of the size of software requirements",
NASSCOM Conference 2001,p.18.

[7] Humphrey, Watts S., "Managing the software process", the SEI Series
in Software Engineering, 1990.

[8] IEEE Standard for Application and Management of the Systems
Engineering Process, 8 December 1998, available at
http://webstore.ansi.org/ansidocstore.

[9] Internet: (http://hissa.nist.gov), Quality Characteristics and Metrics.
[10] Internet: (http:// www.cs.washington.edu), A Model-based Approach to

Object-Oriented Software Metrics.
[11] I ntemet:(http://sem. ucalg ary.cacoursescpsc451F00Complexity. html),

Complexity - Software Metrics
[12] Internet: (http://cse.dcu.ie/esSiscope/sm2/charact.html), Quality

Characteristics.
[13] Internet: (http://www.telecom.lth.se), A case study on GUI

enhancement through framework composition.
[14] Internet: (http://irb.cs.tu-berlin.de/-zuse/), Technical Metrics for

Software.
[15] Internet: (http://louisa.levels.unisa.edu), Software Quality Metrics.
[16] Internet: (http://satc.Qsfc.nasa.aov) A Software Quality Model &

Metrics.
[17] Internet: (http://satc.gsfc.nasa.gov), Standards for non-00 languages.
[18] Internet: (http://wwv.aivosto.com/vb.html), Project Analyzer.
[19] Internet: (http://www.axeljosefson.com), Quality Assurance Guideline.
[20] Internet: (http://www.enel.ucalgary.ca), Measuring External Product

Attributes.
[21] Internet: (http://www.indus.uah.edu/phd/chapter2/Chapterll.html),

Quality Models and Object-Oriented Metrics.

Proceedings of the 10° ASAT Conference, 13-15 May 2003 	Paper CT-6 850

[22] Internet: (http://www.stc-online.org), Software quality assurance a
technical report, 2000.

[23] Internet: (http://www.whatistesting.com/sanalysisa.htm), Panos
Ntoumtoufis, "From Software Quality Control to Quality Assurance".

[24] Internet: (http://irmc.state.nc.us), Guidelines for Agency Software
Metrics Planning.

[25] Intemet:(http://sem.ucalgary.ca/—philip/), Software Quality Assurance
Proposal.

[26] James F. Peters, Witold Pedrycz; "Software Engineering an
engineering approach", John Wiley & Sons, Inc., 2000.

[27] Johanna Rothman, "Using Quality to Drive Project Lifecycles", 1999.
[28] Katalin Balla, 'The complex quality world: developing quality

management systems for software companies", Eindhoven University,
2001.

[29] Linda H. Rosenberg, 'What is Software Quality Assurance? ", SIC
conference 2002.

[30] Linda H. Rosenberg, " The Science of Software Quality Assurance",
ASQ Conference 2001.

[31] Majida Sharif, Sarah Salahuddin; "Capability Maturity Model-
Implementation and Implications", FAST-NU Conference, July 2000.

[32] Ropponen J. and Lyytinen K., "Components of Software Development
Risk", IEEE Trans. Software Eng. Vol.26, No 2, p.98-110, February
2000.

[33] Rushby Craig, "Software Quality Assurance in a CMM Level 5
Organization", the Journal of Defense Software Engineering, May
1999.

[34] Thomas Liedtke, Peter Paetzold, 'Three Numbers to Measure Project
Performance", International Conference on Applications of Software
Measurement ASM 2001.

•
Figure (2): CMM levels

■•••

*4

Figure 3: The Proposed SCQAM System Components and its three-calculation layers

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 851

Figure (1): Boehm and McCall Software Quality Assurance Models

Proceedings of the 10Th ASAT Conference, 1345 May 2003 	Paper CT-6 852

LAO
i

ARP 	
ofAri

Holdand Won
LAC

3
1.1

A

•IU
CA

S/SC7'.ry

11/W Independence
Paror IlanclImg

10111 znelanNla ONLon INA.<
Strectunal Yen In

urban 	 '101 &runnel Nal Oct

v.,. of ConpImg Wit_
InI. Doournmtabon
Cyclic ComplesAy

—7k111111
Ovenill Quality 	 1011

SNINN"..^P Indeator 	 1,7
i

Van N. Conentia■
Cm N Cn■Nennon Ili

'- ‘111111 bL*7"nts MEM 	41161 lienhfier Length

1
Quality Factors of Anoldsollon

GolocUrmn
Nortd
Dead VainInn,

Dead Proenduree

Figure 4: SCQAM System

Table 1: Metrics of all procedures of the VB Source code of the same Application

No Metric
P11

Program
Measured

#1
P12 	P13

Values of
Procedures

Measured Values of Program
#2 Procedures

P14 P15 P16 p21 P22 Pr., P24 P25 P28

Dead
Variables

No No No No No No No No No No No No

2 Cyclomatic
complexity 3 1 4 3 3 2 3 1 4 3 3 2

Structural fan
in o 0 1 1 1 1 0 0 1 1 1 1

Structural fan
Out

4 0 0 0 0 0 4 0 4 0 0 0

Informational
fan in

5 0 3 2 2 2 6 0 3 2 2 2

6 Informational
fan out 0 0 1 1 1 1 1 0 3 2 2 2

Informational
complexity 0 0 36 20 20 18 108 0 117 44 40 36

8 Nested
conditions

1 0 3 2 2 1 1 0 3 2 2 1

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 853

9 	Nested loops 	1 	0 	2 	1 	1 	1 	1 	0 	2 	1 	1 	1
10 	Total lines 	16 	9 	14 	10 	10 	9 	37 	22 	14 	20 	20 	19
11 	LOC 	 15 	0 	12 	10 	10 	9 	18 	12 	12 	11 	10 	9

Comments
line 12 	 1 	0 	2 	0 	0 	0 	19 	9 	9 	9 	9 	9

13 	Space lines 	o 	0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	1
Local
variables 14 	 0 	0 	1 	1 	1 	1 	0 	0 	1 	1 	1 	1

15 	Operators 	9 	7 	6 	5 	5 	7 	9 	7 	6 	5 	5 	6
Unique
operators 16 	 1 	4 	2 	2 	2 	3 	1 	4 	2 	2 	2 	3

17 	Operands 	19 	15 	14 	12 	12 	14 	19 	15 	14 	12 	12 	12
Unique
operands 18 	 14 	11 	7 	7 	7 	9 	14 	11 	7 	7 	7 	8
Procedure
Vocabulary 19 	 15 	15 	9 	9 	9 	12 	15 	15 	9 	9 	9 	8
Procedure
Length
Procedure
Volume

20 	 28 	22 	20 	17 	17 	21 	28 	22 	20 	17 	17 	18

21 	 109.3 	85.9 	63.3 	53.8 	53.8 	75.2 	109.3 	85.9 	63.3 	53.8 	53.88 	62.2
Level of
abstraction 22 	 0.85 	0.36 	0.5 	0.58 	0.58 	0.42 	0.92 	0.36 	0.5 	0.58 	0.583 	0.44

23 	Effort 	74 	234 	126 	92 	92 	175 	74 	234 	126 	92 	92 	140
24 	Time (sec) 	4 	13 	7 	5 	5 	9 	4 	13 	7 	5 	5 	7
25 	Goto Usage 	o 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0

Error

usage
26 	Handling 	No 	No 	No 	No 	No 	No 	Yes 	Yes 	Yes 	Yes 	No 	Yes

InLine
Comments 27 	 4 	0 	1 	0 	0 	0 	3 	0 	1 	1 	0 	2

o Cmplexity/si
ze 28 	 0.2 	0.11 	0.33 	0.3 	0.3 	0.22 	0.16 	0.08 	0.33 	0.27 	0.3 	0.22
Internal

on
29 	Documentati 	0.062 	0 	0.14 	0 	0 	0 	0.51 	0.42 	0.14 	0.45 	0.473 	0.5

Estimated
length

, 	 .
31 	Impurity 	1.90 	2.09 	1.08 	1.27 	1.27 	1.58 	2.33 	2.09 	1.08 	1.27 	1.27 	1.59

30 	 53.3 	46.0 	21.6 	21.6 	21.6 	33.2 	53.3 	46.0 	21.6 	21.6 	21.65 	28.7

e procedure num eri in the I. Program.

The quality factors chart for program 1

has the following figure

The quality factors chart for program 2

has the following figure

Figure 5: Quality factor chart for

examplel with

Overall quality indicator =0.550

Figure 6: Quality factor chart for

example2 with

Overall quality indicator = 0.773

[vow

Rtkmarlwr
Pistaarmefism 	St
Vs' 	 "9
DOME** 	

Y,

1111.11 INasetfatand Vilet136,013/

2
3

S

ir
as

.1

'

r 	 1 - 6
eilque new.). 	 fr.

n *La.

Vale
Dam! 	 Na
adornahc Couinory 5

anflut 	1 s 0
iv/cseation Falls, Fat 	4 s 1
hiamehon cowboy 60
NOW Canaan
WOW bops 	2 	
Taal Lmet 	20
LI■ts 01 Code 	15 	
Owned., Lnes 	TO
Spaces loc.
LccalVanables
Opmatax
Unque °potion 	3
Opecsrsdr 	20
Unitpse Oparands. 	12
Pros-esks Vocabulaiy. IS
%coda Long& 	29
f'tmvlunVrimr

No Vika 'Rater IT 	Reacked
I rielperfled 14i/fORM.F11 8a:hal
2

VFORKFR, Va a1 mogladellete
5
	

WORM fR We draft
6

NAINFORM Vfflai rallen1
KANFORKFR Vat virtleCtil
,Aeiih01;1FR yawl 	matrzfri 10

woRM FR Wiwi

re 'Tr

045Ht ha

7Ct% Rah

High

Proceedings of the 10m ASAT Conference, 13-15 May 2003 	Paper CT-6 854

MGM 1

-5-555-1.1

=ICC-7.4

SOFTWARE aiaure
ASSURANCE FOR VISUAL

sa 	BAST C SOURCE CODE

NC=

	

5.550 	Q19

	

' 	-
%■;■■ 4644- '''

.V/12E2

• 65,,,,41

• SOFTWARE QUALITY
ASSURANCE FOR VISUAL

BASIC SOURCE CODE

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-6 855

Figure 7: A set of snapshots of the SCQAM system showing its interface and quality
assurance reports and their contents

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

