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Abstract: 
Military avionics navigation systems are constantly demanding for exploding 

system performance and minimizing system size. They require higher accuracy, 
reliability, and robustness against jamming. This drives the system-integrators 
towards a generation based upon satellite navigation (GPS) and inertial navigation 
system (INS). 
This paper presents the solution of GPS navigation equations operating in a stand-
alone configuration in a general environment. On the other hand, the solution of 
INS equations operating in a stand-alone configuration in the same environment. 
And finally, the solution of integrated GPS/INS navigation system, which will 
provide improvements in navigation performance are presented. 

I. Introduction: 
GPS is expected to operate in a stand-alone configuration in a general 

environment. Users determine their position by GPS receiver by measuring the 
range between their antenna and four satellites fig. (1). The measured range by the 
GPS receiver is referred to as "Pseudorange". Mathematically, Pseudorange may be 
expressed by the equation 111: 

where 
Rp  = Rd  + CATb 

Rp  is the measured Pseudoranges. 
R„ is the actual or true range. 
C is the speed of light. 
ATb is the receiver's clock bias or clock offset. 

(1) 

Since the GPS receiver calculates its position in an Earth Fixed Earth Centered 
(EFEC) Cartesian-coordinate system, the equation above can be written as follow: 

- X)2  +(.31—.Y,)±(Z —Z1)2 1 +CAT 	 (2) 

where, xi, yi zj are position of the i-th satellite (i = 1,2,3,4), x, y, z are user position 
(unknown). 

The resulting four equations are called "Navigation Equations", and their 
solution requires measurements of the four pseudoranges to four different satellites. 
Navigation equations solution using direct method technique and Kalman filter 
principle are discussed and the differences between the errors obtained from each 
method are discussed and plotted. 
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Fig. (1) GPS measured ranges in EFEC-coordinate frame 

On the other hand, INS provides high accuracy in short trip navigation but it 
suffers from error accumulations with time. The estimate of INS error parameters 
allows in-flight alignment of INS and INS navigation with substationally smaller 
errors than that could be achieved with INS stand-alone navigator. INS is capable to 
provide accurate "aiding" data on short-term vehicle dynamics to GPS receiver. By 
utilizing those aiding signals to effectively reduce the dynamics of the signals to be 
tracked, the GPS receiver can maintain relatively low tracking bandwidths even in 
high dynamics environment. When noise-to-signal ratios become so high that 
tracking of GPS signals is impossible, the INS is capable of navigating 
independently. When GPS signal conditions improve sufficiently to allow tracking, 
the INS provides data on initial position, velocity, and acceleration for use in 
reacquiring the GPS codes and carrier quickly. The INS also provides data for use 
in adapting the tracking loop parameters to varying conditions of signal dynamics 
and signal-to-noise ratios, there by improving the ability of the tracking loops to 
acquire and maintain lock on the GPS signal. 
In this paper, we investigate the integration of GPS/INS system to improve the 
positioning accuracy of a high-speed aircraft. 

The rest of the paper is organized as follows: Section II presents an overview of 
the estimated aircraft flight parameters; section III presents the solution of GPS 
navigation equations; section IV presents the solution of INS navigation equations. 
Solution using GPS/INS integrated navigation system is introduced in section V, 
with conclusions given in section VI. 

IL Overview of the estimated Aircraft flight parameters: 
The trajectory that the Aircraft should follow during the flight period is 

assumed to be piece-wise linear path starting from Cairo (30°  lat; 31.3°  long) and 
ending after 20 min. 
Aircraft dynamical model is assumed to be Position-Velocity-Acceleration (PVA) 
model. 
It is assumed that the equations of motion of the aircraft are given by: 

	

dk=dk.14  VkT. 	 (3.a) 

	

Vk=Vk.rt- AkT, 	 (3.b) 

	

and Ao--aAk.14-wk. 	 (3.c) 
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where 
dk,Vk,Ak are the distance, velocity, and acceleration of the aircraft at tk ;respectively. 
T is the integration step period. 
wk is the zero-mean white -noise process of variant a2w. 
a is the acceleration correlation coefficient, which is given by 12): 

a=1-117,,for 

and 

a =0 	for T > M 
where 

M is the average maneuvering duration. 

III. Solution using GPS Navigation equations: 
(1) Using Direct method: Let (X,,, Y.,Z.,T.) be the nominal point or the point of 

linearization of (X, Y, Z, T) variables, (AX, AY, AZ, AT) be corrections to the nominal 
values, (Kg) be the nominal pseudorange measurement to the i-th satellite, and (AK) be 
the residual (difference) between actual and nominal range measurements. Thus, the 
following incremental relationships are obtained 11,2,31: 

X = + AX, Y = + AY,Z = Z„ + AZ,T = + AT,Rpi  = R.1 + A Rid (5) 

Using Taylor's Series to linearize the navigation equations we get: 

AR, = ? — R „, — [(SR 
p 
	). AX + ( 	

SR 	
A Y + (

SR'  )AZ + ( 	Pi  ), AT] (6) 
6X 	ST 	SZ 	87' 

where 
SI? 	SR 	 67? 	

are the pseudorange derivatives calculated at the 

nominal point (X. , Y. , 	T.). 
Equation (4) gives us four linearized equations, which can be put in the matrix form as 
follows: 

AR,, 
AR,, 
4/2„ 

[ 

AR„ 

or, 

where 

= 

 8R,, 1 8X . 	(15R ,, 1 8Y). 	512,, 1 8Z • 
	

c5R ,, 1 67.).  
(8R,, 18X . 	r„,11„ 	8R,, 1 8Z . 	8R„ 1 8T). 
(8R,, I 8X ) 	 8R „ 1 8Y 	SR„ I 8Z 	8R„ 1 8T).  
(8R„ 18X). 	(8R„ 1 SY): 	(SR„ I ISZ) 	8R„ / 5T) 

R= HX 

R=IAR1 AR2 AR3 AR4IT  

AY 
OZ 
AT 

(7)  

(8)  

(9)  
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(10)  Va?„ (54, (a„ 6Y) 	(1R„ 34, (s?„ 1 .54,  

and 
(c5R, I on, 	(6R,,,, gY) 	(SR 	I0, (3R„ 1  ar),, 

X=LAX AY AZ ATIT  (11)  
Taking the inverse of the matrix H then we can solve the position error and clock bias 

X=11-I  R 	 (12) 
By adding the calculated position error and clock bias to the values, we get the on 
time position and time. 

(2) Using Kalman Filter: the Aircraft dynamics can be represented in matrix 
form as 14,5,61: 
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(13) 

where 

X1= EFEC x- axis position, 	X2 =EFEC x- axis velocity. 
X3= EFEC x- axis acceleration, Xi =EFEC y- axis position. 
X5 = EFEC y- axis velocity, 	X6=EFEC y- axis acceleration. 
X7= EFEC z- axis position, 	X5 =EFEC z- axis velocity 
X9= EFEC z- axis acceleration. 

wi,w2,w3 are white-. Gaussian noise of zero mean and variances of 62 w1,62w2,C2  
The state error Covariance matrix is given by: 

Q= E{ T } = 
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(14) 



Proceedings of the 1e ASAT Conference, 13-15 May 2003 	Paper AR-17 809 

GPS system Pseudorange measurement noise is assumed to be white Gaussian noise 
of standard deviation 1100ml. 
Hence, the measurements model of GPS receiver can be in the form: 

Rp 	Rpn1 

Rp2  — Rpra  

33  — Rp,,3  

k 0 
0 

h: 	0 

0 	111  
0 	hY 
0 	113  

0 
0 
0 

0 
0 
0 

k 0 
0 

11: 	0 

0 

0 
0 

X, 
X2  
X3  
X4  
X5  
X6  
x, 
X8  
X9 

r2 
r,_ (15) 

where 
F, r3  I is the white-Gaussian measurement noise. 

In simulation algorithm, the Aircraft flies over Cairo at One O'clock AM and it is 
required to follow the trajectory described above. The receiver used is assumed to be 
multichannel receiver, operates on C/A code only. The required ephemeris data are 
obtained from a stored file containing all ephemeris data for the best four satellites 
(have min. GDOP), which are visible at this time over Cairo. 
Simulation program is executed 10-times and the average values of errors from each 
technique are plotted as shown in figs. (2) and (3). 
Fig. (2-a) through (2-c) illustrates the EFEC-Cartesian average position errors obtained 
from each method. Fig. (3) illustrates the polar average position errors obtained from 
each method. It is clear from the plotting that, the Kalman filter method is better than 
direct method table (1). 

Fig. (2-a) Error in position in X-axis Fig. (2-b) Error in position in Y-axis 
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Fig. (2-c) Error in position in Z-axis 
	 Fig. (3) Error in Range in XYZ-plane 

IV. Solution Using INS navigation equations: 
The INS outputs are attitude, velocity and position. Attitude is computed directly in 

case of gimbaled system, and calculated from the solution of the direction cosine matrix 
differential equations in strapdown system. The strapdown configuration has several 
advantages; elimination of gimbals leads to lower system costs, smaller mechanical and 
electrical form vector, and increased reliability, 
Position and velocity are calculated by solving the navigation equations that describes 
the motion of the vehicle with respect to a certain reference frame. The most famous 
reference frame is local-geographical (navigation) frame because it is simple and used 
for long distance navigation. 
The general INS navigation equations used for the geographical frame (assuming the 
case of north-east-down frame, spherical earth model and constant Earth's 
gravitational field) are given in the vector form by [7,81: 

vN=fN vs  (20 + ;11 sin L + v D  L+ - g  

(v,v 	tanL) = f N  - 252vs  Sit& +  E t° E N +: 
(R+ h 	g .  

vE= f v,r ± sin L v D  (20 + cos L 77g 

= f s — 2n(vs  sin L + v D cosL)+ 	 + t L (R0+  h )V D VN an )— rig 

v f (  vsCS2 + ),) cos /: — 	+ g 

(  

= f D  - 2E2 vs  nos L VV
2 

where 
L is the latitude of the vehicle. 
VN VIE , VD are north, east, and down velocity components; respectively. 

h 

(16)  

(17)  

(18)  
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fN , fE , le are north, east, and down acceleration components due to applied specific 
force; respectively. 

h is the height of the vehicle over the earth. 
; and n represent angular deflections in the direction of the local gravity vector with 
respect to the local vertical due to gravity anomalies. 
Latitude, longitude and height above the surface of the earth are given by [7,81: 

E — , 	 (19) 
1/2,, +h) 
v sec L — 	, 	 (20) 

+h) 
= vD 	 (21) 

It is assumed, in the equations given above, that the earth is perfectly spherical in 
shape, additionally, it is assumed that there is no variation in the earth's 
gravitational field with changes in the position of the navigation system on the earth 
or its height above the surface of the earth. 
In accordance with this model (WGS-84) the following parameters are defined [81: 
Length of the semi-major axis 	R=6378137 m 
Length of the semi-minor axis 	1=R (1-f)=6356752.3142 m 
Flattening of the ellipsoid 	MR-r)/R=1/298.257223563 
Major eccentricity of the ellipsoid elf (24)111 =0.0818191908426 
Earth's rate 	 12 =7.292115X10-5  rad/sec 
By modeling the earth in accordance with the reference ellipsoid defined above, the 
rates of change of latitude and longitude may be expressed in terms of a meridian 
radius of curvature (RN) and a transverse radius of curvature (RE) as follows: 

R (1—e 2 ) 
RN — 	  

(1— e 2 	2  1)" 2  
R 

(1— e 2  SDI 2  L )" 2  
The mean radius of curvature used in the earlier equations is Ro=( RE•IN)x  
Similarly, the transport rate now takes the following form: 

VE 
R 

vN 	V E  ren t  ir  (24) 
E +h RN +h RN +h  

The deflection of the ocal gravity vector from the vertical may be expressed as 
angular deviations about the north and east axes of local geographic frame as 
follows 18]: 

g = 	 g] 	 (25) 
where ; is the meridian deflection and q is the deflection perpendicular to the 
meridian. The resulting deviation of the vertical over the surface of the earth varies 
by up to 30 arc seconds. 
Exact knowledge of the magnitude of gravity is also vital for accurate navigation. 
The following expressions for the variation of the magnitude of the gravity vector 
with latitude at sea level (h=0) and its rate of change with height above ground [151: 

(22) 

(23) 
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dh 
It is sufficient to assume that the variation of gravity with altitude is as follows [81: 

g (h)=g(0)/(1+h/Ro)2 	 (28) 

The solution of the above navigation equations gives the position and velocity of 
the user. The difference between the solution of the above navigation equation in 
gimbaled system and in strapdown system is that for gimbaled system, the measured 
specific force accelerations sensed by accelerometers are directly applied to the 
navigation equation, while in strapdown system, these measurements must be 
resolved into the navigation frame using the measured attitude before applying to 
the navigation equation (i.e. calculated from the solution of the direction cosine 
matrix differential equations). In simulation, the pendulous accelerometer is 
assumed to be used which has a random error term modeled as zero-mean white 
Gaussian noise of typical value of variance (a2„ =(1 m/sec2)2)18], scale factor error 
given by the typical value (S=0.05%), and fixed bias (B=0.01 g), while the other 
terms are not modeled as they are considered very small values. 

Scenario: the used INS mechanization is strapdown local-geographical system, with 
the navigation axes mounted as: North, East, and Down (i.e. NED frame) assuming 
the ellipsoid model of the earth (WGS-84). 
The program starts by reading the acceleration information from the flight path file 
(which are in EFEC-frame) and transforming it to the NED-coordinate frame then 
adding the noises to these transformed accelerations. These noisy accelerations are 
considered the input to the navigation equations (14), (15) and (16). The Runge-
Kutta4 numerical integration method is used to solve these navigation equations, 
taking the initial position in Cairo location, to get the velocity and position 
measured in navigation frame. 
The position and velocity errors in EFEC-frame are calculated and plotted. 
It is found from the plots that the errors are accumulated and increasing with time 
as shown in fig. (4). 

Fig. (4-a) Error in position in X-axis 	Fig (4-c) Error in position in Y-axis 

g(0)=9.780318(1+5.3024,10 3sin2L-5.9.10 6sin22L) m/sec2 	(26) 
d 

g(0)=-0.0000030877(1-1.39.10-3sin2L) m/sec2/m 	(27) 
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Fig. (4-b) Error in position in Z-axis 

V. Integrated GPS/INS system: 
The global positioning system (GPS) offers an absolute positioning accuracy of 

15-100 m. Inertial navigation complements GPS in that it provides relative 
positioning and is totally self-contained. These two positioning sensors are ideally 
suited for system integration for although there is not necessarily an improvement 
in accuracy, the integration of GPS with inertial navigation systems INS does enable 
an increase in system performance. 

Two basic architectures are available to the designer for integrated GPS/INS .The 
first is named cascaded architectures (Loose) and the second is named fully 
integrated architecture (Tight). Cascaded architecture has many advantages: 

1) The ability to integrate any GPS receiver and any INS. 
2) GPS and INS Kalman filters are smaller than the filter required for fully 

integrated architecture, we use in this simulation the cascaded closed-loop 
type as shown in fig. (5)191. 

Position 

Velodty 

Attitude 

Fig. (5) Cascaded Kalman filter for GPSIINS integration 
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System Equation: From the INS error propagation equation discussed before, we 
take the states of velocity and misalignment angles as follows 181: 

_ 1 

	

0 C. X_N_ 0 	
R 0 R  8 a. 	 1 

6 	
= - C 

	0 	C, 

	

-R 	
0 	0 
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v , - f E 	f,, 	0 	 C, 	0 
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(29) 

c,=0 sin L + -J tan L (30)  

c2=-S2 sin L - 	tan L (31)  

C3=-S2 cos 	v,  - — (32)  

c4=SI cos L + —v, 

c5=2S2 sin L + Rtan L 

(33)  

(34)  

C6=-2 (S2sin L + 	tan L) (35)  

C7= 1 (V N 	L+ V D ) (36)  

c8=-2(5) cos L - 	i (37)  

Rc,--2SI cos L + (38)  
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Fig. (6-a) Error in position in X-axis Fig. (6-b) Error in position in Y-axis 
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v gr ,  V sr , V gz is the gyros noise components. 

V  az V  ay / V  az is the accelerometers noise components. 

L 
	

is the latitude of the vehicle. 

a ,15 	Y 
	are misalignment angles. 

The measurements equations for the Kalman filter will take the form: 

VEG  — VE1  
VNG 	VNI  
VDG  — VDT  
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0 
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0 
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0 

1 
0 
0 
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1 
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0 
01 

1 

a 
13  

6VE  
6 VN  

VD  

VE  

+ [V N 

VD 

(39) 

where 

VEc,,VNG,Ync are the east, north, and up GPS velocity components; respectively. 
VEINNI,YD1 are the east, north, and up INS velocity components ; respectively. 
VE,VN,VD 	are the GPS measurement velocity noise errors; respectively. 

In the integrated GPS/INS simulation program, the cascaded Kalman filter 
architecture is used. The results from the two previous simulation programs of the 
INS stand-alone and GPS stand-alone are subtracted from each other and the 
difference is considered the measurements for the INS Kalman filter, which 
operates on errors only. The same trajectory and a/c dynamic model that were used 
in GPS simulation, are used here except that the state vector is representing the 
misalignment angles and velocity errors. 
The simulation program is executed 10 times and the average of the errors are 
plotted in figs. (6)&(7). 
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Fig. (6-c) Error in position in Z-axis Fig. (7) Error in Range in XYZ-plane 

VI. Conclusions: 
This paper discussed a continuous calibration and alignment scheme for inertial 

navigation system using Cascaded Kalman filter. 
It is clear from the given plots and table (1) that, the errors of stand-alone INS is 
accurately calibrated using data output from GPS receiver. So, the integration of 
GPS/INS navigation system provides the following advantages leading to a high 
performance system: 
1- Continuous calibration of INS (INS error reset) and in-flight alignment of INS 

using accurate GPS position fix are possible. 
2- Continuous navigation output including attitudes even when the GPS signal is 

lost due to instantaneous and continuous output from INS. 
3- Increasing jamming immunity even in high dynamics environment due to non-

jammable system (ENS). 

Table (1) Navigation Parameters RMS errors. 

Nay. Parameters 
RMS errors 

Kalman filter 
method 

Direct 
method 

INS stand-alone Integrated 
GPS/INS 

AX m 15 25 56 26 
AY m 17 28 87 32 
AZ[m] 28 50 43 21 

AV■[m/sec] 5 10 3.2 1.2 
AVy[m/sec] 10 20 3.7 1.1 
AN/z[p/sec] 15 25 2.8 1.9 

AR[m] 36.03 62.3 53 34 
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