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1- Abstract 

A new approach for suppression and control of mechanical vibration in cantilevered 
structures undergoing cyclic motion is presented [1]. The proposed model is based 
on the idea of generating axial uniform distributed forces on the superficial fibers of 
the vibrating structure. These forces are imposed on structure in such way that their 
vertical components act in a direction always opposing the rotation of the vibrating 
elements of the structure. Moreover, the damping level according to this model is 
dependent on the axial force value. 
Equation of motion for the new model are obtained where, the effectiveness of this 
model for reducing lateral vibration of a base excited cantilevered beam is 
determined theoretically at different force values. It is shown that the higher the force 
value, the higher the attenuation percentage. The new model is characterized by its 
simplicity, which enhances its reliability and reduce its cost, as it provide the desired 
results with higher reliability and low cost, compared with other approaches of active 
and intelligent structural designs. 
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2- introduction 
The reduction of vibration responses and the transmission of vibratory energies in 
structures and mechanical systems have been a subject of investigation for many 
years. These requirements have motivated different means for vibrations control 
since the fourties. 
In general, this objective can be achieved in a number of ways, such as reducing 
vibratory energy at the source; designing the system to have specific resonance 
frequencies to avoid the coincidence of the exciting frequencies and the system 
natural frequencies, and providing means for dissipating the energy. 
One of the simple means for dissipating the vibratory energy in structures is the use 
of viscoelastic material perfectly glued on the surface of the vibrationg structure. This 
technique is called the unconstrained layer damping (UCLD). But the UCLD systems 
are often of low damping ratios, which are unacceptable for many mechanical 
structures. On 1959, Kerwin, et al [2], first did a fundamental work in what is called 
passive constrained layer damping (PCLD), and since that time there were many 
investigators who developed this technique [3-8], but unfortunately, the PCLD 
systems were not enough to reach the desired attenuation percentage. In addition to 
that the PCLD systems showed a mode dependency, which reduced its efficiency 
and increased its production cost. 
So, the conventional structural designs are often unacceptable in coping with modern 
problems of structural resonance caused by the complex nature of the dynamic 
environment and the requirements of design objectives. These requirements have 
motivated a new approach to structural design where feedback controls principles 
and advances in sensors and actuators are applied to the design of high 
performance structural systems. Active Constrained Layer Damping (ACLD) 
treatments have been recognized as effective means for damping out the vibration of 
flexible structures. The effectiveness of the (ACLD) treatment is determined using 
distributed- parameter methods [9-16], or Finite Element Analysis (FEA) [17,18]. But 
still these new techniques showed high cost, low reliability and complexity. 
In the present paper, a passive control new approach for vibration control in 
cantilevered structures is presented, showing high damping characteristic, low cost, 
simplicity and high reliability. 

3- Equation of Motion of the New Model 

Consider the forces and moments acting on an element of a beam, sandwiched 
between two elastic damping layers, undergoing cyclic motion, as shown in Figure 
(1) where w(x,t) is measured from an inertial frame of reference and the beam is in 
bending during its upwards half cycle. These two elastic damping layers are used to 
generate the superficial axial forces P6. Figure (1.b) shows the forces and moments 
acting on an element dx of the sandwiched beam. 
For simplification, it is assumed that 

1- The shear strain in the base beam is negligible. 
2- The lateral displacements w(x,r) of all points on the same cross-section of the 

beam are considered to be equal. 
3- The effect of the rotary inertia in the beam element is negligible. 
4- Axial uniformly distributed force per unit length of the beam is constant along 

the beam length. 
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By summing forces in the x-direction, one obtain 

_ax ax
Up aN + — = 

Also, the summation of forces in the y-direction, results in 

ae aP  
m  02w(x,t) 	 (2) 2(P— + — 0) aG aN  ) + N -- +— e-- – 2F 0 

ox Ox ) 	Ox Ox ) Ox 	° 	5t2  
Where, m = 2pdAd + p3A3  is the mass per unit length of the sandwiched beam. 

Substitution of equation (1) into equation (2), results in 
„ao , ao aQ —+ iv — – — = ma2w(x,t)  

ax ax ax 	ate  
The summation of the moments about any point on the right face of the beam 
element, results in 

aM Q= —
ax 

+ +2S +2P0 	 (4) 

Substitution of equation (4) into equation (3), results in 

+ aN 0+2axas  +2 ax 0= m a2w(x't) 	 (5) a2m 	 aP 
axe ax 	 ate 

From the elementary theory of bending of beams (Euler-Bernoulli thin beam theory), 
the relationship between moment and deflection can be expressed as 

t) , 
M(x,t)=D 

02w(x 	 (6) 
ax2 
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Substitution of equations (1) and (6) into equation (5), results in 

ax2 	ax  
a2  (D 	

2 
a2w(x, t)) 	a2w(x, 0  +2 as  +2F00 = 0 + m 

at2 	ax 	
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From the geometry of the sandwiched beam element in bending, the slope angle 0 

can be expressed as 
aw(x,t) 

0 = 

	

	 (8) 
Ox 

And the shear force S in the damping layer is expressed as 

	

„ 	Ow(x,t)  
S = GdAdrd ="dild 

	

	 (8) 
Ox 

Substitution of equations (8) and (9) into equation (7), results in the partial differential 
equation of motion of the new model as 

D
a4w(x,t) +2GdAd

a2w(x,t)  +2F0
aw(x,t) 

+m
a2w(x,t)  

ax4 	axe 	ax 	at2 = 0 	 (10) 

If the value of the superficial force vanishes, equation (10) becomes in the following 
reduced form 

D
a4w(x,t) +2GdAd

a2w(x,t)  +m 
a2w(x,t) – 0 	 (11) 

ax4 	ax2 	at2 
Which is identical to the equation of motion of the Beam/UCLD system in bending 
vibration. 

(1) 

(3) 
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Considering the coordinate system shown in Figure (2) for base excitation, equation 
(11) becomes 

a2,x,r1  a2 
.r  D  0

4  w(x,t) + 2G d Ad 
a2w(x,t)  + 2F0 

aw(x, 1) 	„, 
+ m  	

2 
l /  

4 	 -0 	(12) ax 	 ax  2 	 at2 .51' 

4- Solution of Equation of Motion 

For harmonic base excitation, the base displacement is given by 

Yb(1)= Yoeicv 	 (13) 
and the corresponding response is assumed to be 

co 
w(x,t) 1W, (x)q,(t) 	 (14) 

n=1 
For a cantilevered beam, the nth  mode shape has the form 
Wn  (x) = cosh/3,x - cos /3„x -0- „ (sin jinx- sinh fl,,x) 	 (15) 

D )2 	
0_ n  sinh fin /. - sin 13„L 

Where 	(fin =  cosh/3nL +cos/3n /, 
Substitution of equations (13) and (14) into equation (12), it results 
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Multiplying both sides of the above equation by ffin  (x)cht and integrating over the 
whole length of the beam, it results in 

a
2 (t) 

[DL (fin  + 2GdAdo-  n  fin  (2 - crnflnL)+ 4F0 n  (t) + mL-7--gg== 
dt2  (17) 

fin 
Let dn(t)= Ada(  
Substitution of equation (18) into equation (17), it results in 
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Therefore, the total response of the harmonically base excited system is 
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GO 
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And the transfer function of the system, [a(S2, x)] is 

co 
a(S-2,x)= E 

[2 a  n  n2 ) 
)6, L 

Wn (x) (22)  
n=1 ( )fl y _ c22 

Due to the rheological behavior of the beam material and the damping material, the 
Young's modulii of the base beam and the damping layers is expressed as follows 
[18]. 

E E.(1 + It) , Ga =Ga' (1+71dj) and Ed  =Ed.  (1+7161:1) 	 (23) 

and the superficial forces which are generated in the damping layers, can 
expressed as follows 
Fo = FO + jF0 	 (24) 
where FP = ridF; 
Substitution of equation (23) and (24) into equation (22), the natural frequency of the 
new model becomes 
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Substitution of equation (25) into equation (22), it results 
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Equation (26) gives the transfer function an x) , which represents relative lateral 
displacement w(x, t) of the Beam/PTLD system element measured from the moving 
frame (xyz), as shown in Figure (2), divided by the base harmonic displacement y(t) 
measured from the fixed frame (XYZ). 

(25)  

(26)  
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5- Assessment of the System Performance at Different Values of Superficial 
Forces 

The effect of the generated superficial force on the response of the Beam/PTLD 
system is assessed. The attenuation percentage is calculated for different superficial 
forces values, where, the comparison is made with respect to the response of the 
plain beam as a fixed reference. 
The attenuation percentage is calculated from the following formula 

la(con, L) Ha(con ,L)1 
An (co n ,L) = 	

la(, 
	 IGO% 	 (27) co n  

It is necessary before studying the performance of the system, to study the 
performance of the same system but when the superficial forces vanishes, at this 
moment, the system response is that response of the Beam/UCLD system, and the 
damping produced is due to the direct and shear strains in the damping layers, in 
addition to the structural damping of the base structure. Figure (4) gives the 
comparison between the Beam/UCLD system and the corresponding plain beam. 
Figure (5) gives the comparison between the magnitudes of the frequency response 
functions of the system at different values of the superficial force within the elastic 
range of the damping material. These figures indicate the high damping efficiency of 
the new approach. Table (1) gives the relation between the value of the initial strain, 
the superficial force and the attenuation percentage of the new model at 1 st  resonance. 

Table (1) the attenuation percentage at different superficial force 
Strain Superficial force NI Attenuation ratio[%j  

63.70% 0.002 0.103 
0.004 0.207 67.54% 
0.008 0.415 80.45% 
0.016  0.830 89.79% 

6- Conclusion 
In the present paper, a new passive control model used for suppression of the lateral 
vibrations of a flexible base excited cantilevered beam, is developed. This new 
approach, which is called pre-tensioned layer damping (PTLD), is a sort of artificial 
damping techniques, which is based on the theory of energy dissipation from 
vibrating systems. The presented model has a closed form solution for the 
beam/PTLD system. The new approach is simple, reliable and inexpensive 
technique, which show a major advance in the attenuation of the vibration amplitude. 
Using this simple model enhance the damping ratio without the complications of 
control devices used in the case of Active Constrain Layer Damping (ACLD) in 
addition, it has not the limitation of damping in the case of Passive Constrained Layer 
Damping PCLD technique. It is noticed that the higher the elastic superficial forces in 
the pre-tensioned layer damping material, the higher is the attenuation percentage 
and the damping effectiveness. 
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(a)  

(b)  

Fig. (1) Forces and moments acting on an element of a beam undergoing 
cyclic vibration 
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(a) 

FY  = 2F0 a6w(x' t)  

Fig. (3) Beam/PTLD system during one complete vibration cycle 

(a) Upwards motion 	(b) Downwards motion 
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Fig. (4) Attenuation percentage of the Beam/UCLD system at IS 
resonance, Ed =0fistrain 

Fig. (5) Attenuation percentage of the Beam/PTLD system at 
1St  resonance 

(a) Ed = 2000pe 
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Fig. (5) Attenuation percentage of the Beam/PTLD system at 

1St  resonance 
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Fig. (5) Attenuation percentage of the Beam/PTLD system at 1 St 
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