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ABSTRACT 
 
The regular structural integrity monitoring of major engineering structures such as  
space structures, orbiting spacecrafts, and civil infrastructures have become an 
urgent necessity to prevent potential catastrophic failures. The evolution of Vibration 
Based Damage Identification methods (VBDI) introduced an alternative techniques to 
the conventional methods. These methods relate changes in the vibration signature 
(natural frequencies and mode shapes) to changes in structural physical parameters 
(mass and stiffness) and thus is used to identify damage. The present research focus 
on developing a combined algorithm includes a model-based method (optimal matrix 
update) and a Non model-based method (frequency response functions difference), 
to enhance the reliability of the VBDI techniques. The algorithm presented robust 
sequential scheme of VBDI techniques and has proven a reasonable success when 
tested through numerical simulation on a large complex space frame. Since, the FEM 
of the monitored structure considered as a major constitute of the identification 
procedure, in the present paper, the ability of the proposed combined algorithm to 
identify damage in plate-like structure is investigated. A numerical simulation is 
carried out by introducing several damage scenarios to steel plate and predictions 
were compared to the known damage. Regardless the assumptions made in the 
FEM and the introduced simulated random errors introduced at different steps in the 
algorithm procedures, the algorithm is found to be reliable in identifying damage in 
plate-like structures. 
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NOMENCLATURE 
 
K System stiffness matrix. 
M System mass matrix. 

Kδ  Perturbations to the system stiffness matrix. 
iφ  The ith mass-orthonormal mode shape 

iω   The ith natural frequency. 

iλ  The ith eigenvalue (squared frequency). 

iδφ   The change in the ith mode shape. 

iδλ The change in the ith eigenvalue. 

idφ   The ith mode shape of damaged structure 
FRF  Frequency response function 
NDE Non destructive evaluation 
SHM Structural health monitoring 
VBDI Vibration based damage identification 
 
 
INTRODUCTION 
 
In recent decades, the damage detection at the earliest possible stage has become 
an important issue in almost all areas ranging from aerospace, aeronautical, 
mechanical and civil engineering. Most currently used damage identification methods 
are visual or localized experimental such as acoustic, ultrasonic, magnetic, 
radiography or thermal field methods. However, these methods are proven to be 
impractical in monitoring complex structures. This is so because, these methods 
require that the vicinity of damage is known in advance and that the portion of the 
structure being inspected is readily accessible. Moreover they require structures to 
be temporarily withdrawn from service. An effective alternative in Structural Health 
Monitoring (SHM) is to recognize the fact that the modal vibration test data (structural 
natural frequencies and mode shapes) characterize the state of the structure. Since 
damage generally causes changes in the mechanical properties of the structural 
system, such as stiffness, the problem of locating a damaged site on structure can be 
equated to locating regions where stiffness or load carrying capacity has been 
reduced by a measurable amount. If the resonant frequencies and mode shapes are 
measured before and after damage, it is possible to solve an inverse problem to 
determine the changes in system matrices. These changes thus provide an indication 
of the location and magnitude of the damage. 
 
The optimal matrix update method is one of the identification algorithms which have 
been used in VBDI techniques. Optimal update identification is an approach to 
produce, through the solution of a constrained non-linear optimization problem, 
update property matrices (mass, stiffness and damping) that will yield a close match 
between the analytical and measured modal responses. It is categorized as model-
based damage identification algorithm, which depends on a prior Finite Element 
Model (FEM) of the healthy structure to be used as a base line. It can be used to 
identify the damage location and severity. However, sometimes the optimizer may 
lead to false predictions especially when a large number of design variables is 
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included in the optimization process. In order to overcome this defect, Amin et al. [1] 
combined an optimal matrix update technique with FRF differences technique, which 
is independent on a FEM of the monitored structure (i.e. non-model-based 
algorithm). The FRF differences technique is used to identify the damaged region to 
minimize the number of the suspected damaged elements and hence reducing the 
number of design variables included in the optimization process. It is based on the 
analysis of experimentally acquired Frequency Response Functions (FRFs) and 
consists of a comparison of the FRFs of the healthy structure which are assumed as 
reference and the FRFs collected at different times.    
 
Although over the past 30 years detecting damage in a structure from changes in 
global dynamic parameters has received considerable attention from civil, aerospace, 
and mechanical engineering communities, there have been very few theoretical 
studies on the identification of damage within two-dimensional continua such as the 
plates. Cawley and Adams [2] were the first to locate the defects within a rectangular 
plate by using natural frequency changes only. However, frequency information has 
been shown to be insufficient for identifying damage in large structures due to the 
insensitivity of frequency changes to small damage [3]. Araujo dos Santos et al. [4] 
used both natural frequencies and vibration modes to detect damage within a 
laminated rectangular plate. However, their method was not practical for a real 
structure because the method requires a significant number of frequencies and 
corresponding mode shapes to yield reliable solutions, which is not usually 
measurable from real structures. Chen and Bicanic [5] introduced a method in which 
the incomplete natural frequencies and vibration modes can be used to detect 
damage within a cantilever plate. Later on, Khadem and Rezaee [6] developed an 
analytical approach in which the changes in natural frequencies are used for 
obtaining the location and depth of a crack on the in-plane loaded plate. Recently, 
Lee and Shin [7] developed a method that can locate and quantify damage in a plate 
structure. While their iterative procedure seems practicable, their approach needs 
harmonic excitation that restricts the applicability to real structures [8]. In the present 
paper, the ability of the aforementioned two stage algorithm, which developed by 
Amin et al. [1], to identify damage in a free-free steel plate is tested via a series of 
numerical simulations. In the following sections, the theoretical background of the two 
stage algorithm, a description of the tested plate and a discussion of results and 
conclusions are presented. 
 
 
THEORETICAL BACKGROUND 
 
Optimal matrix update method 
 
Although the optimal matrix update algorithms can be used to update mass, damping 
and stiffness matrices, stiffness matrix updating has been the most widely used 
method for damage identification. This is so because damage is most likely to affect 
the stiffness matrix. For both FEM updating and damage identification, the stiffness 
matrix is considered the most important candidate for updating based on the 
measured modal data. A brief description to the optimal matrix update technique 
used in the two stage algorithm is presented. More detailed description can be found 
in Amin [9]. 
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The eigenvalue equation of an undamped n-degree of freedom system is 

 

( ) 0=− iiMλK φ         (1) 
 

Where M is an nxn mass matrix, K is an nxn stiffness matrix, iλ  is the square of the 
ith natural frequency, iω , and  is the corresponding mode shape of the system. 
Assuming that damage in the original structure does not cause any change in the 
system mass matrix and causes a change in the stiffness matrix by an amount 

iφ

Kδ , 
this change leads to change iδλ  in the ith eigenvalue and iδφ  in the ith eigenvector. 
The eigenvalue equation of the damaged structure should be 
 

( )[ ][ ] 0=++−+ iiii MδλλKK δφφδ      (2) 
 

On multiplying Equation (2) by  and using Equation (1) and noting that T
iφ

iidi φφδφ −= , where idφ  is the ith mode shape of the damaged structure, we can get 
 

id
T

iiid
T

i MδλK φφφδφ =        (3) 
 
The change in the stiffness matrix Kδ  can be expressed as the weighted sum of the 
stiffness matrices of the damaged elements. The weighting factors, which are the 
unknown in the problem, define the severity of damage in the affected elements. If 

 is the contribution of the jth element to the global stiffness matrix of the structure, 
ne is the number of elements in the n-DOFs structure and  is the proportional 
change in the stiffness of element j. consequently, 

e
jK

jδK
Kδ  can be written as 

 

          (4) ∑
=

=
en

j

e
jjKδKK
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δ

 
Substitution of equation (4) into equation (3) gives a system of simultaneous 
equations 
 

id
T

iijid
e
j

n

j

T
i MδλδKK

e

φφφφ =∑
=1

        i=1, 2, …, m    (5) 

 
Where m is the number of modes used in the identification process. The system 
presented by equation (5) can be simplified to the form 
 

δλδ =KD          (6) 
 
Where  is an mxne matrix of elements  , D id

T
iid

e
j

T
iij M/Kd φφφφ= Kδ  is the ne vector of 

unknown changes in the stiffness , and jδK δλ  is the m vector of changes in the 
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eigenvalues . In practice not all the structure modes can be measured, because 
reliable measurements can be obtained for only the lower modes. Consequently, the 
system of simultaneous equations in (5) is Indeterminate. A unique solution can be 
obtained by placing equation (5) as a constraint on an objective function through the 
solution of optimization problem. The objective function used in the present work is to 
minimize the square of the Frobenius norm of perturbations to the stiffness matrix. 
Minimization of the squared norm of change in the stiffness 

iδλ

Kδ  matrix can be 
expressed by 
 

( ) ( ) sr
e
s

n

i

n

j

n

r

n

s

e
r δKδKji,Kji,Kmin

e e

∑∑∑∑
= = = =1 1 1 1

     (7) 

 
Where  is the ijth coefficient of matrix . Equation (7) is an expanded form of 
the quadratic programming problem defined by  

( )ji,Ke
r

e
rK

 
KQKmin T δδ                   (8) 

 

Where  and ( ) ( )ji,Kji,Kq e
s

n

i

n

j

e
rrs ∑∑

= =

=
1 1

Kδ  is the vector of the unknown damage 

parameters. Considering that damage cannot result in a positive change in elemental 
stiffness matrix, an additional inequality constraint can be placed on the stiffness 
changes 
 

01 ≤≤− δK          (9) 
 
The problem defined above is a nonlinear optimization problem. In the present work, 
MATLAB codes were developed to prepare the different parameters for the non 
linear optimization problem, which is solved using the optimization toolbox in 
computer software MATLAB.  
 
 
FRF DIFFERENCES TECHNIQUE 
 
VBDI methods are categorized according to various criteria such as the level of 
damage detection provided, model-based versus non-model-based relations, and 
linear versus nonlinear approaches. Non-model-based methods determine the 
presence of damage in a structure and at most identify the location of damage. 
Another classification system divides these methods into: Modal-databased Methods, 
and FRF-databased Methods. FRF-databased Methods have several advantages 
over the Modal-databased Methods. The FRF-data will not be contaminated by 
modal extraction errors because the FRF-data are directly measured test data. 
Furthermore, the FRF-data can provide much more damage information in a desired 
frequency range than modal data because modal data are extracted mainly from a 
very limited number of FRF data around resonance [10]. Thus, motivated from the 
advantages of FRF-data, in the present study a non-model-based Damage Detection 
Index (DDI) that interprets the differences between the FRFs measured for the 
healthy structure and the FRFs of the damaged structure is used to detect the 
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damaged region. Amin et al [1] developed a modified DDI to localize damage in an 
eight-bay space frame. The DDI is given by the following expression: 
 

100
FI

FDFI
DDI n

1i
i

n

1i
ii

×
−

=

∑

∑

=

=       (10) 

 
Where FIi and FDi are the amplitude of the FRFs of the healthy and damaged 
structures respectively, n is the number of FRF points in the sweep range. This non-
model-based technique warrants simplicity and speed in data acquisition and 
elaboration since it is free from modal analysis, and is able to perform a real-time 
monitoring of in-service structures. FRFs of the healthy and damaged structures were 
analytically created for the numerical simulation purposes. The FRFs are created 
using the following equation: 
 

( ) 00 FX ωα=         (11)      
 
Where  is the response vector,  is the excitation vector and 0X 0F )(ωα  is called the 
frequency response function (FRF), and it relates the output per unit of input at each 
frequency . This equation is derived from the equation of motion governing the 
forced vibration of an undamped multi-degree of freedom system. The theoretical 
basis of this method can be found in Maia et al [11]. 

ω

 
 
Description of the Test Plate  
  
The numerical simulation has been applied to a simple free-free plate has a 
dimensions of 3x3x0.02 m. The plate is assumed to be made of steel with young's 
modulus, E = 1.999x1011 N/m2, possion’s ratio,ν  =0.3 and mass per unit volume,    

 = 7849.05 Kg/m3. Fig.1 illustrates the geometric configuration of the plate.  ρ
 
Finite Element Model 
  
The FEM of the steel plate was formulated using plate bending element, which 
carries only lateral loads in bending, each node has three DOFs and the model has a 
total of 147 DOFs. The DOFs at each node are: lateral displacement of the neutral 
plane in the direction of z-axis denoted by w; slope in the x direction denoted by 

xw/∂∂  or  and slope in the y direction denoted by xw y/w ∂∂ or . Since the 
thickness of the plate is very small compared with its other two dimensions, it can be 
categorized as thin plate. Consequently, thin plate finite element, in which Kirchhoff 
theory is applicable, was used to model the plate. The stiffness and consistent mass 
matrix of this element can be found in Yang [12]. The plate is divided into 36 
elements (6x6) with total number of nodes = 49. Each element is a four-node 
rectangular element with dimensions 0.5x0.5x0.02 m. Fig.2 shows the discretization 
of the plate and displays the elements connectivity. 

yw
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In a real modal test it is often impractical to measure the response at all of the DOFs 
included in a FEM. Consequently, there is a desire to match the size of the 
experimentally measured DOFs with the analytical ones and to bring them both to the 
same size. This can be achieved either by reducing the analytical model down to the 
order determined by the number of measured DOFs, or by expanding the 
experimental model so that it is described by the same number of DOFs as the 
complete analytical model. Several model reduction techniques have been proposed, 
however, most of these techniques affect the dynamic character contained in the 
original full analytical model. Generally, the estimated frequencies in the reduced 
model are higher than those of the original model [13]. The System Equivalent 
Reduction Expansion Process (SEREP) by the nature of its formulation retains all of 
the dynamics of the full model in the reduced state for the modes selected in the 
reduction process and by definition contains no approximation [13]. Consequently 
this technique is used in the present work. 
 
 
Damage Scenarios 
 
The developed algorithm consists mainly of two steps: (1) determining the damaged 
region via a non-model-based technique that is the FRF differences technique, (2) 
identifying the damage location and extent via a model-based technique that is the 
optimal matrix update. The algorithm is executed through several steps, which 
combine various mathematical procedures. These steps are summarized in the flow 
chart illustrated in Fig. 3 and explained in [14]. Numerical simulation tested different 
damage scenarios at single and multiple sites. To achieve this goal two damages 
severities are studied: 90% reduction in the element stiffness, which is considered as 
severe damage and 60% reduction in the element stiffness, which is considered as 
light damage. The damage cases are divided into three groups: The first group (G1) 
includes only severe damage cases, the second group (G2) includes mixed damage 
cases in which some of the elements are severely damaged and the others are lightly 
damaged , and the third group (G3) includes light damage cases. Sample of the 
numerical simulation results is presented here in. Table 1. displays this sample. 
Results of more damage scenarios can be found in [14]. 
 
In practice, the modal database is usually being corrupted by measurement, modal 
extraction or modeling errors. In order to simulate the effect of these errors, random 
errors were applied to the modal parameters and to the FRFs data of the healthy and 
damaged structures in all the damage scenarios. A vector of random errors varying 
between (0 % - 10 %) of the exact values is used for the mode shape vector and 
FRFs data. For the frequencies, a vector of random errors varying between (0 % - 2 
%) of the exact values is used. The random vectors are generated via the RAND 
generator in MATLAB. 
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RESULTS AND CONCLUSIONS 
 
Results of some of the damaged cases studied during the computer simulation are 
discussed here. Tables (2 & 3) illustrate the changes in frequencies for each of the 
damage cases. Samples of FRFs before and after damage for each damage group 
are shown in Fig.4 to Fig.6. Damage identification results for each damage case are 
shown in Fig. 7 to Fig. 14. These results are based on incomplete mode shapes that 
were defined along only 70 DOFs. For all damage cases, Figures labeled (a) show 
the damage identification results when all the 36 elements are included as design 
variables in the optimization problem. Figures labeled (b) show the DDI values due to 
excitation at (34-Z). Examining the DDIs figures for each damage case showed that 
for all the damage scenarios, the implementation of FRF difference technique has the 
influence in isolating the damaged region precisely. As a result, all the candidate 
damaged elements within the damage region were determined even when a higher 
number of elements were damaged. Figures labeled (c) show the damage 
identification results when only a limited number of elements, resulting from damaged 
region isolation, is included in the optimization problem. 
 
Figures labeled (a) demonstrate that in case of including all the 36 elements in the 
optimization process, the model-based technique identified the damage location and 
extent with acceptable accuracy in most damage cases. However in all the 
identification results, false elements were identified as damaged ones and the 
severity of damage was not exactly determined. This is dependant on the strain 
energy contribution of the damaged elements in the identification modes. As the 
strain energy contribution in the identification modes increases as the better 
identification results obtained. Figures labeled (c) demonstrate that after identifying 
the damaged region, and hence reducing the number of suspected elements 
included in the optimization problem, the number of false predicted elements is 
significantly cleared and the identification of damage severity is improved in most 
cases.  
 
The inclusion of the FRF differences technique as the first step in the proposed 
algorithm assured the identification of the damaged region. This success can be 
attributed to the advantages of the technique discussed earlier. Consequently, the 
number of suspected candidate elements is decrease to be included in the 
formulation of the second identification step. The implementation of the optimal 
matrix update method in the second step easily usually resulted in an improved and 
refined damage identification for the exact location with close values for the damage 
severity. The algorithm procedures proved to improve the performance with respect 
to the optimal matrix update and leads to better results than those obtained when all 
the elements are included in the optimization problem. In general, it is found that in 
the presence of simulated random errors, the developed two stage algorithm is 
reliable in identifying damage in plate-like structures. 
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Table 1: Damage scenarios for different groups  
  

Damage 
Group  

Damage 
Case ID  

Damaged 
Elements 

Elements 
Connectivity

Damage 
Severity % 

DS1 3 3-4-10-11 90 

DS2 22 
23 

25-26-32-33 
26-27-33-34 

90 
90 G1 

(Severe) 
DS3  

16 
21 
22  

18-19-25-26 
24-25-31-32 
25-26-32-33 

90 
90 
90 

DM1  18 
24  

20-21-27-28 
27-28-34-35 

90 
60 G2 

(Mixed) DM2 
8 
9 

10 

9-10-16-17 
10-11-17-18 
11-12-18-19 

90 
90 
60 

DL1 16 18-19-25-26 60 

DL2 15 
21 

17-18-24-25 
24-25-31-32 

60 
60 G3 

(Light) 
DL3 

15 
16 
21 

17-18-24-25 
18-19-25-26 
24-25-31-32 

60 
60 
60 

 
 
 

Table 2: Changes in frequencies caused by damage in severe and mixed cases 
 

G1 (Sever Damage) G2 (Mixed Damage) 
DS1 DS2 DS3 DM1 DM2 

uω

dω

 
(HZ) 

 δω dω %  δω d % ω δω d % δω dω %  δω ω %
7.29 7.07 3.02 6.70 8.09 6.80 6.72 6.99 4.12 6.95  4.66
10.60 10.21 3.68 9.92 6.42 9.70 8.49 10.09 4.81 10.04 5.28
13.15 12.79 2.74 11.77 10.49 10.78 18.02 12.71 3.35 11.96 9.05

  
  
  
 

Table 3 Changes in frequencies caused by damage in light cases  
 

G3 (Light Damage) 
DL1 DL2 DL3 

uω

dω

 
(HZ) 

 δω d % δω d %ω ω δω %
7.29 7.19 1.37 7.10 2.61 6.70 8.09 
10.60 10.42 1.70 10.23 3.49 10.06 5.09 
13.15 12.77 2.89 12.35 6.08 11.98 8.90 
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Fig.1  Geometric configuration of the steel plate  
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Finite element model of the steel plate 
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str. and applying 
random errors to them 

Calculate SEREP 
transformation matrix Ts 

Reduce sd 'φ    Reduce the 
elemental 

stiffness matrices 
Reduce global 
M and  su 'φ  

Mass normalization for 
reduced  su 'φ  and  sd 'φ  

Pair the corresponding undamaged and 
damaged modes using XORTH 

Identify the set of modes that will be used in 
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applying random 

errors to them

Synthesize the 
analytical FRFs 
for the damaged 

and applying 
random errors to 

them 

Select measured 
DOFs 

Select set of modes 
for SEREP 

Calculate DDIs 

Identify the 
damaged 

region 

Formulate the 
optimization problem 

Determine the damage 
location and severity 

Determine the 
affected nodes 

Identify the elements 
connected to the nodes to 
candidate for damage 

yes 

No

 Fig. 3  Flow chart of the mathematical procedures of the combined algorithm 
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Fig.4  Comparison between analytical FRFs calculated at DOF (10-wY) due to 

excitation at DOF (34-z) for damage case DS1 
 

 
Fig.5  Comparison between analytical FRFs calculated at DOF (21-wY) due to 

excitation at DOF (34-z) for damage case DM1 
 

 
Fig.6  Comparison between analytical FRFs calculated at DOF (17-wY) due to 

excitation at DOF (34-z) for damage case DL2 
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Fig. (7-a)  Damage identification results for damage case DS1 using 36 elements 

 

 
Fig. (7-b)  DDI for damage case DS1 using FRFs measured at rotational DOFs about 

x-axis due to excitation at DOF (34-z) 
 

 
Fig. (7-c)  Damage identification results for damage case DS1 based on damaged 

region identification using DDI 
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Fig. (8-a)  Damage identification results for damage case DS2 using 36 elements 

 

 
Fig. (8-b)  DDI for damage case DS2 using FRFs measured at rotational DOFs about 

x-axis due to excitation at DOF (34-z) 
 

 
Fig. (8-c)  Damage identification results for damage case DS2 based on damaged 

region identification using DDI 
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Fig. (9-a)  Damage identification results for damage case DS3 using 36 elements 

 

 
Fig. (9-b)  DDI for damage case DS3 using FRFs measured at rotational DOFs about 

x-axis due to excitation at DOF (34-z) 
 

 
Fig. (9-c)  Damage identification results for damage case DS3 based on damaged 

region identification using DDI 
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Fig. (10-a)  Damage identification results for damage case DM1 using 36 elements 

 

 
Fig. (10-b)  DDI for damage case DM1 using FRFs measured at rotational DOFs 

about x-axis due to excitation at DOF (34-z) 
 

 
Fig. (10-c)  Damage identification results for damage case DM1 based on damaged 

region identification using DDI 
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Fig. (11-a)  Damage identification results for damage case DM2 using 36 elements 

 

 
Fig. (11-b)  DDI for damage case DM2 using FRFs measured at rotational DOFs 

about x-axis due to excitation at DOF (34-z) 
 

 
Fig. (11-c)  Damage identification results for damage case DM2 based on damaged 

region identification using DDI 
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Fig. (12-a)  Damage identification results for damage case DL1 using 36 elements 

 

 
Fig. (12-b) DDI for damage case DL1 using FRFs measured at rotational DOFs about 

x-axis due to excitation at DOF (34-z) 
 

 
Fig. (12-c)  Damage identification results for damage case DL1 based on damaged 

region identification using DDI 
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Fig. (13-a)  Damage identification results for damage case DL2 using 36 elements 

 

 
Fig. (13-b)  DDI for damage case DL2 using FRFs measured at rotational DOFs 

about x-axis due to excitation at DOF (34-z) 
 

 
Fig. (13-c) Damage identification results for damage case DL2 based on damaged 

region identification using DDI 
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Fig. (14-a) Damage identification results for damage case DL3 using 36 elements 

 

 
Fig. (14-b) DDI for damage case DL3 using FRFs measured at rotational DOFs about 

x-axis due to excitation at DOF (34-z) 
 

 
Fig. (14-c) Damage identification results for damage case DL3 based on damaged 

region identification using DDI  


