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ABSTRACT

The primary goal for this work is to establish a three-axis spacecraft attitude estimator
suitable for coarse attitude estimation and control during low accuracy spacecraft
operational modes. An innovative algorithm for spacecraft attitude and angular velocity
estimation is developed based on a new Kalman filtering approach applied to
magnetometer measurements only and named as hybrid Kalman filtering. The new
approach alleviates many problems encountered with the standard extended Kalman
filter. It also estimates spacecraft attitude and attitude rate taking into account various
sources of errors related to measurement and process noise. The filter could start with
initial attitude and rate estimation errors as large as 180° and 0.03 °/s respectively and
still be able to converge to a (3-c) attitude and rate estimation errors of 0.8° and 0.0017
°/s respectively. The new approach could be expanded to deal with other vector
measurements besides the earth’s magnetic field as well.
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1. INTRODUCTION

For remote sensing purposes low-cost missions have attracted a great deal of interest.
One way to reduce mission cost is to use low-cost sensors. Also, during coarse attitude
spacecraft operational modes a need arise to estimate roughly the spacecraft attitude
based on a minimum number of continuously, and low-power operating sensors. So
magnetometers represent usually low-cost, high reliability, continuous operation, and
low-power solutions suitable for such requirements.

The problem of spacecraft attitude determination is addressed in several ways in the
literature. Traditional attitude determination algorithms such as the triad [1], the modified
triad [2], and the g-method utilize measurements of at least two non-parallel vectors.
While as Estimation algorithms could use even single vector measurements to estimate
spacecraft attitude because the usually benefit from modeling the spacecraft attitude
dynamics to reduce the minimum number of the required vectors.

Researches about the problem of spacecraft attitude and attitude rate estimation based
on magnetometer data only have been found in the literature. The algorithms developed
in this paper could deal with a range of spacecraft angular velocities comparable to
those found in [3] without incorporating any measurements other than the readings of
the magnetometer. The maximum initial attitude estimation error presented in [4] and [5]
was about 60° and 50° respectively. Our proposed algorithm could deal with initial
attitude estimation error as large as 180° and achieve a steady state estimation error
value of 0.27° (1- ).

In the following sections, a novel estimation algorithm is also presented. The proposed
algorithm, which is named as hybrid Kalman filter (HKF), alleviates the brute-force
linearization problems usually encountered with the standard extended Kalman filter and
requires a new formulation of spacecraft dynamics and measurement equations.
Despite the complexity of the problem at hand, stability of the new filter during long
periods of operation and over a wide range of sampling frequencies is considered to be
a vital advantage. Although being developed mainly to work with magnetometer
measurements, the newly developed methodology could be expanded to deal with many
other vector measurements such as the sun vector, the earth vector, the moon vector,
and even stellar vectors as well.

An important subject that is to be addressed in this research is the generality of the
extended Kalman filter which must be narrowed to deal with problem at hand. The
traditional Kalman and extended Kalman filters don’t guarantee that the estimated states
remain within their permitted or logical values. For example, correcting a priori estimate
of the state with the measurements to obtain posteriori state estimate doesn’t guarantee
that the posteriori state estimate satisfies the mathematical bounds of the states. One of
such mathematical bounds is the unity magnitude of the quaternion vector which mustn’t
be violated by the measurement update process if the quaternion vector components
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are selected as states. In another words, the formulation of the Kalman and extended
Kalman filters is a general one that doesn’t assure the unity magnitude of the estimated
quaternion.

2. MODELING THE SPACECRAFT ROTATIONAL MOTION

The kinematics of spacecraft attitude is represented by the well known relation

1
=—Qpr
Q > Q M

Where Q is the attitude quaternion vector ( Q:[q1 q, 0, q4]T) describing the

rotation from the orbit reference frame [6] to the body frame , Q.. is the 4x4 skew-

symmetric matrix whose elements are the components of the spacecraft body axes
angular velocity vector with respect to the orbit reference axes. Differentiation of Eq. (1)
with respect to time gives

1- 1

6:EQWQ+ Q,. Q

2 0

We should note that Qgr is the 4x4 skew-symmetric matrix form of wsr which is the
angular acceleration of the spacecraft body axes with respect to the orbit reference
axes. The relation between the angular velocity vectors @g,,, and is governed by

0

Wgr = O+ DS(Q @,
0 3)

With o defined as the inertial angular velocity vector of the spacecraft body axes with
respect to the inertial frame of reference expressed in the body axes, Dg(Q) is the
spacecraft attitude matrix that transforms a vector from the orbit reference frame to the
body frame, and , is the spacecraft orbital angular velocity. Differentiation of Eq. (3)

w.r.t. time gives

s O 0
wer = o+ Dr| @, |+ DE| oo
0 0 (4)

Taking into account that
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f): = —[wge x]DF
()

And
o=1"-wxl]+17T
(6)

Where [a)BR x] is the skew-symmetric cross-product equivalent matrix, T is the torque

acting on the spacecraft, | is the spacecraft inertia matrix. Now, direct substitution from
equations (5), and (6) into Eq. (4) gives

0 0

C.I)BR = 1T - wx Ico]—l[a)BR x|DE| @, |+ DE c.oo
2 (7)

0 0

Thus, wsr could be now used to compute directly Qsr Iin Eq. (2). Eg. (2) now is
already setup for the newly developed HKF algorithm. Analyzing Eq. (2) carefully we
could easily see that it has a set of advantages. First, it has included the body acting
torque; T . Existence of this term in the equation enabled the modeling process of any
disturbing torque without changing the structure of the filter this is because all what we
care about are the values of the torque,T. The second advantage of Eq. (2) is the
existence of a great deal of matching between the filter and the true dynamics due to the
absence of any forcing function.

3- MODELING THE MEASUREMENT PROCESS

In this paper, the magnetometer is assumed to be the only available attitude sensor. The
components of the earth’s magnetic field vector in the orbital reference coordinate
system, by, is related ideally to the vector of magnetometer measurements, b;, by the

relation

bB Q)= DsbR
(8)

Eq. (8) could be derived for the quaternion vector describing the rotation from the
estimated plant to the real one [7]. This methodology has necessitated the change of
some system states. In our case, system states had been selected (as shown in
subsequent sections) and so it is required to develop a suitable measurement equation.
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A

The derivation starts by linearizing Eq. (8) about the estimated quaternion, Q.
Consequently, application of first order Taylor series expansion results in

b (Q) .
b (Q) = b, (3 + AQ) = b, (O) + Q-9
Q s (9)
Rearranging
b (Q) 2 b (Q)|
bs (Q) —by =
(Q)-bs(Q) + 0 ‘Q 0 ‘é 0)

With the definition of 0, , as a 4x4 zero matrix, the measurement equation becomes

dbg (Q)
aQ

(-:) _ abB Q)

2=D5(Q)-bg (Q)+ e Q

6 (11)

which is valid for any values of the estimated attitude quaternion vector. The partial
derivative db, /0Qis a matrix with linear algebraic elements. These elements are

continuous (non-singular) algebraic functions of the quaternion vector components. This
implies the existence of the matrix elements for any values of the quaternion vector
components even if the estimated quaternion is very far away from the real one. We
should also note that Eq. (11) isn’t restricted to small Euler angles. The latter two points
have extended the ability of the HKF to deal with large initial attitude estimation errors.
Inclusion of the constant bias error, b, transforms Eq. (11) to

db (Q)

» =bs (Q)—by(Q) + 0

Qb—

Q @ (12).

The measurement process of the magnetic field vector is subject to a wide variety of
errors. The first kind of errors is associated with the modeling process of the earth’s
magnetic field. The earth’s magnetic field is subject to secular, temporal, diurnal
variations. These variations aren’t predicted by the international geomagnetic reference
field (IGRF) model. In addition, magnetic storms could affect greatly the measured
values of the earth’s magnetic field occasionally. As a consequence, the earth’s
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magnetic field could be modeled by the IGRF model with a prescribed accuracy of about
50 nT [8]. The second kind of errors is related directly to the measurement process of
the earth’s magnetic field in the spacecraft body axes. The measured magnetic field is a
function of a set of variables. These variables are:

1- Magnetometer bias.

2- Linear scale factor error matrix (S,).

3- Axes mounting error matrix (N, ).
So as to include all these effects, the actual readings of the magnetometer, b,, are
represented by the relation

b, =b; +b+S_b, + N b,

(13)
4- HKF ALGORITHM
A. State Vector Selection
The system states are selected to be
. T
RG]
(14)

Although the selected states aren’t conventionally used in the literature, they have the
following benefits:

1- The maximum absolute value of a quaternion vector component is equal to 1. This
consecutively limits the maximum possible attitude quaternion errorto +1 .

2- The quaternion vector magnitude is always equal to 1. Consequently, a normalization
process could be done if this condition is violated due to computational errors.

3- Limiting the quaternion vector components to 1 and the quaternion vector

magnitude to 1 sets an upper limit value of the quaternion vector time derivative, Q,

Q

and its magnitude,

Q Q

As a result of these benefits, the HKF input and output states are bounded to an upper
bound.

4- Limiting the values of Q, and restricts in turn the values of Q, and
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B. State-Space Formulation

The state space form of the nonlinear spacecraft model could now be written as

Q 0'5QBR 04><4 O4><3 Q

X =[Q|=|05Qm 05Q, 0,,]0Q[=[FCX)]X =f(X)
. 15
b 03><4 03><4 03><3 b ( )
And the measurement matrix is
b
Z, = M 03><4 |3><3 X=HX
aQ s (16)

Equations (15), and (16) are considered to be the ideal relations of the plant and the
measurement processes. In order to simulate the real world, uncertainties in the real
plant (such as inertia matrix uncertainties) and measurement processes must be added.

C. HKF Structure

The HKF idea stems directly from the Kalman filter, pseudo-linear Kalman filter and the
extended Kalman filter concepts. It borrows the idea of linear measurements with
respect to the actual states (not the perturbed states) from the Kalman filter. The second
borrowed idea is coming from the pseudo-linear Kalman filter by disregarding the
nonlinear state dynamics and treating it as a time varying system [9]. The final borrowed
concept is the measurement process linearization encountered by the extended Kalman
filter. The basic five equation of the Kalman filter are

X =f(X), .
X=Xiia (17)

P = Ak—1(xA )P Allr—l(x’\ 1) Qi
(18)

Kk:Pk‘H;(XAk_lHk(XAk_)Pk_H;(XAk_)_'_Rk]_l (19)
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(20)

P ==K H (R P [ =K H (R ]+ KR (21)

where )Zk‘ is a priori state estimate at a time stepk, A, is the state transition matrix, )Zgis
a posteriori state estimate at a time step k, P_ is the time propagated estimation error
covariance matrix at a time step k, Q, is the process noise covariance, R, is the
measurement noise covariance, z,, is the measurement vector, Z, is the estimated
value of the measurements based on the estimated states (i.e., 7, = Z|Q=@ ). and B is

a posteriori estimation error covariance at a time step k. The state transition matrix
according to [10] is calculated from

AX) =1 +(F (R AT} .

With AT defined as the sampling time interval and

Fk—l(x’\l:—l) = f(QBR ) QBR)

X=X/, (23)

The difference between the traditional extended Kalman filter and the HKF could be
clearly explained with the help of equations (22) and (23). In the traditional extended
Kalman filter, Eq. (22) is usually linearized with respect to time and states. Thus,
Fk_l(ﬁk*_l) = af(QBR,éBRj/ax . While as in the HKF (Which resembles the pseudo-
X=Xy

linear extended Kalman filter in its state transition matrix) Eq. (22) is linearized with
respect to time only. Consequently, F _,(X, ,) is computed from Eq. (23).

D. Singularity Inhibitors

In order to use the spacecraft rotational motion derived model, a set of conditions should
be satisfied. Some of these conditions are usually associated with the use of any
quaternion vector to describe the spacecraft rotational motion and they are namely:

1- |Q| =1 . This condition is usually expressed as a quaternion normalization process.
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Q
quaternion component is 1. So the maximum difference between two successive

Q

2- <2/AT . This condition stems from the fact that the maximum value of any

quaternion vectors is expected to be 2. Accordingly, the maximum value of IS

restricted to 2/AT .
- & Q
These conditions could also be used to determine a guess of the maximum expected

initial filter covariance matrix. The remaining set of conditions is coming from the Kalman
filter formulation. This set is consisting from the following conditions

1- det(P, ) > 0. Where, det, stands for the matrix determinate operation.
2- det(P,")>0 .

<(2/AT ). This condition is a consequence of limiting the values of

E. Tuning Filter Parameters

The development and behavior of any extended Kalman filter depends mainly on the
knowledge of the covariance matrices, P, ,Q,, and R, with a great deal of fidelity. Poor
knowledge of these matrices could result in suboptimal performance, poor performance,
divergence, or even singularity in the filter output. The off-diagonal terms in the
covariance matrices represent the cross-correlation between the corresponding
variables. For system with large numbers of states, the diagonal elements of the
covariance matrices are usually selected by the designer based on his knowledge of the
process and measurement noise [11]. Concatenation of this result with the first set of

singularity inhibitors makes it reasonable to select P,” according to the relation

P =aP,
(24)

with o , is a constant tuning parameter to be determined, and P, is selected based on
the first three conditions in the singularity inhabitance process. For example, to
determine the value of P, elements corresponding to the quaternion vector estimation

error we could think of the estimated quaternion as a random number whose (3-o0)
maximum value is equal to 1. So it is reasonable to select the standard deviation of any
estimated quaternion error to be 0.3. This choice in turn limits the maximum values of

the diagonal elements of the filter covariance matrix, P,". And so on with the remaining
components of P, . Another important factor, that isn’'t usually treated in the literature, is
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the selection of the constant value, «. In our case, this process is of a crucial
importance. To obtain this value we've defined a loss function to be minimized, J, ,
according to

3. :waB —BBH+7/HX - X

(25)

where W, and y are weighting coefficients. We should select the initial guess, « , that
minimizes the loss function, J, . If the HKF is designed to select online the value of «,

then there is no means to measure the value of HX - )2” Consequently, it is logical to let

y =0. On the other hand, consistency with Kalman filter problem formulation forces us
tolet =1, and W =0. This choice in turn means that the tuning process must be done

off-line (either pre-flight or post-flight) and the true state vector value, X, is computed
from simulation. Eq. (25) could also be used to select the best sampling time in addition
to the constant, & by using a simple numerical two dimensional search algorithm. We
should also notice that any value of y other than zero results in suboptimal or degraded

performance of the filter due to the nonlinearity of the estimation and the measurement

process. This means that there exists a set of solutions (of «, Q, and Q values) that
could minimize the loss function without being related to the true set of solution.

F. Disturbance Modeling

Ref. 1 represents the main source of computing various disturbances acting on the
spacecraft which are namely: gravity gradient moment, magnetic disturbance moment,
aerodynamic disturbance moment, and solar radiation moment.

In order to complete the derivation, a sun orbit simulator must be developed. In this
simulator the sun is considered as if it were a satellite orbiting the earth with classical
orbital elements : e (eccentricity) = 0.01675 ~ 0 , a (semi major axis) = 1.4949 108 Km.,
i(inclination) = 23.439° 0s (true anomaly) = 0° in the first day of spring, and Q (right
ascension of ascending node) = 0°. Additionally, the gravitational constant used in the
simulation is considered to be the sun gravitational constant.

G. Simulation Parameters, Results, and Testing

A simulated spacecraft of low earth orbit is used to provide true reference data. The
spacecraft orbit is assumed to be circular with an altitude of 800 Km and an inclination
of 98.6°. The earth’s magnetic field model used was up to twelfth degree. Model
coefficients are valid in the time span 2005-2010 as given in [12]. Model errors are
assumed to have a standard deviation of 50nT. Magnetometer white noise is assumed
to have a standard deviation of 3 mG (300 nT). Magnetometer bias error has a value of
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3 mG. The gravity gradient stabilized spacecraft has moments of inertia Iy = 80, I, = 82
and I, = 4 kg-m? with zero products of inertia.

The HKF proposed in our research has proved a superior performance. It could operate
successfully over a wide range of sampling time intervals (actually it'd converge for
sampling intervals ranging from 1 to 70 seconds) and for very long periods of operation
as long as 25 orbits. Fig. 1 displays the average estimation error time history of the
pitch, roll, and yaw angles over 20 realizations with different noise seeds. The time
history shows that the filter is able to converge to the true solution despite the initial
large estimation error which reaches a maximum value of 180° initially. The estimation
steady state error was about 0.6° (3—o ) for the yaw angle, 0.8° (3—¢) for the roll
angle, and 0.7° (3- o) for the pitch angle. Although being initially as high as 0.03 /s, the
initial angular velocity estimation error decreases to a steady state error of about 0.0017
°/s (3—0) as clarified by Fig. 2. Finally, as plotted in Fig. 3, the average total disturbing
moment estimation error decreases as the filter converges to the true spacecraft
attitude.

H. Observability Analysis

Observability analysis of the proposed system is borrowed directly from the linear
control theory concepts. An advantage of this analysis is that system observability could
be easily checked at each time step without substantial increase of the observability
matrix size as given in [7]. Based on the earlier analysis we could put the system
dynamics (excluding the bias states and dynamics) in several state space forms.

We could separate the equation of Q from the system defined by Eq. (15) and use the

idea of reduced order estimator. Thus, the reduced order system is now defined by Eq.
(1) with the measurement matrix

dbg (Q)
zp(k)=——=— Q(k)

The linear observability matrix could be defined at each time step as

o, (Q)/2Q
o, (Q)/2Q) , [sr (k-1)/2]
obg (Q)/2Q), , [cxsn (k- 1)/2]
obs (Q)/0Q), . [0aer(k ~1)/2]

O, (k) = (27)

Q(k)
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Testing the rank of the observability matrix, O,, has revealed that it has an initial rank of

3 that increases up to 4 (i.e., full rank) after two time steps as shown clearly in the first
illustration of Fig. 4. The initial observability rank (which is 3) means that we are able to
estimate only three components of the quaternion vector while indicating a trivial
problem in the estimation of the remaining component. This trivial problem is totally
alleviated because the remaining quaternion component could be computed from the
quaternion normalization condition. If we used the system of equations defined by
equations (1) and (2) along with the measurement matrix given by

L _| M@
n 8Q

OMIX
6 (28)

The observability matrix, O,, rank is found to be the same as the latter rank. Taking

into account that the reduced order estimator has proved the quaternion vector
observability, we could easily deduce that the observable states of the system given by
equations (1), and (2) are the quaternion vector components. Inclusion of the bias states
and the bias dynamics into the system results in a full order estimation process with an
initial observability matrix, O, , rank of 3 that increases up to 7 after two time steps as

shown clearly in the third illustration of Fig. 4. Consequently, a considerable increase of
the system observability that is reflected into smaller estimation error standard deviation
IS achieved.

5- CONCLUSION

The HKF has proved to be computationally effective for coarse attitude determination
tasks. Complicated models of various disturbing torques could be used with the same
filter structure. Filter stability over a wide range of sampling time intervals is a surplus
advantage that could be used to minimize the total number of calculations required to
estimate the spacecraft attitude along its orbit by increasing the sampling time.

Although filter measurement equation is derived mainly for earth’s magnetic field
measurements, it could be expanded easily to deal with many vector measurements
such as sun or moon vector measurements. Using the quaternion vector and its time
derivatives in the filter simplifies the selection process of optimal filter parameters in
addition to inhibiting the filter from going into singularities. Large values of measurement
errors didn’t hold down the filter convergence. Steady state attitude and angular rate
estimation errors of 0.8°, and 0.0017 °/s (3 - o) respectively are also achievable. Finally,
filter application to magnetometer measurements represents a feasible, low-cost, high
reliability solution to the problem of coarse attitude determination.
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Fig. 1 Average pitch, roll, and yaw angles estimation error.

Fig. 2 Average inertial angular velocity Estimation error.
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Fig. 3 Average total disturbance moment estimation error.
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