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ABSTRACT 
The primary goal for this work is to establish a three-axis spacecraft attitude estimator 
suitable for coarse attitude estimation and control during low accuracy spacecraft 
operational modes. An innovative algorithm for spacecraft attitude and angular velocity 
estimation is developed based on a new Kalman filtering approach applied to 
magnetometer measurements only and named as hybrid Kalman filtering. The new 
approach alleviates many problems encountered with the standard extended Kalman 
filter. It also estimates spacecraft attitude and attitude rate taking into account various 
sources of errors related to measurement and process noise. The filter could start with 
initial attitude and rate estimation errors as large as 180o and 0.03 o/s respectively and 
still be able to converge to a (3-σ) attitude and rate estimation errors of 0.8o and 0.0017 
o/s respectively. The new approach could be expanded to deal with other vector 
measurements besides the earth’s magnetic field as well. 
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1. INTRODUCTION 

For remote sensing purposes low-cost missions have attracted a great deal of interest. 
One way to reduce mission cost is to use low-cost sensors. Also, during coarse attitude 
spacecraft operational modes a need arise to estimate roughly the spacecraft attitude 
based on a minimum number of continuously, and low-power operating sensors. So 
magnetometers represent usually low-cost, high reliability, continuous operation, and 
low-power solutions suitable for such requirements. 

The problem of spacecraft attitude determination is addressed in several ways in the 
literature. Traditional attitude determination algorithms such as the triad [1], the modified 
triad [2], and the q-method utilize measurements of at least two non-parallel vectors. 
While as Estimation algorithms could use even single vector measurements to estimate 
spacecraft attitude because the usually benefit from modeling the spacecraft attitude 
dynamics to reduce the minimum number of the required vectors. 

Researches about the problem of spacecraft attitude and attitude rate estimation based 
on magnetometer data only have been found in the literature. The algorithms developed 
in this paper could deal with a range of spacecraft angular velocities comparable to 
those found in [3] without incorporating any measurements other than the readings of 
the magnetometer. The maximum initial attitude estimation error presented in [4] and [5] 
was about 60o and 50o respectively. Our proposed algorithm could deal with initial 
attitude estimation error as large as 180o and achieve a steady state estimation error 
value of 0.27o ( σ−1 ). 

In the following sections, a novel estimation algorithm is also presented. The proposed 
algorithm, which is named as hybrid Kalman filter (HKF), alleviates the brute-force 
linearization problems usually encountered with the standard extended Kalman filter and 
requires a new formulation of spacecraft dynamics and measurement equations. 
Despite the complexity of the problem at hand, stability of the new filter during long 
periods of operation and over a wide range of sampling frequencies is considered to be 
a vital advantage. Although being developed mainly to work with magnetometer 
measurements, the newly developed methodology could be expanded to deal with many 
other vector measurements such as the sun vector, the earth vector, the moon vector, 
and even stellar vectors as well.  

An important subject that is to be addressed in this research is the generality of the 
extended Kalman filter which must be narrowed to deal with problem at hand. The 
traditional Kalman and extended Kalman filters don’t guarantee that the estimated states 
remain within their permitted or logical values. For example, correcting a priori estimate 
of the state with the measurements to obtain posteriori state estimate doesn’t guarantee 
that the posteriori state estimate satisfies the mathematical bounds of the states. One of 
such mathematical bounds is the unity magnitude of the quaternion vector which mustn’t 
be violated by the measurement update process if the quaternion vector components 
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are selected as states. In another words, the formulation of the Kalman and extended 
Kalman filters is a general one that doesn’t assure the unity magnitude of the estimated 
quaternion. 

2. MODELING THE SPACECRAFT ROTATIONAL MOTION 

The kinematics of spacecraft attitude is represented by the well known relation 
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Where  Q  is the  attitude quaternion vector ( [ ]TqqqqQ 4321= ) describing the 
rotation from the orbit reference frame [6]  to the body frame ,  BRΩ  is the   skew-
symmetric matrix whose elements are the components of the spacecraft body axes 
angular velocity  vector with respect to the orbit reference axes. Differentiation of Eq. (1) 
with respect to time gives 
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We should note that   is the  BR
•

Ω 44×  skew-symmetric matrix form of   which is the 
angular acceleration of the spacecraft body axes with respect to the orbit reference 
axes. The relation between the angular velocity vectors   
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With ω   defined as the inertial angular velocity vector of the spacecraft body axes with 
respect to the inertial frame of reference expressed in the body axes,   is the 
spacecraft attitude matrix that transforms a vector from the orbit reference frame to the 
body frame, and 
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0ω  is the spacecraft orbital angular velocity. Differentiation of Eq. (3) 
w.r.t. time gives 
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Where  [ ×BRω  is the skew-symmetric cross-product equivalent matrix, T is the torque 
acting on the spacecraft, I  is the spacecraft inertia matrix. Now, direct substitution from 
equations (5), and (6) into Eq. (4) gives 
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Thus,    could be now used to compute directly    in Eq. (2). Eq. (2) now is 
already setup for the newly developed HKF algorithm.  Analyzing Eq. (2) carefully we 
could easily see that it has a set of advantages. First, it has included the body acting 
torque;

BR

•

ω BR
•

Ω

T . Existence of this term in the equation enabled the modeling process of any 
disturbing torque without changing the structure of the filter this is because all what we 
care about are the values of the torque,T . The second advantage of Eq. (2) is the 
existence of a great deal of matching between the filter and the true dynamics due to the 
absence of any forcing function.  
 

3- MODELING THE MEASUREMENT PROCESS 

In this paper, the magnetometer is assumed to be the only available attitude sensor. The 
components of the earth’s magnetic field vector in the orbital reference coordinate 
system, , is related ideally to the vector of magnetometer measurements,   , by the 
relation 

Rb Bb
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Eq. (8) could be derived for the quaternion vector describing the rotation from the 
estimated plant to the real one [7]. This methodology has necessitated the change of 
some system states. In our case, system states had been selected (as shown in 
subsequent sections) and so it is required to develop a suitable measurement equation. 
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The derivation starts by linearizing Eq. (8) about the estimated quaternion, . 
Consequently, application of first order Taylor series expansion results in 

Q̂
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Rearranging 
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With the definition of   as a 440 × 44× zero matrix, the measurement equation becomes 
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which is valid for any values of the estimated attitude quaternion vector. The partial 
derivative QbB ∂∂ is a matrix with linear algebraic elements. These elements are 
continuous (non-singular) algebraic functions of the quaternion vector components. This 
implies the existence of the matrix elements for any values of the quaternion vector 
components even if the estimated quaternion is very far away from the real one. We 
should also note that Eq. (11) isn’t restricted to small Euler angles. The latter two points 
have extended the ability of the HKF to deal with large initial attitude estimation errors. 
Inclusion of the constant bias error, b , transforms Eq. (11) to 
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The measurement process of the magnetic field vector is subject to a wide variety of 
errors. The first kind of errors is associated with the modeling process of the earth’s 
magnetic field. The earth’s magnetic field is subject to secular, temporal, diurnal 
variations. These variations aren’t predicted by the international geomagnetic reference 
field (IGRF) model. In addition, magnetic storms could affect greatly the measured 
values of the earth’s magnetic field occasionally. As a consequence, the earth’s 
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magnetic field could be modeled by the IGRF model with a prescribed accuracy of about 
50 nT [8]. The second kind of errors is related directly to the measurement process of 
the earth’s magnetic field in the spacecraft body axes. The measured magnetic field is a 
function of a set of variables. These variables are: 

1- Magnetometer bias. 
2- Linear scale factor error matrix ( ). cS
3- Axes mounting error matrix (  ). mN

So as to include all these effects, the actual readings of the magnetometer,  , are 
represented by the relation 

ab
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4- HKF ALGORITHM 

A. State Vector Selection 

 
 The system states are selected to be 
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Although the selected states aren’t conventionally used in the literature, they have the 
following benefits: 
1- The maximum absolute value of a quaternion vector component is equal to 1. This 
consecutively limits the maximum possible attitude quaternion error to   . 1±
2- The quaternion vector magnitude is always equal to 1. Consequently, a normalization 
process could be done if this condition is violated due to computational errors. 
3- Limiting the quaternion vector components to 1±  and the quaternion vector 

magnitude to 1 sets an upper limit value of the quaternion vector time derivative,  , 

and its magnitude, 
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4- Limiting the values of , and  
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Q
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••

Q
••

Q . 

As a result of these benefits, the HKF input and output states are bounded to an upper 
bound. 
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B. State-Space Formulation 

The state space form of the nonlinear spacecraft model could now be written as 
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And the measurement matrix is 
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Equations (15), and (16) are considered to be the ideal relations of the plant and the 
measurement processes. In order to simulate the real world, uncertainties in the real 
plant (such as inertia matrix uncertainties) and measurement processes must be added. 

 
 

C. HKF Structure 

The HKF idea stems directly from the Kalman filter, pseudo-linear Kalman filter and the 
extended Kalman filter concepts. It borrows the idea of linear measurements with 
respect to the actual states (not the perturbed states) from the Kalman filter. The second 
borrowed idea is coming from the pseudo-linear Kalman filter by disregarding the 
nonlinear state dynamics and treating it as a time varying system [9]. The final borrowed 
concept is the measurement process linearization encountered by the extended Kalman 
filter. The basic five equation of the Kalman filter are  
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where is a priori state estimate at a time step k , is the state transition matrix, is 
a posteriori state estimate at a time step ,  is the time propagated estimation error 
covariance matrix at a time step   ,   is the process noise covariance,   is the 
measurement noise covariance, ,  is the measurement vector,   is the estimated 
value of the measurements based on the estimated states (i.e.,   = 
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kẑ
QQ

z ˆ=
 ) , and  is 

a posteriori estimation error covariance at a time step k. The state transition matrix 
according to [10] is calculated from 
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With   TΔ defined as the sampling time interval and 
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The difference between the traditional extended Kalman filter and the HKF could be 
clearly explained with the help of equations (22) and (23). In the traditional extended 
Kalman filter, Eq. (22) is usually linearized with respect to time and states. Thus, 
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linear extended Kalman filter in its state transition matrix) Eq. (22) is linearized with 
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D. Singularity Inhibitors 

In order to use the spacecraft rotational motion derived model, a set of conditions should 
be satisfied. Some of these conditions are usually associated with the use of any 
quaternion vector to describe the spacecraft rotational motion and they are namely: 

1- 1=Q  . This condition is usually expressed as a quaternion normalization process. 
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2-  TQ Δ≤
•

2 . This condition stems from the fact that the maximum value of any 

quaternion component is 1. So the maximum difference between two successive 

quaternion vectors is expected to be 2. Accordingly, the maximum value of    
•

Q is 

restricted to  TΔ2 .  

3-  ( 22 TQ Δ≤
••

) . This condition is a consequence of limiting the values of  
•

Q  .  

These conditions could also be used to determine a guess of the maximum expected 
initial filter covariance matrix. The remaining set of conditions is coming from the Kalman 
filter formulation. This set is consisting from the following conditions   

1-  . Where, det, stands for the matrix determinate operation. 0)det( >−
kP

2-   . 0)det( >+
kP

 
 

E. Tuning Filter Parameters 

The development and behavior of any extended Kalman filter depends mainly on the 
knowledge of the covariance matrices, , , and with a great deal of fidelity. Poor 
knowledge of these matrices could result in suboptimal performance, poor performance, 
divergence, or even singularity in the filter output. The off-diagonal terms in the 
covariance matrices represent the cross-correlation between the corresponding 
variables. For system with large numbers of states, the diagonal elements of the 
covariance matrices are usually selected by the designer based on his knowledge of the 
process and measurement noise [11]. Concatenation of this result with the first set of 
singularity inhibitors makes it reasonable to select   according to the relation 
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with α  , is a constant tuning parameter to be determined, and is selected based on 
the first three conditions in the singularity inhabitance process. For example, to 
determine the value of  elements corresponding to the quaternion vector estimation 
error we could think of the estimated quaternion as a random number whose (

−
0P

−
0P

σ−3 ) 
maximum value is equal to 1. So it is reasonable to select the standard deviation of any 
estimated quaternion error to be 0.3. This choice in turn limits the maximum values of 
the diagonal elements of the filter covariance matrix,  . And so on with the remaining 
components of .  Another important factor, that isn’t usually treated in the literature, is 
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the selection of the constant value,  α . In our case, this process is of a crucial 
importance. To obtain this value we’ve defined a loss function to be minimized,  , 
according to 

LJ

     
XXbbWJ BBL
ˆˆ −+−= γ

  (25) 

where , and  W γ  are weighting coefficients. We should select the initial guess, α  , that 
minimizes the loss function,  . If the HKF is designed to select online the value of LJ α , 

then there is no means to measure the value of  XX ˆ− . Consequently, it is logical to let 

0=γ . On the other hand, consistency with Kalman filter problem formulation forces us 
to let 1=γ , and . This choice in turn means that the tuning process must be done 
off-line (either pre-flight or post-flight) and the true state vector value, 

0=W
X , is computed 

from simulation. Eq. (25) could also be used to select the best sampling time in addition 
to the constant, α   by using a simple numerical two dimensional search algorithm. We 
should also notice that any value of γ other than zero results in suboptimal or degraded 
performance of the filter due to the nonlinearity of the estimation and the measurement 

process. This means that there exists a set of solutions (of  α , , and   values) that 
could minimize the loss function without being related to the true set of solution. 

Q
•

Q

 

F. Disturbance Modeling 

Ref. 1 represents the main source of computing various disturbances acting on the 
spacecraft which are namely: gravity gradient moment, magnetic disturbance moment, 
aerodynamic disturbance moment, and solar radiation moment. 

In order to complete the derivation, a sun orbit simulator must be developed. In this 
simulator the sun is considered as if it were a satellite orbiting the earth with classical 
orbital elements  : e (eccentricity) = 0.01675 0≈  , a (semi major axis) = 1.4949 108 Km., 
i(inclination) = 23.439o, θS (true anomaly) = 0o in the first day of spring, and Ω (right 
ascension of ascending node) = 0o. Additionally, the gravitational constant used in the 
simulation is considered to be the sun gravitational constant. 

 

G. Simulation Parameters, Results, and Testing 
  

A simulated spacecraft of low earth orbit is used to provide true reference data. The 
spacecraft orbit is assumed to be circular with an altitude of  800 Km and an inclination 
of 98.6o.  The earth’s magnetic field model used was up to twelfth degree. Model 
coefficients are valid in the time span 2005-2010 as given in [12]. Model errors are 
assumed to have a standard deviation of 50nT. Magnetometer white noise is assumed 
to have a standard deviation of 3 mG (300 nT). Magnetometer bias error has a value of 
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3 mG. The gravity gradient stabilized spacecraft has moments of inertia Ix = 80, Iy = 82 
and Iz = 4 kg-m2 with zero products of inertia. 

The HKF proposed in our research has proved a superior performance. It could operate 
successfully over a wide range of sampling time intervals (actually it’d converge for 
sampling intervals ranging from 1 to 70 seconds) and for very long periods of operation 
as long as 25 orbits. Fig. 1 displays the average estimation error time history of the 
pitch, roll, and yaw angles over 20 realizations with different noise seeds. The time 
history shows that the filter is able to converge to the true solution despite the initial 
large estimation error which reaches a maximum value of 180o initially. The estimation 
steady state error was about 0.6o ( σ−3  ) for the yaw angle, 0.8o ( σ−3 ) for the roll 
angle, and 0.7o ( σ−3 ) for the pitch angle. Although being initially as high as 0.03 o/s, the 
initial angular velocity estimation error decreases to a steady state error of about 0.0017 
o/s ( σ−3 ) as clarified by Fig. 2. Finally, as plotted in Fig. 3, the average total disturbing 
moment estimation error decreases as the filter converges to the true spacecraft 
attitude. 

H. Observability Analysis  
 

Observability analysis of the proposed system is borrowed directly from the linear 
control theory concepts. An advantage of this analysis is that system observability could 
be easily checked at each time step without substantial increase of the observability 
matrix size as given in [7]. Based on the earlier analysis we could put the system 
dynamics (excluding the bias states and dynamics) in several state space forms. 

We could separate the equation of  from the system defined by Eq. (15) and use the 
idea of reduced order estimator. Thus, the reduced order system is now defined by Eq. 
(1) with the measurement matrix   
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The linear observability matrix could be defined at each time step as 
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Testing the rank of the observability matrix,  , has revealed that it has an initial rank of  
3 that increases up to 4 (i.e., full rank) after two time steps as shown clearly in the first 
illustration of Fig. 4. The initial observability rank (which is 3) means that we are able to 
estimate only three components of the quaternion vector while indicating a trivial 
problem in the estimation of the remaining component. This trivial problem is totally 
alleviated because the remaining quaternion component could be computed from the 
quaternion normalization condition. If we used the system of equations defined by 
equations (1) and (2) along with the measurement matrix given by 

1O
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The observability matrix,  ,  rank is found to be the same as the latter rank. Taking 
into account that the reduced order estimator has proved the quaternion vector 
observability, we could easily deduce that the observable states of the system given by 
equations (1), and (2) are the quaternion vector components. Inclusion of the bias states 
and the bias dynamics into the system results in a full order estimation process with an 
initial observability matrix,  , rank of 3 that increases up to 7 after two time steps as 
shown clearly in the third illustration of Fig. 4.  Consequently, a considerable increase of 
the system observability that is reflected into smaller estimation error standard deviation 
is achieved. 

2O

3O

 

5- CONCLUSION 

The HKF has proved to be computationally effective for coarse attitude determination 
tasks. Complicated models of various disturbing torques could be used with the same 
filter structure. Filter stability over a wide range of sampling time intervals is a surplus 
advantage that could be used to minimize the total number of calculations required to 
estimate the spacecraft attitude along its orbit by increasing the sampling time. 

Although filter measurement equation is derived mainly for earth’s magnetic field 
measurements, it could be expanded easily to deal with many vector measurements 
such as sun or moon vector measurements. Using the quaternion vector and its time 
derivatives in the filter simplifies the selection process of optimal filter parameters in 
addition to inhibiting the filter from going into singularities. Large values of measurement 
errors didn’t hold down the filter convergence. Steady state attitude and angular rate 
estimation errors of 0.8o, and 0.0017 o/s ( σ−3 ) respectively are also achievable. Finally, 
filter application to magnetometer measurements represents a feasible, low-cost, high 
reliability solution to the problem of coarse attitude determination. 
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Fig. 1 Average pitch, roll, and yaw angles estimation error. 
 
 

 

 

Fig. 2 Average inertial angular velocity Estimation error. 
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Fig. 3 Average total disturbance moment estimation error. 
 

 

 
 

Fig. 4 Rank time history of the observability matrix. 
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