
 Paper: ASAT-14-258-CE 

14
th

 International Conference on 

AEROSPACE SCIENCES & AVIATION TECHNOLOGY, 

ASAT - 14 – May 24 - 26, 2011,  Email:  asat@mtc.edu.eg 

Military Technical College, Kobry Elkobbah, Cairo, Egypt 

Tel: +(202) 24025292 –24036138,   Fax: +(202) 22621908  

 

 

1 

Application Migration from Ultrix to Linux Operating System 
 

M. Sobhy
*
, A.M. Salem

†
, K. Abdel-Salam

*
 

 

Abstract: During the recent twenty years there has been substantial investments aimed to 

migrate legacy application hosted on legacy operating systems to modern applications to be 

host on modern operating systems, This process can be expensive, both in terms of actual cost 

and the risk, the migration will lead to changing core applications and can significantly 

change the way the entire organization operates. Legacy systems are successful and therefore 

mature, and likely have been in existence for a long period of time. A consequence is that 

legacy software is built using technologies available at the time it was constructed, as opposed 

to the most modern software technologies. Older technologies are more difficult to maintain, 

and this is a key point of pain for many legacy system owners. The aim of this paper is to get 

a generic methodology for migrating application hosted on legacy UNIX (Ultrix) or its 

derivative to be hosted on modern Linux operating system. We have already got a legacy 

application hosted on Ultrix operating system as a case study and we will perform a 

successful migration to be host on Linux operating system through our proposed migration 

methodology. 

Simply the idea of our proposed method lies in getting the architectural and functional 

differences between Ultrix and Linux in order to get the best method for migration. The 

assumption is that RedHat and other Linux variants, being similar to Ultrix isn’t strictly true. 

After we had understood the functional differences between Ultrix and Linux, we had mapped 

system calls to a correct corresponding system calls in new modern platform in order to 

maintain the same behavior of application and overcoming the problem of endian. Moreover, 

there are differences in compiler options, building options, the synchronization methods used 

and signals. Furthermore, we got a methodology to migrate legacy Fortran code and Ingres 

database to modern ones. 

This paper organize into five sections, section one, introduction and overview on the Ultrix 

and Linux history, section two, challenges facing legacy application and why most 

organizations nowadays concerning with migration, section three, our proposed migration 

methodology and how overcoming the issues mentioned above in abstract, section four, 

summary and conclusion, and section five, references. 

 

 

1. Introduction 
For computer science at Bell Laboratories, the period 1968-1969 was somewhat unsettled. 

The main reason for this was the slow, though clearly inevitable, withdrawal of the Labs from 

the Multics project. To the Labs computing community as a whole, the problem was the 

increasing obviousness of the failure of Multics to deliver promptly any sort of usable system, 

let alone the panacea envisioned earlier. For much of this time, the Murray Hill Computer 

Center was also running a costly GE 645 machine that inadequately simulated the GE 635. 

Another shake-up that occurred during this period was the organizational separation of  

                                                 
*
 Egyptian Armed Forces, Egypt. 

†
 Ain Shams University, Cairo, Egypt. 



 Paper: ASAT-14-258-CE 

 

 

2 

computing services and computing research [1]. In 1969, Bell Laboratories developed UNIX 

as a "timesharing" system, a term used to describe a multitasking operating system that 

supports multiple users at each terminal. Although the first implementation was written in 

assembly language, the designers always intended to write UNIX in a higher-level language. 

Therefore, Bell Labs invented the C language so that they could rewrite UNIX. UNIX has 

evolved into a popular operating system that runs on computers ranging in size from personal 

computers to mainframes [2].  Figure 1 depicts the evolution of UNIX from a single code 

base into the wide variety of UNIX systems available today. In fact, this is only a summary—

there are more than 50 flavors of UNIX in use today. The codes in the diagram refer to the 

brands and versions of UNIX that are in common use, including: AIX from IBM, Solaris from 

SUN Microsystems, HP-UX and Tru64 from Hewlett Packard, UnixWare from Caldera, 

FreeBSD (open source). 

 

The first native VAX UNIX product from DEC was Ultrix-32, based on 4.2BSD with some 

non-kernel features from System V, and was released in June 1984. Ultrix-32 was primarily 

the brainchild of Armando Stettner. Its purpose was to provide a DEC-supported native UNIX 

for VAX. It also incorporated several modifications and scripts. Later, Ultrix-32 incorporated 

support for DECnet and other proprietary DEC protocols such as LAT. It did not support 

VAX clustering, last major release of Ultrix was version 4.5 in 1995. 

 

Figure 1   Evolution of the UNIX operating system [1] 

 

The History of Linux began in 1991 with the commencement of a personal project by a 

Finnish student, Linus Torvalds, to create a new operating system kernel. Since then the 

resulting Linux kernel has been marked by constant growth throughout its history. The UNIX 

operating system was conceived and implemented in the 1960s and first released in 1970. Its 

availability and portability caused it to be widely adopted, copied and modified by academic 

institutions and businesses. Its design became influential to authors of other systems. In 1983, 

Richard Stallman started the GNU project with the goal of creating a free UNIX-like 

operating system [2]. As part of this work, he wrote the GNU General Public License (GPL). 

http://en.wikipedia.org/wiki/UNIX_System_V
http://en.wikipedia.org/wiki/DECnet
http://en.wikipedia.org/wiki/Local_Area_Transport
http://en.wikipedia.org/wiki/VMScluster
http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/GNU_project
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/UNIX-like
http://en.wikipedia.org/wiki/History_of_Linux#cite_note-1
http://en.wikipedia.org/wiki/GNU_General_Public_License


 Paper: ASAT-14-258-CE 

 

 

3 

By the early 1990s there was almost enough available software to create a full operating 

system. However, the GNU kernel, called Hurd, failed to attract enough attention from 

developers leaving GNU incomplete. MINIX, a Unix-like system intended for academic use, 

was released by Andrew S. Tanenbaum in 1987. While source code for the system was 

available, modification and redistribution were restricted. In addition, MINIX's 16-bit design 

was not well adapted to the 32-bit features of the increasingly cheap and popular Intel 386 

architecture for personal computers. These factors and the lack of a widely-adopted, free 

kernel provided the impetus for Torvalds's starting his project. He has stated that if either the 

GNU or 386BSD kernels were available at the time, he likely would not have written his own, 

In 1991, in Helsinki, Linus Torvalds began a project that later became the Linux kernel. It 

was initially a terminal emulator, which Torvalds used to access the large UNIX servers of the 

university. He wrote the program specifically for the hardware he was using and independent 

of an operating system because he wanted to use the functions of his new PC with an 80386 

processor. Development was done on MINIX using the GNU C compiler, which is still the 

main choice for compiling Linux today (although the code can be built with other compilers, 

such as the Intel C Compiler). 

 

 

2. Issues and Challenges Facing Legacy Systems 
Maintaining and upgrading legacy systems is one of the most difficult challenges CIOs face 

today. Constant technological change often weakens the business value of legacy systems, 

which have been developed over the years through huge investments. CIOs struggle with the 

problem of modernizing these systems while keeping their functionality intact. Despite their 

obsolescence, legacy systems continue to provide a competitive advantage through supporting 

unique business processes and containing invaluable knowledge and historical data. 

Despite the availability of more cost-effective technology, about 80% of IT systems are 

running on legacy platforms. International Data Corporation estimates that 200 billion lines of 

legacy code are still in use today on more than 10,000 large mainframe sites. The difficulty in 

accessing legacy applications is reflected in a December 2001 study by Hurwitz Group that 

found only 10% of enterprises have fully integrated their most mission-critical business 

processes [3]
 
. 

Driving the need for change is the cost versus the business value of legacy systems, which 

according to some industry polls represent as much as 85-90% of an IT budget for operation 

and maintenance. Monolithic legacy architectures are antitheses to modern distributed and 

layered architectures. In addition, IT departments find it increasingly difficult to hire 

developers qualified to work on applications written in languages no longer found in modern 

technologies. 

Several options exist for modernizing legacy systems, defined as any monolithic information 

system that's too difficult and expensive to modify to meet new and constantly changing 

business requirements. Techniques range from quick fixes such as screen scraping and legacy 

wrapping to permanent, but more complex, solutions such as automated migration or 

replacing the system with a packaged product. 

In our paper, the problem arises because of  we have an application which is running on DEC 

5500 machine that has Ultrix operating system hosted on it, and we want to migrate this 

application to be run on X86 processors which host Linux operating system. 

We are interested in this migration because of the underlying platform (Ultrix) is hard to 

support and running on legacy hardware systems (DEC 5500). Such hardware systems are 

becoming more expensive to maintain or obsolete, and personnel that know these systems are 

also more difficult to find. These legacy applications are self-contained and have little or no 

flexibility to adapt them to changing business requirements. However, some of our current 

http://en.wikipedia.org/wiki/Kernel_(computer_science)
http://en.wikipedia.org/wiki/GNU_Hurd
http://en.wikipedia.org/wiki/MINIX
http://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Intel_386
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Helsinki
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Terminal_emulator
http://en.wikipedia.org/wiki/MINIX
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Intel_C_Compiler


 Paper: ASAT-14-258-CE 

 

 

4 

business models were not even conceived of at the time these applications were developed. In 

general, legacy application maintenance is very cumbersome and represents a major fixed cost 

at a time of reduced IT spending. The high cost of maintenance is also compounded by the 

fact that many of the original developers are reaching retirement age and there is a critical 

shortage of skilled resources to replace them. 

 

 

3. Proposed Methodology 
Today’s information system executives are primarily concerned with ways to increase bottom 

line results quickly with cost cutting programs that additionally improve IT service levels on a 

global basis. One of such major undertakings is ―updating legacy systems‖, based on the 

beliefs that existing systems are valuable assets to be improved, especially at a time when, for 

many companies, the cost of implementing new systems is unacceptably high. IT and 

financial executives alike are losing sleep over the contradictory challenge of significantly 

cutting cost of IT operations and at the same time increasing operational effectiveness and 

service quality to the organization.  

In light of these and other factors, we have many choices: 

Replace legacy applications with packaged software; Rewrite the applications using new 

technology and tools and Application migration. 

We believe the most important aspect of application migration is the preservation of existing 

organization business processes and practices and minimal business disruption. There is a 

much lower risk with application migration than with rewriting projects. 

Our approach is predicated on application migration, focusing on the application code, touch 

points with the old infrastructure and building to an alternate environment such as Linux. This 

preserves the integrity of the application with no risk to the embedded business knowledge 

while integrating the new platform capabilities. 

We introduce our proposed migration methodology, which is simply based on studying the 

behavior of legacy application in order to get the critical parts in this application to be 

migrating which often be system calls, big-little endian, semaphores, compiler options and 

building options. Also database and obsolete programming languages migration, in our 

proposed migration we get a generic methodology in order to migrate any Ultrix application 

to be run on Linux platform by overcome all above critical issues mentioned above. 

 

3.1 Endianness 
In computing, endianness is the ordering of individually addressable sub-units (words, bytes, or 

even bits) within a longer data word stored in external memory. The most typical cases are the 

ordering of bytes within a 16-, 32-, or 64-bit word, where endianness is often simply referred to 

as byte order [5]. The usual contrast is between most versus least significant byte first, called 

big-endian and little-endian respectively. Mixed forms are also possible; the ordering of bytes 

within a 16-bit word may be different from the ordering of 16-bit words within a 32-bit word, 

for instance; although rare, such cases are sometimes collectively referred to as mixed-endian 

or middle-endian. 

Although Linux was developed on an Intel platform, which is primarily a little-endian 

environment, it has been ported to several other hardware platforms that support big-endian 

environments. Endianness, or byte ordering, refers to how a data element and its individual 

bytes are stored. In a big-endian (BE) environment, the lowest address is associated with the 

most-significant or leftmost byte of a multibyte value. In a little-endian (LE) environment, the 

lowest address is associated with the least-significant or rightmost byte of a multibyte value. 

In general, bit 0 is associated with the most-significant bit (MSB) for BE, but with the least-

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Word_(computing)
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/64_bit


 Paper: ASAT-14-258-CE 

 

 

5 

significant bit for LE. List 1 shows a sample program that prints data differently when 

compiled and run on a BE or LE environment. 

 

List 1 Code Listing of endian_sample.c 

1   #include <stdio.h> 

2    main( ) { 

3    int i;  /* Loop variable */ 

4    long x = 0xAABBCCDD; 

5    unsigned char *ptr = (char *) &x; 

6    printf("x in hex: %x\n", x); 

7    printf("x by bytes: "); 

8    for (i=0; i < sizeof(long); i++) 

9   printf("%x\t", ptr[i]); 

10   printf("\n");} 
 

 

When compiled and run on an Intel server, which is an LE environment, the following is 

printed: 

 
x in hex: aabbccdd 

x by bytes: dd cc   bb   aa 

 

When compiled and run on an IBM Power server, which is a BE environment, the following 

is printed: 

 
x in hex: aabbccdd 

x by bytes: aa bb   cc   dd 

 

Note that the preceding example was compiled with gcc, which creates a 32-bit executable by 

default. 

Most RISC-based computers, including IBM PowerPC servers, and the Internet Protocol (IP) 

use a BE layout, whereas Intel and Alpha architectures utilize an LE layout. When porting 

software, it is recommended to watch out for endian issues, because most if not all of these 

issues may go undetected, resulting in hard-to-find problems when they occur. 

Nonuniform data reference occurs more often in user space application code, whereas the 

latter two categories are difficulties encountered at lower code levels (for example, device 

drivers). Nonuniform data reference arises from improper data type reference with regard to 

endianness, usually dealing with unions or pointers. Endian-friendly code should incorporate 

definitions to determine whether the platform is LE or BE. It is considered a good 

programming habit to never cast a pointer to an int and to explicitly reference data type and 

byte values during conversion. 

Software professionals porting applications from UNIX or other platforms to Linux on 

POWER must remember the following: 

Linux on POWER is a big-endian platform 

In order to overcome this problem we implement code that converts any data type from BE to 

LE and vice versa by define variable (rev) which has value 0 or 1 depend on converting from 

BE to LE or vice versa, List 2 shows a sample of this code 

 

After implementing the above code and testing it, then we highlights all critical sections in the 

code to be migrated that will suffer from BE-to-LE problem and then we passes these section 

to the code in List 2 in order to convert all messages server send or receive it, List 3 shows a 

sample of these critical sections. 

 

mk:@MSITStore:D:/Master/Mendoza%20-%20UNIX%20to%20Linux%20Porting%20-%20A%20Comprehensive%20Reference%20(Prentice,%202006).chm::/0131871099/ch03lev1sec11.html#ch03ex06
mk:@MSITStore:D:/Master/Mendoza%20-%20UNIX%20to%20Linux%20Porting%20-%20A%20Comprehensive%20Reference%20(Prentice,%202006).chm::/0131871099/ch03lev1sec11.html#ch03ex06
mk:@MSITStore:D:/Master/Mendoza - UNIX to Linux Porting - A Comprehensive Reference (Prentice, 2006).chm::/0131871099/9001536.html


 Paper: ASAT-14-258-CE 

 

 

6 

List 2   Code Listing of convert_BE_LE.c 
 

#define rev 1 

void rev_arr_ (char* cc,int len) 

{ int i=0; 

 for(i=0;i<len/2;i++) 

 {           char temp=cc[i]; 

  cc[i]=cc[len-1-i]; 

  cc[len-1-i]=temp;    }} 
void rev_data_array(char* x,int data_type_len,int total_len) 

{   int i=0; 

 if(rev) 

 for(i=0;i<total_len*data_type_len;i+=data_type_len) 

   rev_data_type(x+i,data_type_len);} 

 

 

List 3   Code Listing of convert_messages_BE_LE.c 
 

#include <include/pc.h> 

#include "pc_extern.h" 

void invers_astt_msg_X_BUFFER (X_BUFFER* x) 

{ 

 rev_data_type_(&x->sw,sizeof(x->sw)); 

 rev_data_type_(&x->bs[0].size,sizeof(x->bs[0].size)); 

 rev_data_type_(&x->bs[1].size,sizeof(x->bs[1].size)); 

} 

 

 

3.2 Semaphores in Ultrix and Linux 
There are two implementations of semaphores, traditional SystemV semaphores and the 

newer POSIX semaphores. For the traditional one you need <sys/sem.h> like in Ultrix and for 

the new POSIX one <semaphore.h> like in Linux. The functions they supply can be 

distinguished easily: all the functions for SysV semaphores have no underscore in their names 

(so it's actually not sem_get() but semget()) while the POSIX semaphore functions all have 

one. 

Table 1 shows some functions they supply: 

 

Table 1 SysV and POSIX comparison 
 

SysV POSIX 

semctl() 

semget() 

semop() 

sem_getvalue() 

sem_post() 

sem_timedwait() 

sem_trywait() 

sem_wait() 

sem_destroy() 

sem_init() 

sem_close() 

 



 Paper: ASAT-14-258-CE 

 

 

7 

In our application to be migrated there are four types of mode, one of them called sync 

playback mode the system do not wait if in sync playback mode the implementation of this 

condition appear in file called sm_shell.c in SM module like this : 

 if (cd->simulation_mode != sync_playback) Wait_Alarm(); 

 

The problem appears because of the implementation of (Wait_Alarm function) as shown in 

list 4. 

 

List 4   Implementation of Wait_Alarm function 
 

void Wait_Alarm() 

{ int smask; 

 /* use sigblock to obtain the current masks 'smask' */          

 smask = sigblock(1<<(SIGALRM)); 

 /* wait for the alarm signal to sequence the next loop */ 

 sigpause(smask);} 

 

In order to overcome the wait_Aralm problem we replace it by using signal as shown in List 

5: 

 

List 5   Implementation of Wait_Alram in Liunx 
 

If (cd->simulation_mode != sync_playback)  

   { signal(SIGALRM,Alarmclock);   

                                                 sigpause(0L); 

   } 

 

Another difference is that with POSIX semaphores you can have named semaphores, i.e. 

semaphores that have a file associated with them, with the last three functions used for 

creating, closing and deleting such a named semaphore while sem_init() and sem_destroy() 

are only to be used with unnamed semaphores.  We don't know exactly when POSIX 

semaphores were introduced in Linux but they weren't available in 2.2 kernels. They are also 

not mandated by POSIX but only as a Real-time extension, so they need not be available on 

all systems that claim POSIX conformance. 

 

3.3 System Calls and Compiler/Building Options 
The simplest definition of system calls is that the mechanism used by an application program to 

request service from the operating system. System calls often use a special machine code 

instruction which causes the processor to change mode (e.g. to "supervisor mode" or "protected 

mode"). This allows the operating system to perform restricted actions such as accessing 

hardware devices or the memory management unit. The only way for an application in User Space 

to explicitly trigger a switch to Kernel Mode is to issue a system call. Therefore system calls 

constitute the interface between processes and the operating system. Each system call 

provides a basic operation such as opening a file, getting the current time, creating a new 

process, or reading a character. In this way system calls can be viewed as regular function 

calls, if it were for the fact that they transfer control to the Ultrix Kernel. System calls 

essentially are synchronous calls to the operating system. 

When a program invokes a system call, it is interrupted [6] and the system switches to Kernel 

space as shown in Figure 3. We must take the behavior of fork in our consideration when we 

migrate to from Unix, Ultrix and its earlier version to Linux, The behavior of fork() in Unix, 

http://encyclopedia2.thefreedictionary.com/application+program
http://encyclopedia2.thefreedictionary.com/operating+system
http://encyclopedia2.thefreedictionary.com/machine+code
http://encyclopedia2.thefreedictionary.com/protected+mode
http://encyclopedia2.thefreedictionary.com/protected+mode
http://encyclopedia2.thefreedictionary.com/memory+management+unit


 Paper: ASAT-14-258-CE 

 

 

8 

Ultrix and earlier releases is different from fork() in POSIX threads. In POSIX threads, fork() 

creates a new process, duplicating the complete address space in the child. However, it 

duplicates only the calling thread in the child process. The Unix threads API also provides the 

replicate all fork semantics, forkall(). This function duplicates the address space and all the 

threads in the child. This feature is not supported by the POSIX thread standard. System calls 

differ from operating system to another also from hardware to another, Table 2 showing 

sample of system calls on Unix and corresponding in Linux. 

 

 
 

Figure 3   Switching between User space and Kernel  

 

Table 2 System Calls Sample Comparison 
 

Ultrix Library Calls Linux Equivalent Description 

perror, errno, 

sys_errlist, sys_nerr 

perror, errno System error messages. 

l64a_r None Convert between long integer and base-64 

ASCII string. 

clock_getres clock_gettime Clock operations. 

fdatasync Fsync Synchronize a file's in-core state with its state 

on disk. 

getprivgrp, 

setprivgrp 

None Get and set special attributes for group. 

thr_create() pthread_create() Creates a new thread of control.  

thr_exit() pthread_exit() Terminates the execution of the calling thread. 

 

3.4 Compiler/Building Options 
As the porting effort starts, differences in compiler locations and compiler options between 

Ultrix and Linux become apparent. Although the compilers on both Ultrix and Linux claim 

conformance or close conformance to ANSI and ISO standards, porting personnel may 

encounter platform-specific programming syntax differences. The use of compiler extensions 

and platform-specific features are common programming practices that require some effort 

when porting from Ultrix to Linux. 

 

Table 3 Ultrix and Linux Compiler Comparison Table 
 

Compiler Ultrix Path Linux Path 

ANSI C /opt/ansic/bin/cc /usr/bin/gcc 

C89 /opt/ansic/bin/c89 /usr/bin/gcc -std=c89 

C++ /opt/aCC/bin/aCC /usr/bin/g++ 

 



 Paper: ASAT-14-258-CE 

 

 

9 

One of the famous errors when you rebuilding an application written to be 

run on Ultrix system on Linux system are for example: 

$ nasm -f elf -o example2.o example2.asm 

$ ld -s -o example2 example2.o -lX11 -L/usr/X11R6/lib 

$ ./example2 

 bash: ./example: /usr/lib/libc.so.1: bad ELF interpreter: No such file or 

directory 

 

In order to run our case study application, we have first to compile eight folders, which 

contain the main modules after compiling each folder individual merging object files (.o file) 

in each folder in one library file (.a file) using the suitable makefile, and then link all these 

library files together with suitable dynamic linker to get executable file to be run. All these 

processes wrote in a build file, List 6 show sample of the contents of this file. In legacy 

system we type ./build_file_name on shell to run, we try this on Linux but the above bolded 

error appear to us too. 

 

List 6 Build file in Legacy system 
 

#Build procedure for host software 

cd /usr/users1 /source/md 

make 

. 

. 

echo - SC build complete 

cd ../sm 

make 

echo - SM build complete 

link_file 

echo 

echo *** build complete  ***  

 

From the above list its clear that after building all files in the eight main folder, the build file 

call another file called link file which is reasonable for dynamic linking at this step, problem 

arise here again because we are now in front of different compilers and different dynamic 

linker List 7 show the old link file and the bolded line show the reasons of this problem. 

 

On Ultrix, /usr/lib/libc.so.1 is an alternate interpreter for SVID ABI compatibility (SVID == 

System V Interface Definition). I suppose that the same is possible for Linux. This suggests to 

us that ld is incorrectly compiled or configured. It should know the proper dynamic linker 

without being told. For some reason it seems to think that libc.so.1 is the correct dynamic 

linker, which it apparently is not. gcc seems to always specify the dynamic linker, so this 

error, if it is an error, would only show up if one were invoking ld directly and using dynamic 

linking, which is not often done. 

 

List 8 shows how we can overcome linking problem, then it works just fine with no 

complaints, no errors so, obviously, GCC is automatically setting some parameter or some 

"default" differently to LD...we could, of course, just continue to use GCC and everything 

would be fine.  

 

 

 



 Paper: ASAT-14-258-CE 

 

 

10 

List 7 The old link file on Ultrix machine 
 

echo Linking AA program... 

cp /usr/users1 /execute  /usr/users1/ /execute/ _exe.old 

ld /lib/crt0.o -o aa  \  

$AA_sc/si.o  \  

$AA_sc/sg.o  \  

$II_SYSTEM/sql/lib/libsql.a  \  

-L$AA_sm -lsm  \  

-L$AA_md -lmd  \  

-L$AA_dy -ldy  \  

-L$AA_gr -lgr  \  

-L$AA_rc -lrc  \  

-L$AA_pc -lpc  \  

-lm  \  

$AA_src/util/memory/libmem.a  \  

-lUfor -lfor -lutil -li -lots -nocount -lc  

echo Load complete - Type aa to run. 

 

 

List 8 The new link file on Linux machine 
 

echo Linking AA program... 

cp /usr/users1 /execute  /usr/users1/ /execute/ _exe.old 

gcc -o aa  \  

$AA_sc/si.o  \  

$AA_sc/sg.o  \  

/opt/Ingres/IngresII/ingres/lib/libingres.a  \  

/usr/lib/gcc-lib/i386-redhat-linux/3.2.3/libgcc.a  \  

-L$AA_sm -lsm  \  

-L$AA_md -lmd  \  

-L$AA_dy -ldy  \  

-L$AA_gr -lgr  \  

-L$AA_rc -lrc  \  

-L$AA_pc -lpc  \  

-lm  \  

$AA_src/util/memory/libmem.a  \  

-ldl -lpthread -lcrypt -lrt -lc 

echo Load complete - Type astt to run. 

 

3.5 Database Migration 
Break a dependency chain before it breaks you and the migration process. Given the scenario 

of migrating from ingres 6.4 to ingres 9.3, changing the underlying operating system to Linux 

from Ultrix, modifying major tables within a schema, and running newer/modified versions of 

related applications. Since databases are more difficult to migrate than a set of files, the 

migration process and resource allocation have to be carefully planned and customized to the 

specific environment to minimize production downtime. 

There are various types of database migration such as: 

Database Upgrade : Installing the latest database release  

Hardware Upgrade : Moving to a newer hardware / software release on the same platform  



 Paper: ASAT-14-258-CE 

 

 

11 

New Platform : Moving to the different hardware / software platform  

OS Upgrade : Upgrading OS release on the current system  

All these types of data migration are independent of each other, but some are often combined 

together to make it more efficient and to take advantage of the overall process. One of the 

most common types of migration is the database upgrade to the latest release. This is usually 

done in conjunction with hardware upgrade and / or OS upgrade such as in our case we will 

perform Database upgrade from ingres 6.4 to ingres 9.3, Hardware upgrade from DEC 5500 

to Intel x86 and new platform from Ultrix to Linux. Any of these data migration paths involve 

installation of the new database server on the target system. Usually, it is the latest database 

release. In order to migrate database, we have first to migrate database engine in our case we 

have to migrate database ingres 6.4 which running on Ultrix to ingres 9.3 which run on Linux, 

this step seems to be trivial but actually there are so many important issues to be in 

consideration in this phase. We have to change some paths of system environment, for 

example after installation of ingres on Linux and trying to perform any database action like 

createdb, this error will appear  

createdb: could not connect to database template1 : could not connect to server : No such file 

or directory 

Is the server running locally and accepting connections on Unix domain socket 

 "tmp/.s.PGSQL.5432 

This error arise because there is something called the postgresql createdb and not the ingres 

createdb which is Postgres is another DBMS shipped with Linux it shares many of the same 

utility names as Ingres and  default in Linux not like Unix, to overcome this error we have to 

set environment variable to be Instead of this: 

export PATH=$PATH:$II_SYSTEM/ingres/bin:$II_SYSTEM/ingres/utility; 

you need to have this: 

export PATH=$II_SYSTEM/ingres/bin:$II_SYSTEM/ingres/utility:$PATH; 

Which will put the Ingres directories ahead of Postgres, and so you will get the Ingres 

versions of those utilities. In our application which is client/server application client is hosted 

on Windows platform and server hosted on Linux, there are must be connection between 

database hosted on Linux server and Windows client. The client application is written in C#, 

so we have to provide a connection between .NET and database, one of the most errors appear 

while connecting is invalid user name and password even it's correct. The cause of this 

problem was incorrect permissions (connection string) on file 'ingvalidpw'.  

The installation is leaving ingvalidpw as: 

-rwxr-xr-x 1 ingres ingres 11665 2009-02-25 18:31 ingvalidpw 

So, to fix the problem, as root: 

chown root ingvalidpw 

chmod u+s ingvalidpw 

which results in: 

-rwsr-xr-x 1 root ingres 11665 2009-02-25 18:31 ingvalidpw 

 

At first we export all dump files from legacy database (ingres 6.4) to import it again in 

modern database (ingres 9.3), after we got about 18 dump files (.hp) of all necessary data, we 

created SQL file to import these files into modern database, List 9 and List 4-10 Show sample 

of SQL file that export and import data from and in the system. 

 

 

 

 

 



 Paper: ASAT-14-258-CE 

 

 

12 

List 9 Sample of SQL file for exporting data 
 

copy breakpoint_details( 

 breakpoint_id= varchar(0)tab with null(']^NULL^['), 

 breakpoint_num= c0tab with null(']^NULL^['), 

 directives= varchar(0)tab with null(']^NULL^['), 

 parameters= varchar(0)nl with null(']^NULL^['), 

 nl= d0nl) 

into 'C:/breakpoint_details.hp'; 

copy breakpoint_directives( 

 directive= varchar(0)nl with null(']^NULL^['), 

 nl= d0nl) 

into 'C:/breakpoint_directives.hp'; 

copy breakpoint_names( 

 breakpoint_id= varchar(0)tab with null(']^NULL^['), 

 breakpoint_num= c0nl with null(']^NULL^['), 

 nl= d0nl) 

into 'C:/breakpoint_names.hp'; 

 

 

List 10 Sample of SQL file for importing data 
 

create table breakpoint_details( 

 breakpoint_id char(16), 

 breakpoint_num integer, 

 directives char(4), 

 parameters char(10) 

) 

with duplicates, 

location = (ii_database); 

copy breakpoint_details( 

 breakpoint_id= varchar(0)tab with null(']^NULL^['), 

 breakpoint_num= c0tab with null(']^NULL^['), 

 directives= varchar(0)tab with null(']^NULL^['), 

 parameters= varchar(0)nl with null(']^NULL^['), 

 nl= d0nl) 

from '/migration/database creation/breakpoint_details.hp'; 

create table breakpoint_directives( 

 directive char(4) 

) 

with duplicates, 

location = (ii_database); 

from '/migration/database creation/breakpoint_names.hp'; 

grant   select   on breakpoint_details to public; 

grant   update   on breakpoint_details to public; 

grant   delete   on breakpoint_details to public; 

grant   insert   on breakpoint_details to public; 

commit; 

  



 Paper: ASAT-14-258-CE 

 

 

13 

3.6 Migration of FORTRAN 77 to FORTRAN 95 

With the release of the Sun ONE Studio 7 Compiler Collection, the Fortran 95 compiler, f95, 

now accepts many of the features of the FORTRAN 77 compiler, f77, including various 

language extensions. The following non-standard FORTRAN 77 extensions were supported 

by the f77 compiler but are not supported by f95: 

f95 limits the number of continuation lines to 99. f77 had no such limit on continuation lines. 

Variable Format Expressions (VFEs) are not available in f95. 

f95 does not recognize the legacy f77 "R" format edit descriptor. 

Arrays and character strings with variable lengths are not allowed on Fortran 95 NAMELIST 

statements. 

f95 reports illegal I/O specifiers as errors. f77 gave only warnings.  

f77 allowed up to 20 array subscripts; f95 allows only 9. 

f95 does not allow non-constants in PARAMETER statements. 

Integer values cannot be used in the initializer of a CHARACTER type declaration. 

f95 will not allow array elements in boundary expressions before the array is declared. List 13 

showing the following gets an error:  

 

List 11 Error from incompatibility 
 

subroutine s(i1,i2) 

integer i1(i2(1):10) 

dimension i2(10) 

...->ERROR: "I2" has been used as a function, therefore it must not be declared with the 

explicit-shape DIMENSION 

 

The maximum length for names is 31 characters. 

Debugging comments (comments lines with "D" in column one) are always treated as 

comments. There is no option for turning them into live statements. 

f95 does not recognize the following f77 compiler options:  
  -arg=local -dbl  -oldstruct  -i2  -i4  -r4  -r8  -vax 

Library Routines Not Supported by f95:  
  The POSIX library. 

  The IOINIT ( ) library routine. 

When moving source code from one platform to another, you need to first look at the general 

structure and location of the various files that need to be moved. Ultrix applications typically 

go in the /usr directory. Many Ultrix administrators further segregate system programs from 

added user programs. Commonly, user programs are added to /usr/local, and system programs 

go in the /usr root.  

Developers ordinarily find source code files in /usr/local on the Ultrix platform. Within this 

directory, common directories include:  

• /usr/local/bin………………….. for executable files.  

• /usr/local/include…………….. for header files.  

• /usr/local/lib………………….. for library files.  

 

 

4. Summary and Conclusions 
Migration is transactions that transfer an application that already run on a specific platform to 

another and getting minimum change in code, instead of redeveloping the code again to suit 



 Paper: ASAT-14-258-CE 

 

 

14 

the new platform. The result of this continuing progress is that you as the IT decision maker 

are caught in a difficult situation.  

You can make no changes and risk that your systems will slip into obsolescence. 

Or you can make a change and risk joining a computing trend that turns out to be an 

evolutionary dead end (Migration). 

So what reasons are driving us to consider moving from UNIX environment that has served 

us so faithfully all these years? Perhaps because we have the following goals: 

Reducing costs 

Increasing flexibility 

Improving performance 

We study many techniques for application migration but we focused on the major differences 

between legacy and modern platform in order to get successful proposed migration 

methodology. 

As we mentioned earlier that some techniques like hardware emulator [7] and software 

simulator [8] cannot deal or get fully successful migration with large applications. In our 

paper, we introduced a large application as case study and applied our proposed method and 

got fully successful migration. 

We conclude that the little-big endian, system calls, semaphores and signals are more 

promising in our problem especially that you can get technical successful migration but fail in 

getting the same behavior of legacy application. Furthermore, we got methods to migrate 

database and legacy Fortran. Indeed, since we got a better result by using our proposed 

methodology. But, every application has its own features so we have to get good assessment 

in order to get successful migration. A future direction would be in getting encapsulating our 

proposed method in a middle ware which will be run intermediate between modern operating 

system and legacy application. 

Finally there is no comparison between the performance of application before and after 

migration, that’s because there is huge gap between Ultrix and Linux performance, moreover, 

Intel X86 and DEC machines. 

 

 

5. References 
[1]  Andrew S. Tanenbaum and Albert S Woodhull, Operating Systems Design and 

Implementation", Prentice Hall, 3
rd

 edition, 2006. 

[2]  W. Richard Stevens and Stephen A. Rago, "Advanced Programming in the UNIX 

Environment", Addison Wesley Professional, 2
nd

 edition, 2005. 

[3]  Bruce Claremont, "Understanding the business aspects of software migrations", July 1992  
[4]  ―Linux System Calls‖ by Mark Mitchell and Jeffrey Oldham for a good description of 

common system calls. 

[5]  Jonathan Lewis, ―How UNIX Works‖, Mc Graw Hill, 2005  

[6]  M. Tim Jones, ―Kernel command using Linux system calls‖, IBM developerWorkers, March 

2007 
[7]  Microsoft Corporation, "UNIX Custom Application Migration Guide", 2006. 

[8]  David Schafer, "Making a Choice between an Emulator or Software Migration", IEEE 

AUTOTESTCON Proceedings, San Antonio, TX, USA, 2004. 

[9]  Moeini, A. Rafe, V. Mahdian, F., "An Approach to Refactoring Legacy Systems", 3rd 

International Conference on Advanced Computer Theory and Engineering (ICACTE), 

2010.   

http://vig.prenhall.com/catalog/academic/product/0,1144,0131429388,00.html
http://vig.prenhall.com/catalog/academic/product/0,1144,0131429388,00.html
http://www.informit.com/articles/printerfriendly.aspx?p=23618
http://www.scaleabilities.co.uk/book/CH07.html
http://www.ibm.com/developerworks/linux/library/l-system-calls
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9814

