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1. Introduction 

  
 
Abstract: In this paper a multi-sensor data fusion technique is applied to aerosonde 
unmanned aerial vehicle (UAV) model to enhance inertial navigation system. An inertial 
measuring unit (IMU) error model is built with different error parameters (biasing, scale 
factor, and noise). Each IMU output is applied to strap down inertial navigation system (INS) 
algorithm to obtain the navigation information: position, velocity, and attitude (PVA). Multi-
sensor data fusion algorithm based on fuzzy c-means clustering (FCM) is used to fuse the 
IMUs data. The fused output is applied to the INS algorithm to obtain the PVA. The 
simulation results show the effectiveness of the proposed method in reducing the error in 
navigation information PVA than using a single IMU. 
 
Keywords: Data fusion, fuzzy, data clustering, inertial navigation 
 
 

Over the past two decades, significant attention has been focused on multi-sensor data fusion 
for both military and civilian applications. Data fusion techniques combine data from multiple 
sensors and related information to achieve more specific inferences than could be achieved by 
using a single, independent sensor[1]. Fusion processes are often categorized in three levels of 
modes (low, intermediate, and high level fusion), as follows[2]: 
 
1. Low level fusion combines several sources of essentially the same type of raw 

preprocessed data to produce a new data set that is expected to be more informative and 
useful than the inputs.  

2. Intermediate level, mid-level fusion, or feature level fusion combines various features 
such as edges, lines, corners, textures, or positions into a feature map. This map is used 
for segmentation of images, detection of objects, etc. This process of fusion is called 
pixel, feature, or image level fusion.  

3. High level fusion, or decision fusion, combines decisions from several experts. Methods 
of decision fusion are voting, fuzzy logic, and statistical methods. The present study is 
interested in some aspects of this level of fusion, mainly fuzzy logic based decision 
fusion. 

 
The conventional approaches for multi-sensor data fusion like weighted average, Bayesian 
estimators, adaptive observers, algebraic functions, fuzzy logic, neural network, soft 
computing, nonlinear system fusion, and Kalman filtering are suffering from a lot of problems 
such as: 
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1. The necessity of adding new sensors to the system. 
2. Use linear estimation models that need a previous knowledge of signal statistics. 
3. The presence of more than one faulty signal is an essential limitation of the performance. 
4. Requirement of knowledge of the behavior of the system to generate the governing rules. 
 
The paper objective is producing a multi-sensor data fusion method that can overcome most 
of these problems. This method consists of two stages as follows: 
 
1. Separating the sensors data by using Fuzzy C-Means (FCM) algorithm as a data clustering 

method. 
2. A single output based on the information that comes from the sensors is produced by the 

fusion algorithm. 
 
This method will be detailed in section (4). Using multi-sensor data fusion in aircraft 
navigation applications has appeared in recent years with the advent of low cost, small size 
and low mass navigation sensors (e.g. optical gyros, MEMS inertial sensors and GNSS 
sensors), [3]. 
 
Inertial navigation system model based on quaternions [4-8] is used for the navigation process 
of the Aerosonde UAV model, [9]. The Inertial sensors are 3 IMUs used for measure the rates 
and accelerations of the UAV, an error model is added to the true raw data from the UAV 
such that the measurements are as MEMS sensors, and by changing the error parameters in 
the error model three coincident IMUs are simulated to be used in navigation process. This 
error model is explained in the next section. 
 
 
2. IMU Error Model 
For simulating IMU measurement, an error model shown in Figure 1 is applied [10], where: 

),0( 2σ=N denotes a zero-mean normal distribution with 2σ , the error model consists 
of: (gyroscope error model + accelerometer error model). 
 

The Gyro Error Model 
gvg

b
ibg

b
ib bsI ηωω +++= × )(~

33                                                                                                    (1) 

gugb η=                                                                                                                                     (2) 
where: gb is the gyro bias, gs  is a diagonal matrix of gyro scale factors, gvη  and guη  
are zero-mean Gaussian white-noise processes with spectral densities given by 33

2
×Igvσ

and 33
2

×Iguσ , respectively. 
 

The Accelerometer Error Model  
The same model can be applied to the accelerometers as  
 

ava
b

a
b basIa η+++= × )(~

33                                                                                                      (3) 

auab η=                                                                                                                                     (4) 
where: ab  is the accelerometer bias, as  is a diagonal matrix of accelerometer scale 
factors avη  , and auη  are zero-mean Gaussian white-noise processes with spectral 
densities given by 33

2
×Iavσ  and 33

2
×Iauσ  respectively.  
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Figure 1.    Gyroscope Error Model 
 
3. Aerosonde UAV Navigation 
The block diagram shown in Figure 2 shows that the aircraft model outputs are the true 
(position, velocity, and attitude )  PVA and the IMU measurements (accelerations, gyroscopes 
rates) the true PVA is the reference data that after applying the IMU measurements to the INS 
algorithm the output PVA will be compared with it, also three error models are added to the 
IMU measurements from the aircraft model simulating 3 different IMUs , each of them is 
applied to the INS algorithm and the outputs are compared with the true PVA from the 
aircraft model. 
 
 

 
 
  

 
 
 
 
 

Figure 2.   The Navigation Using Error Free and Error Models Addition to 3 IMUs  
 
 
4. Multi-Sensor Data Fusion 
The process of combining the provided information from multiple sensors is called sensor 
fusion, and can overcome a number of problems ranging from noise to incipient sensor 
failure. Even in the absence of these issues, one can increase the system’s accuracy and the 
reliability using sensor fusion[11]. The U.S. Department of Defense conducted much of the 
early research on this technology and explored its usefulness in military surveillance and 
land-based battle management systems. Many papers and books talk about various techniques 
and algorithms for data fusion such as least square method, Bayesian method, Kalman filter 
method, fuzzy logic, and neural network[2] . This paper presents architecture for fusing data 
obtained from several IMUs based on FCM. 
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4.1  Fuzzy C-Means Clustering Algorithm (FCM) 
Cluster analysis refers to a lot of methods which aim to subdivide a data set X into C subsets 
(clusters). Fuzzy clustering plays an important role in solving problems in the areas of pattern 
classification, fuzzy intelligent control and to classify fault patterns. Fuzzy c-means (FCM) 
proposed by Bezdek (1981) is one of the most famous techniques in clustering analysis [12-
16]. FCM clustering is depending on the measure of distance between samples. Generally, 
FCM uses the common Euclidean distance. The FCM allows each feature vector to belong to 
every cluster with a fuzzy truth value (between 0 and 1). The objective of FCM is to obtain 
the fuzzy c-partition },....,,{

~~

2

~
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~
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where ijµ the membership degree of data is point jx  to the fuzzy cluster
~

i
F , and is also an 

element of a  ( )nc×  pattern matrix ][ ijU µ= . The ith row of iUU , , corresponding to a fuzzy 

cluster 
~

i
F . ( )cvvvV ,....,, 21=  is a vector of cluster centroids of the fuzzy cluster },....,,{
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1 c
FFF . 

Thus, a fuzzy partition can be denoted by the pair ( )VU , . ij vx −  is the Euclidean norm 

between jx  and iv . The parameter m controls the fuzziness of membership of each datum. 
The complete fusion mechanization will be as Figure 3: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Complete Fusion Mechanization 
 
4.2  Steps of Data Clustering Using FCM Algorithm 
1. As shown in Figure 4 a pre-selected number of clusters c , and a chosen value of m, 

initialize the membership matrix ][ ijU µ=  of  jx  belonging to cluster  
~

i
F  (for 𝑖𝑖 = 1,2, … , 𝑐𝑐 

with random numbers whose values are between 0 and 1 and make it satisfy the constraint 
condition below,   

 

1
1

=∑
=

c

i
ijµ                                                                                                                                   (6) 

2. Compute the fuzzy cluster centroid iv  for 𝑖𝑖 = 1,2, … , 𝑐𝑐 using  
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3. Calculate the value of the function  ( )VUJ m ,  . If it is less than a certain threshold ( )ε  
value{|𝑣𝑣𝑡𝑡 − 𝑣𝑣𝑡𝑡−1|} < 𝜀𝜀 or compared with the last value function, its variation of function 
value is less than a certain threshold value, this algorithm stops. 
 

4. Update the fuzzy membership ][ ijU µ=  for 𝑖𝑖 = 1,2, … , 𝑐𝑐 using the following formula, 
Then return to step 2. 
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According to the above discussion, FCM algorithm requires predefining the number of 
clusters (c) as in Figure 3. In this paper the number of clusters is computed based on the 
function proposed by the smooth kernel density estimator (SKDE) [17, 18] which is obtained 
as follows: 
 
𝑝𝑝(𝑠𝑠) = 1

𝑚𝑚ℎ
∑ 𝑘𝑘 �𝑠𝑠−𝑠𝑠𝑖𝑖

ℎ
�𝑚𝑚

𝑖𝑖=1                                                                                                            (9) 
 
                                                                     

𝑘𝑘(𝑠𝑠) = 1
(2𝜋𝜋)1 2⁄ 𝑒𝑒

�−1
2𝑠𝑠
𝑇𝑇𝑠𝑠�                                                                                                           (10) 

 
where h is the length of the estimation window. The number of the clusters is determined 
according to the following two rules: 
 

1. If the maximum peak of the kernel estimator is left or right skewed then C = 2. 
2. If the maximum peak of the kernel estimator is centered then C = 3. 

 

 
Figure 4.    FCM Flowchart 
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4.3  Fusion Algorithm 
After the clustering process as shown in Figure 3 each cluster membership function is 
represented as a binary code 𝐵𝐵𝐶𝐶𝐶𝐶  ∈ 2𝑚𝑚 . The creation of this code depends upon the 
membership functions for the clusters and a variable threshold level such that[16]: 
 

𝐵𝐵𝐶𝐶𝐶𝐶(𝑆𝑆) = � 1  , 𝑖𝑖𝑖𝑖 𝜇𝜇(𝑠𝑠) < 𝛼𝛼
0   , 𝑖𝑖𝑖𝑖 𝜇𝜇(𝑠𝑠) > 𝛼𝛼 

�                                                                                                   (11) 

 
where ( 𝛼𝛼 ) is given as follows: 

 

𝛼𝛼 = 1 − 1
𝑚𝑚
∑ ∑ 𝜇𝜇𝑗𝑗 (𝑠𝑠𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝜇𝜇𝑗𝑗 (𝑠𝑠𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑐𝑐
𝑗𝑗=1                                                                                    (12) 

The fused output will be the cluster center v with the minimum binary code 𝐵𝐵𝐶𝐶𝐶𝐶  that achieves 

the following minimization argument: 

 

𝑠𝑠𝑓𝑓 = 𝑣𝑣(𝜇𝜇𝑖𝑖∗)      , 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑐𝑐1,𝐵𝐵𝑐𝑐2, … … . . ,𝐵𝐵𝑐𝑐𝑐𝑐)                                                              (13) 

 
 
5. Performance Evaluation and Simulation Results 
The proposed approach will be obtained by applying the multi-sensor data fusion algorithm to 
the output of three IMUs and comparing the PVA by using each IMU and by using the fused 
data for navigation. The complete block diagram will be as shown in Figure 5:  
 

 
Figure 5.   Complete block diagram of the fusion and navigation systems 

 
A comparison of using single IMU navigation system over a certain path and the use of 
multiple IMU navigation system is shown in the following error figures (Position, Velocity, 
Attitude) errors respectively and the 2D path comparison is also shown as follows: 
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I. The Position Errors Figures 
 
1. The latitude error 

 
Figure 6.   The latitude error 

2. The longitude error 

 
Figure 7.   The longitude error 
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3. The altitude error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.   The altitude error  
 
As shown in Figures (6, 7, and 8) the position errors (latitude, longitude, altitude) are 
increasing with time because the error of the INS is accumulated, but the error due to the use 
of the 1st IMU , 2nd IMU , and 3rd IMU  is increasing in a higher rate than the error of using 
the fusion of them. These results indicate that the use of multi-sensor data fusion in the 
navigation is better than the use of a single sensor. 
 
Figure 9  shows that over the simulation period the error in the x direction using the fusion is 
about 24m after 100sec and the errors using the IMUs 1, 2, and 3 are 45, 73, 98m 
respectively; the error in y direction using the fusion is about 37m; the errors using the IMUs 
1, 2, and 3 are 77, 164, 171m respectively; the error in z direction using the fusion is about 
41m; and the errors using the IMUs 1, 2, and 3 are 64, 120, 124m respectively. These results 
indicate that using fusion between the 3 IMUs produces the minimum error in the position 
and improves the performance of the INS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.   Position error in XYZ 
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II. The Velocity Errors 
 
1. The north velocity error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.   The north velocity error  
 
2. The east velocity error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.   The east velocity error 
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3. The down velocity error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.   The down velocity error 
 
As shown in Figures (10, 11, and 12) the velocity errors (North, East, and Down) are 
increasing with time but the error due to the use of the 1st IMU, 2nd IMU, and 3rd IMU is 
increasing in a higher rate than the error of using the fusion of them. This indicates that the 
use of multi-sensor data fusion in navigation is better than the use of a single sensor. 
 
 
III. The Attitude Errors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.   (Roll, pitch, and yaw) Euler angles errors 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

time(sec)

D
ow

n 
ve

lo
ci

ty
 e

rro
r

 

 
INS1 error
INS2 error
INS3 error
fused INS error

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

time(sec)

R
o
ll 

A
n
g
le

 E
rr

o
r 

(d
e
g
)

 

 

fused
IMU1
IMU2
IMU3

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

time(sec)

P
it
c
h
 A

n
g
le

 E
rr

o
r 

(d
e
g
)

 

 

fused
IMU1
IMU2
IMU3

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

time(sec)

Y
a
w

 A
n
g
le

 E
rr

o
r 

(d
e
g
)

 

 

fused
IMU1
IMU2
IMU3



Paper: ASAT-14-255-AV 
 
 

11 

As shown in Figure 13 The Euler angles error in (roll, pitch, and yaw) angles are minimum 
when using multi-sensor data fusion system compared with the errors when using any one of 
the three IMUs alone. 
 
 
IV. The Flight Path with and without Fusion 

 
Figure 14.   Flight path  

 
In Figure 14 the true flight path is represented by a solid line, the path using the fusion by a 
dashed line, the path using the 1st IMU is marked with triangle and labeled INS1, the path 
using the 2nd IMU is marked with circles and labeled INS2, and the path using the 3rd IMU is 
marked with dots and labeled INS3. The path using the fused data is the closest one to the true 
path with the minimum error, but the paths of the use of each IMUs alone are far away from 
the true path. This indicates that the use of multi-sensor data fusion in the aircraft navigation 
is better than the use of single inertial sensor to produce the navigation information. 
 
 
6. Conclusion 
In this paper complete navigation process is achieved, an error model is simulated to be added 
to the rates and accelerations of the Aerosonde UAV model, and a multi-sensor data fusion 
approach based on the FCM data clustering is introduced .It does not need any prior data 
about the sensors signals statistics or the system behavior, and no learning processes are 
required .This approach indicates strength in navigation of the UAV by reducing the 
uncertainty of the measured data, hence reducing error of the navigation information 
compared to the single sensor system.  
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