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Abstract: The constraints of building a remote sensing satellite, with limited volume, weight
and to acquire high image quality have resulted in innovative approaches to the design of the
telescope as an essential and effective part of electro-optical (E-O) remote sensor performance
parameters. The majority of the Earth observation satellites payloads are based on reflective
telescopes due to their compact size, reduced weight of mirrors over lenses for the same
entrance aperture diameter, in addition that reflective telescopes are free of chromatic
aberrations. In this paper, the Cassegrain configuration layouts, as reflecting telescopes, and
their preliminary design evaluation are presented. A comparison among these reflecting
telescope layouts is executed using ZEMAX software package. Finally, a simulation of an
optical telescope based on a proposed case study is developed using ZEMAX.
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1. Introduction
An E-O remote sensor consists of three main parts, Figure (1), including the optical part,
detector part, and the electronic part [1].
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Fig. (1) Main parts of a an E-O remote sensor

The optical part consists of two basic units: the Electromagnetic (EM) collecting optics; i.e.
the telescope, and the spectral dispersion unit. The telescope collects the EM radiation
reflected/emitted from the scene under observation, and then focuses the collected radiation,
directly or through the dispersion unit, into the detector part which is located at the focal plane
of the telescope. According to the types of the used optical elements, optical telescopes used
in E-O remote sensors may be classified into reflective, refractive or catadioptric type. In this
paper, the Cassegrain configuration layouts, as reflecting telescope and their preliminary
design evaluation are presented, also a comparative study between these reflecting telescope
layouts is executed using ZEMAX software package [2] in section 2. A simulation of an
optical telescope based on a proposed case study is developed using ZEMAX in section 3.
Finally, section 4 presents a conclusion and an exclusive summary.
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2. Reflecting Telescopes Used in E-O Remote Sensors

According to the types of the used optical elements, optical telescopes used in E-O remote
sensors may be classified into reflective, refractive or catadioptric type [1]. Reflective
telescopes consist entirely of mirrors. They are then totally achromatic and can operate at all
wavelengths with very good transmittance, but its field of view is restricted by off-axis
geometrical aberrations [3]. The limited field however can be enhanced by using refractive
elements (called correctors). These correctors are introduced at the expense of having spectral
transmittance that depends on the materials of the added refracting elements. The introduction
of refractive correctors to a reflective telescope results in a catadioptric (reflection and
refraction) telescope. Although refracting components have become common in wide-field
optical systems, reflective telescopes are more advantageous than refractive ones, even with
their limited field of view; due to their compact size, reduced weight of mirrors over lenses
for the same entrance aperture diameter, in addition that reflective telescopes are free of
chromatic aberrations.

2.1 Reflecting Telescope Configurations
The concept of the two-mirror telescope began to emerge with the postulation of both the
Gregorian and Cassegrain type telescopes, Figure (2). The two layouts are primarily
differentiated by their secondary mirrors. The Gregorian utilizes a concave secondary mirror
placed beyond the focal point of the primary mirror while the Cassegrain utilizes a convex
secondary mirror placed somewhat inside of the focus of the primary mirror. Both of these
mirrors are designed such that the final focus takes place behind the primary mirror, which is
perforated to allow the light to pass through [6].

Layout Primary mirror M; Secondary mirror M,
(a) Cassegrain telescope Concave paraboloidal Convex hyperboloidal
(b) Gregorian telescope Concave paraboloidal Concave ellipsoidal

Fig. (2) Basic layouts of two-mirror reflecting telescopes

The original postulation for the Cassegrain telescope (classical layout) has a concave
paraboloidal primary mirror focusing its rays onto a convex hyperboloidal secondary mirror;
Figure (2 a). This combination of aspheric curves yields excellent optical correction over
moderate fields, where spherical aberration is eliminated. Optical designers modified the
Cassegrain telescope design by fitting the asphericity between the two mirrors to control off-
axis aberrations; practically speaking, optical optimization led designers of optical systems to
modify the classical Cassegrain configuration into Ritchey-Chrétien and Dall-Kirkham
telescopes [8].
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The fundamental concept of the Ritchey-Chrétien is that the off-axis aberrations, resulting
from wide field imaging, are reduced through aspheric optimization. In a classical Cassegrain
there are two aberrations that are problematic: astigmatism and coma. The astigmatism
component is quite small while the coma component is comparatively large. In the Ritchey-
Chrétien design, the conic coefficient (aspherization constant), e, of the paraboloidal primary
mirror; |e|=1, is altered into a hyperboloid; |e|>1, and the secondary mirror even is more
hyperboloid, this can correct coma at the expense of astigmatism. But since astigmatism is so
small it can be raised considerably before it becomes larger than the coma. The result is a
two-mirror system optimized over a specific field of view. Therefore, while the classical
Cassegrain layout is designed for high-resolution imaging over a small field, the Ritchey-
Chrétien layout was developed for wide field imaging with an improved off-axis performance.
All Cassegrain layouts of a given geometric design have the same field curvature whether
they are a Ritchey-Chrétien, classical, and Dall-Kirkham or any other aspheric combination
[3]. The Dall-Kirkham telescope has an ellipsoidal primary mirror, |e|<1, and a spherical
secondary mirror, e=0. The advantage of the Dall-Kirkham lies in that the spherical
secondary mirror is fundamentally easier for accurate fabrication, since figuring and
accomplishing an aspheric surface; ellipsoidal, paraboloidal or hypboloidal, is a sophisticated
process in optics, and can result in a rough surface. Combined with the spherical secondary
mirror and lightly aspherized primary mirror, the system is more accurately fabricated than
any other compound two-mirror design. If properly designed and constructed, a Dall-Kirkham
layout can deliver the finest images of any Cassegrain type telescope. The principle problem
with the Dall-Kirkham design is that it does not correct well for comatic off-axis images [3].
It is worth mentioning that the majority of the Earth observation payloads utilize telescopes
based on the Cassegrain configuration with its three layouts.

2.2 Preliminarily Design of Cassegrain Layouts
The design of the three Cassegrain layouts shall be evaluated assuming the following:

i.  The remote sensor is operating in the visible band of the EM spectrum; at central
wavelength A = 0.55 pm.

ii.  The three layouts will have the same focal number F# = 6.25; (F# = f/D), where f is
the effective focal length (f =250 cm), and D is the entrance aperture diameter of the
telescope (D =40 cm).

ii.  Maximum field angle = 0.2 degree.

These assumed values shall be used to simulate the classical Cassegrain, Ritchey-Chrétien,
and Dall-Kirkham telescope layouts using ZEMAX software package. Hence, the spot
diagram (SD), modulation transfer Function (MTF), Optical path difference (OPD), and the
transverse ray fan plot (TRFP) for the simulated layouts will be evaluated in order to select
the appropriate layout to be applied for the case study.

The three layouts are optimized so as to form the best image over the entire field, rather than
forming the best focus at the center. Each of the layouts given here will have a precise on-axis
performance. Hence, the evaluation will be meaningful concerning the off-axis performance.
Figure (3) and Table (1) summarize the simulation and design data of the three Cassegran
layouts.
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(c) Dall-Kirkham telescope data
Fig. (3) Results of simulation of the three Cassegrain layouts using Zemax

Table (1) Design data of the three Cassegrain layouts

Cassegrain layout
Design parameter
anp Classical |Ritchey-Cretien| Dall-Kirkham

Primary mirror radius of curvature [cm] -128.64 -138 -138
Primary mirror conic coefficient -1 -1.07 -0.718
Secondary mirror radius of curvature [cm] -46 -46 -46
Secondary mirror conic coefficient -2.8657 -3.885 0
Primary-secondary mirrors spacing [cm] 47.24 52.35 52.35
Back focal length [cm] 19.1537 7.652 7.99
Total track length [cm] 66.3936 60.333 60.338
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2.3 Design Evaluation of the Cassegrain Layouts
The evaluation of the previously designed layouts will be based on investigating their Spot
Diagrams (SD), Modulation Transfer Function (MTF), Optical Path Difference (OPD), and
Transverse Ray Fan Plots (TRFP).

2.3.1 Spot diagram evaluation
Figure (4) shows the spot diagrams of the previously designed Cassegrain layouts with
respect to the theoretical Airy diameter for maximum field angle = 0.2 degree.

From figure (4) and Table (2), it is clear that the Ritchey-Chrétien layout has the smallest Airy
disc diameter over the three layouts. Moreover, it has the smallest Geometric spot diameter
with increasing field angles. Also, the three layouts suffer off-axis coma as the field angle
increases.

2.3.2 Modulation transfer function evaluation

Figure (5) shows the MTF of the previously designed Cassegrain layouts. The MTF is a
quantitative measure of image quality that describes the ability of an optical system to transfer
an object contrast to its image. The MTF relates the working spatial frequency of the optics,
expressed in line pairs per millimeter, to the percentage of the contrast measured from the
original image. We shall briefly describe the concept of MTF. Practically the image of a point
source is not a point, but is a disc (Airy disc). This is due to diffraction phenomena and
aberrations of the optical elements of the imaging system. The intensity distribution of the
image of the point source is called Point Spread Function (PSF). The Fourier transform of the
PSF is known as the Optical Transfer Function (OTF). The amplitude of the OTF is MTF,
which gives a measure of the decrease in the contrast modulation due to the imaging system
as a function of spatial frequency [9]

Itis clear from Figure (5) that the Ritchey-Chrétien layout offers the best MTF.

2.3.3 Optical path difference evaluation
From Figure (6) and Table (3), the Ritchey-Chrétien layout has the smallest optical path
difference over the three layouts for the whole field.

2.3.4 Transverse ray fan plot evaluation
From Figure (7) and Table (4), the Ritchey-Chrétien layout has the smallest Spherical
aberration over the three layouts for the whole field.
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(b) Ritchey-Chrétien spot diagram
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Fig. (4) Spot diagram evaluation
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Fig. (5) Modulation transfer function
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3. Case study

The first step in designing a telescope of a high resolution E-O remote sensor is the choice of
its configuration which is mainly influenced by the limitations and performance requirements
put upon the remote sensing satellite mission [8]. The second step in the design is SW
telescope simulation [10]. From common software packages used in optics design and
simulations are Zemax, Opti-cad, and Opal. In this section, Zemax SW package is utilized for
a preliminarily simulation of a Ritchey-Chrétien telescope for an E-O sensor of a remote
sensing satellite using pushbroom imaging technique, operating at the visible band, in a sun-
synchronous orbit. The design parameters of the sensor are given in Table (5). The simulation
of the Ritchey-Chrétien layout with Zemax software is performed to optimize its
compactness, optical aberrations and MTF.

Table (2) Spot size for Cassegrain layouts at different field angles

Cassegrain layout/Airy | Geometric spot diameter at different field angles [pm]
disc diameter [pum] 0.0 degree | 0.05degree | 0.1 degree | 0.2 degree
Classical / 8.401 0 5.553 11.72 25.896
Ritchey-Cretien / 8.381 0.004 2.591 6.001 14.931
Dall-Kirkham / 8.48 4,127 40.775 77.809 153.035

Table (3) Optical path difference for Cassegrain layouts
at different field angles

OPD at different field angles [wave]

Cassegrain Layout 0.0 degree | 0.05degree | 0.1degree | 0.2 degree
Classical 0 0.143 0.608 1.391
Ritchey-Cretien 0 0.07 0.343 0.865
Dall-Kirkham 0 0.716 3.693 7.217

Table (4) Transverse ray fan plot for Cassegrain layouts
at different field angles
Spherical aberration at different field angles [pm]

Cassegrain layout 0.0 degree | 0.05degree | 0.1degree | 0.2 degree
Classical 0 5 10 25
Ritchey-Cretien 0 0.2 0.6 1.5
Dall-Kirkham 0 40 100 160

Table (5) E-O sensor design parameters

Sensor parameter Symbol | Value Sensor Symbol | Value

parameter
Altitude H 600 Km Spatial GRD 2m

resolution

Central wavelength A 0.55 um | Detector pixel X 7.5 pm

size
Number of detector pixels per M 2048 Swath width W 4096 m
array

10
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From the data given in Table (5), the telescope design parameters shown in Figure (8) are
calculated as follows

Image plane (detector array )

Entrance aperture diameter (D)

Rav from edee Angular field of view (FOV)

of target

H
IFOW
&,
XM e
GRD

Angular resolution element (8g) = (IFOWV/2) . 5
= N Bore sicht Object plane (scene plane)
f«'\r,»; =1224/D[rad] s Seene radiugs=R, swath width=2R

Fig. (8) Design parameters of an electro-optical sensor

i) Calculation of entrance aperture diameter (D):

D=244AH/GRD = 2.44x0.55x10°x600x10°/2 = 40.26 cm

i) Calculation of effective focal length (f):

=x’fo

r _ — (7.5x10°° x600x10%) /2 = 2.25m
H _ GRD GRD

iii) Calculation of focal number (F#):

F#=f /D =2.25/0.4026 =5.588
iv) Calculation of total field of view (Q):
tan(Q/2)=W/2H , Q=2tan"(W/2H)=2tan"(4096/1200000) = 0.391°

From the design parameters of the proposed layout, ZEMAX optimized the telescope design
parameters to give the best image with minimum optical aberrations and adequate MTF as
shown in Figure (9) and Table (6).

11
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Fig. (9) Ritchey-Chrétien telescope with refractive correctors layout
Table (6) Simulated telescope design parameters
Design parameter Value Design parameter Value
Effective focal length [cm] 225 |Working F# 5.621
Primary mirror diameter [cm] 40.26 |Pr. mirror focal length [cm] 69
Secondary mirror diameter [cm] 9 Sec. mirror focal length [cm] 23
Primary-secondary mirrors spacing [cm] 52  |[Maximum field angle [degree] 0.391

The optimized data include the primary mirror conic coefficient, the secondary mirror conic
coefficient, the radius of curvatures for the surfaces of the refractive correctors, and the final
image location after the correctors as given in Table (7). The field curvature has been
corrected by placing a doublet of plano-convex lenses beyond the primary mirror. The first
lens is made up of silica, while the second lens is made up of BK7. In order to minimize the
field curvature the lenses have to fulfill the Petzval condition, nif; + n, f, = 0 [4], where n;
and n; are the refractive indices of the two lenses, and f; and f, are the focal lengths of the two
lenses respectively

Table (7) Telescope optimized design parameters

Design parameter Value Design parameter Value

Primary mirror conic coefficient -1.0107 | Secondary mirror conic -2.977
coefficient

Silica lens first surface curvature [cm] 39.858 | Silica lens second surface -26
curvature [cm]

BK?7 lens first surface curvature [cm] -5.758 | BKY7 lens second surface -32
curvature [cm]

Telescope total track [cm] 63.5575

The performance criteria of the proposed layout are shown in Figures (10), (11), (12) and

(13).

12
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Fig. (11) Proposed Ritchey-Chrétien layout MTF.
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Fig. (13) Proposed Ritchey-Chrétien layout transverse ray fan plot

Figure (10) shows that the image is well focused over the whole field with an Airy disc

diameter of 7.549 [um] giving a quality factor Q = 7.5 / 7.549 =

acceptable value.

0.9935 which is an

From Figure (11), the MTF at the working spatial frequency (66.67 line pairs/mm) is of an

accepted value (MTF>70%).
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Figure (12) emphasized that the telescope is diffraction-limited with maximum optical path
difference of 0.0139 wave (less than 0.25 wave) for the entire field.

Figure (13) shows that the layout offers maximum spherical aberration of about 0.23 um for
the entire field.

The simulated Ritchey-Chrétien layout reduces the spherical aberration and the coma, while
the astigmatism aberration still present due to the non-spherical geometry of both mirrors.

5. Conclusion

In this paper, ZEMAX software package was used for a preliminarily design, optimization of
the design parameters and evaluation of the performance criteria for three reflecting telescope
layouts used in electro-optical remote sensors. Also, a case study was held to verify an
accepted performance parameters with optimum telescope size and reduced optical
aberrations for a Ritchey-Chrétien layout fitted with refractive correctors. Finally, it is worth
to mention that investigating a telescope configuration is a trade-off and iterative process
between the telescope desired dimensions, based on the space mission requirements, and the
quality of the produced images, controlled by the selected telescope layout that suppresses the
optical aberrations and satisfies the desired performance parameters.
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