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Abstract: In the present work, a finite element model has been proposed to describe the 

response of isotropic and anisotropic smart beams with piezoelectric materials subjected to 

different mechanical loads as well as electrical load. The assumed field displacements of the 

beam are represented by First-order Shear Deformation Theory (FSDT), the Timoshenko 

beam theory. The equation of motion of the smart beam system is derived using the principle 

of virtual displacements. A hermit cubic shape function is used to represent the axial 

displacement u, the transverse displacement is represented by a quadratic shape function, and 

the normal rotation is represented by a linear shape function and the electric potential at each 

node. The shear correction factor is used to improve the obtained results. A MATLAB code 

is developed to compute the natural frequency and the static deformations of the structure 

system due to the applied mechanical and electrical loads at different boundary conditions. 

The obtained results obtained of the developed are compared to the available results of other 

investigators, good agreement is generally obtained. 
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Nomenclature 
Symbol Definition 

A  Beam cross section area. 

ijA
 Elements of extensional stiffness matrix. 

B Width of beam element.  

ijB
 Elements of coupling stiffness matrix. 

1c , 2c , 3c
 and 4c  Constant values. 

ijklC
 Elastic constants. 

CBT Classical beam Theory. 

ijD
 

Elements of bending stiffness matrix. 

iD
 Electric displacements. 

dxdydz
 Dimensions of the control volume. 

E Young’s modulus. 

1E  Young’s modulus in the fiber direction. 

2E  Young’s modulus in the transversal direction to the fiber.  
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Symbol Definition 

kE
 

Electric field ( kE    ). 

ijke
 Piezoelectric constituents' constants. 

 F  Element nodal forces.  

F  Element load vector. 

af   , tf  Axial and transversal forces. 

FSDT First-order shear deformation Theory. 

H Height of beam element.  

H  Electric enthalpy. 

HSDT Third-order shear deformation Theory. 

 K  Element stiffness matrix. 

 qqK  Mechanical stiffness matrix. 

 K  Electric stiffness matrix. 

 qK  Coupled mechanical - electric stiffness matrix. 

L Length of beam element. 

[M] Mass matrix of the beam element in stretching. 

xM  Moment per unit length. 

N Layer number in the laminated beam.  

N  Total number of layers in the laminated beam. 

xN  Force per unit length. 

Q Nodal displacement.  

q  The second derivative of the nodal displacement.  

ijQ
 Components of the lamina stiffness matrix. 

ijs
 Components of the lamina Compliances matrix. 

SSDT Second-order shear deformation Theory. 

T
 

Kinetic energy. 

T Traction force.  

U Internal strain energy. 

u, v, w Displacements of any point in the x-, y-, and z directions. 
u ,

v ,  
w  Reference surface displacements along x-, y-, and z- axes. 

43,21 , uanduuu  Axial displacements at the boundaries of beam element. 

eU  Electric energy. 

W  Work done external loads. 

1 2 , 3w ,w and w
 

Transversal displacements at the boundaries of beam element. 


xy

 
In-plane shear strain. 

xz  Transversal shear strain in x-z plane. 

x , y ,  z  Linear strains in the x-,y-, and x-directions. 

x
 , y

  Reference surface extensional strains in the x-, and y-directions. 
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Symbol Definition 
s

ij  Permittivity constants. 


x , 


y  Reference surface curvatures in the x-, and y-directions. 

i ,
 i  Axial and transversal displacements shape functions. 

  Total potential energy. 

  Mass density of structure material. 

x  Normal stress in the x-direction. 

  Surface charge. 

x  Angle of rotation. 


 Electric potential. 

1  and 2  Electrical shape functions. 

21  and  Rotation angles. 

i  Rotation displacement shape functions. 

  Natural frequency of the structure system. 

 

 

Introduction 
Several researchers are interested in solving the solid and smart beams structures using different 

theories.  They are also interested in considering the shear effects on their results. For solid 

beam structures, Khdeir and Reddy [1] presented the solution of the governing equations for the 

bending of cross-ply laminated beams using the state-space concept in conjunction with the 

Jordan canonical form. They used the classical, the first-order, the second-order, and the third-

order beam theories in their analysis. They determined the exact solutions for symmetric and 

asymmetric cross-ply laminated beams with arbitrary boundary conditions subjected to arbitrary 

loads. They also studied the effect of shear deformation, number of layers, and the orthotropic 

ratio on the static response of composite beams. They found that the effect of shear deformation 

caused large differences between the predicted deflections by the classical beam theory and the 

higher order beam theories, especially when the ratio of beam length to its height was low. They 

also deduced that the symmetric cross-ply stacking sequence gave a smaller response than those 

of asymmetric ones. In case of asymmetric cross-ply arrangements, they noticed for the same 

beam thickness that the beam deflection decreased with increasing the number of beam layers 

and the orthotropic ratio, respectively. 

 

Yildirim, et al. [2] studied the in-plane free vibration problem of symmetric cross-ply laminated 

beams based on the transfer matrix method. They considered the rotary inertia, the shear, and the 

extensional deformation effects on the Timoshenko’s  beam analysis which gave good results 

compared to that of other investigators for the natural frequencies associated with the first and 

higher modes.  Nabi and Ganesan [3] studied the free vibration characteristics of laminated 

composite beams using a general finite element model based on a first-order deformation theory. 

The model accounted for bi-axial bending as well as torsion. They also studied the effect of 

beam geometry and boundary conditions on natural frequencies. Their obtained results 

explained the effect of shear-deformation on vibration frequencies for various angle of ply 

laminates.  
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Chandrashekhara and Bangera [4] developed a finite element model based on a higher-order 

shear deformation theory with Poisson’s effect, in-plane inertia and rotary inertia. They 

concluded that: (i) the shear deformations decrease the natural frequencies of the beam, which in 

turn, decrease by increasing the material anisotropy,(ii) the clamped-free boundary condition 

exhibits the lowest frequencies, (iii) the increase of fiber orientation angle decreases the natural 

frequency, and (iv) the natural frequencies increase with the increase of the number of beam 

layers. 

 

For smart beam structures, Henno and Huges [5] used tetrahedral piezoelectric elements for 

vibration analysis. They introduced the concept of “static condensation of the electric potential 

degrees of freedom”, which presents the electric potential and loads written in terms of the 

mechanical properties of the structure. Their study was considered as a reference for electro-

elastic finite element modeling of smart structures. 

 

Crawley and Lazarus [6] studied theoretically and experimentally the induced strain actuation of 

an intelligent structure. The general procedures for solving the strain energy equations with 

Rayleigh-Ritz technique were presented. The use of Ritz approximate solutions leaded to 

understand the system design parameters and to model the smart structure systems. Substantial 

agreement between the measured and predicted deformations was found. Their obtained results 

demonstrated that the induced strain actuation was effective for controlling the structure 

deformation. 

 

Ang k. k., et al. [7] presented analytical solutions determining the length and position of strain-

induced patch actuators that controlled the static beam deflections. Their solutions were derived 

using the exact relationships between the bending solutions of the adopted Timoshenko beam 

theory and the corresponding quantities of the Euler–Bernoulli beam theory. Examples of point 

deflection control for shear deformable beams subjected to various loads were presented to 

validate the use of their derived solutions. They discussed the importance of contributing the 

transverse shear deformation effects on controlling the beam deflection. They predicted that the 

error resulting due to neglecting the effect of transverse shear deformation represented only a 

few percent; such a level of accuracy might not be acceptable in applications where very precise 

control was required, e.g. MEM structures. Similarly, for beams where the shear parameter was 

substantially large, it would be erroneous to ignore the significant effect of transverse shear 

deformation.  

 

Clinton, et al. [8] developed a theoretical formulation to model a composite smart structure. 

Their model was based on a high order displacement field coupled with a layer-wise linear 

electric potential. They used a finite element formulation with a two node Hermitian element 

and layer-wise nodes to derive the main equations of motion. They predicted the deflection and 

curvature of the beam due to the variation of actuator locations and orientations. They deduced 

the following: (i) the linearity between tip displacement and voltage of piezoelectric 

polyvinylidene bimorph beam may not necessarily apply on the other structural configurations, 

(ii) as the substrate stiffness decreases, the obtained actuation increases, (iii) the position of the 

active actuator near the fixed end of a cantilever has a great effect on beam curvature, (iv) the 

increase of the actuator numbers can increase the beam deflection and curvature, and (v) the 

rotation of the substrate 20 degrees around the z-axis results-in increasing the deflection and 

voltage compared to the un-rotated one, and the greatest effect could achieve by rotating the 

actuators placed in the middle of the beam.  
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Saravanos and Heyliger [9] investigated two separate theories. In the first approach, the 

transverse displacement component is assumed to be constant through the-thickness; in the 

second, the transverse displacement is allowed to vary for the inclusion of the interlaminar 

normal strains and the through-the thickness piezoelectric component. In both approaches, the 

in-plane displacements and the electrostatic potential is assumed to have arbitrary piecewise 

linear variations through the thickness of the laminate. The results also indicate the ranges of 

applicability and limitations of simplified mechanical models of sensory/active composites. Also 

their predicted natural frequency was in good agreement with that of Robbins and Reddy [10]. 

 

Wang and Quek [11] presented the results of dispersion wave propagation curves for beams with 

surface-bonded piezoelectric patches. They used Euler and Timoshenko models of beam theory. 

They introduced dispersion curves for different thickness ratios between the piezoelectric layer 

and the host beam structure. These curves were obtained by assuming a half-cycle cosine 

potential distribution in the transverse direction of the piezoelectric material. In addition, the 

phase velocity for wave number was close to infinity, and the cutoff frequencies based on the 

Timoshenko beam model were also presented. They predicted that the phase velocity decreased 

as thicker piezoelectric materials were used. In addition, the cutoff frequency was a function of 

the ratio between the shear and flexural rigidities of the beam. 

 

Zhou Yan-guo, et al. [12] developed an efficient analytical model for piezoelectric bimorph 

based on the improved First-order Shear Deformation Theory (FSDT). Their model combined 

the equivalent single-layer approach for mechanical displacements and a layer wise-type 

modeling of the electric potential. Shear correction factor ( sk ) was introduced to modify both 

the shear stress and the electric displacement of each layer. Excellent agreement between the 

model predictions with sk = 8/9 and the exact solutions was obtained for the resonant 

frequencies. The results of their model and their numerical analyses revealed that: (i) 

piezoelectric bimorphs have similar behavior for series and parallel arrangements under the 

same loading, (ii) in dynamic analysis, accurate bending vibration frequencies can be obtained 

by the model even for thick beam (Aspect ratio=5), whereas the classical elastic thin beam 

theory or plate theory gives low accurate results; (iii) in FSDT model, further investigation is 

needed for determining the value of shear correction factor of piezoelectric laminates. 

 

Lau, et al. [13] develop a new two-dimensional coupled electro-mechanical model for a thick 

laminated beam with piezoelectric layer and subjected to mechanical and electric loading. The 

model combined the first order shear deformation theory for the relatively thick elastic core and 

linear piezoelectric theory for the piezoelectric lamina. Rayleigh-Ritz method was adopted to 

model the displacement and potential fields of the beam, and the governing equations were 

finally derived using the variational energy principle. Their predicted results showed that the 

electric potential developed across the piezoelectric layer was linear through the thickness and 

the deflection response of the beam was proportional to the applied voltage. 

 

Bendary, et al. [14] proposed a simple finite element model to describe the behavior of advanced 

Euler's smart beams with piezoelectric actuators, made of isotropic and/or anisotropic materials, 

when subjected to axial and transverse loads in addition to electrical load. Both the hermit cubic 

and Lagrange interpolation functions were used to formulate the finite element for the electro-

elastic model. The obtained results were compared with the corresponding predictions of other 

investigators and found reasonable. 
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In the present work, a finite element model has been proposed to predict the behavior of 

advanced smart Timoshenko beams with piezoelectric materials, made of isotropic and/or 

anisotropic materials, when subjected to axial and transverse loads in addition to electrical load. 

The constant transverse shear stresses predicted by the used Timoshenko beam theory are 

always corrected by introducing the shear correction factor. The value of this factor is 

determined by equating the strain energy due to transverse shear stresses with the strain energy 

due to the true transverse stresses predicted by the three-dimensional elasticity theory [15]. The 

equation of motion is derived based on the virtual displacements principle. A MATLAB code is 

constructed to predict the behavior of advanced beam structure due to different mechanical and 

electrical loads at different boundary conditions.   

 

 

Theoretical Formulation 
 

The displacements field equations of the beam are assumed as [1]: 
 

   
3

2

1 2 3( , ) ( ) ( ) ( )
dw dwzu x z u x z c c x c z x c x

hdx dx
  

   
        

   
, (1)a 

  
( , ) 0v x z  , (1)b 

And  
( , ) ( )w x z w x . (1)c 

 

where u ,v  and w  are the displacements field equations along the x , y  and z  coordinates, 

respectively,  0u and ow   denote the displacements of  a point ( , ,0)x y  at the mid plane, and 

( ) x  and ( ) x  are the  rotation  angles of the cross-section  as shown in Figure (1). 

 

Figure (1):  Deformed and un-deformed shape of Timoshenko beam [16]. 

 

Selecting the constant values of Eqn. (1)a as:
 1 , 2 30, 1 0, 0   c c c c , the 

displacements field equations for Timoshenko first-order shear deformation theory (FSDT) at 

any point through the thickness can be expressed as [16]: 

 

                                               )()(),( 0 xzxuzxu x  

                                           ( , ) 0v x z                                                       

                                          
( , ) ( )w x z w x

 
(2)  
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The strain-displacement relationships are obtained by differentiating the assumed displacements 

field equations, Eqn. (2), and can be represented by: 

 

( , ) ( , )( , , )
( , , )


   

    
  

x
xx xx xx

u x z x zu x y z
x y z z z

x x x
   (3)a 

( , , )
( , , ) 0


 


yy

v x y z
x y z

y
   (3)b 

( , , )
( , , ) 0


 


zz

w x y z
x y z

z
   (3)c 

o0
xz x xz

dwu(x,y,z) w(x,y,z)
(x,y,z)

z x dx

 
       

 
 (3)d 

( , , ) ( , , )
( , , ) 0xy

v x y z u x y z
x y z

x y


 
  

 
   (3)e 

yz

w(x,y,z) v(x,y,z)
(x,y,z) 0

y z

 
   

 
   (3)f 

 

According to the assumptions of the first order Timoshenko beam theory 

 0      yy zz xy yz
, the only non-zero stress and strain components are xx ,

 xz , xx ,
 

xz  [15]. The strains at any point through the thickness of the beam can be written in matrix 

form as:  

xx xx xx

xz xz xz

z
  

  

    
      

       

(4)a

 
Where  

( , )
( , )





xx

u x z
x z

x
 

(4)b

 

( , )





 


X
xx x z

x
 

(4)c

 
And  

 

( , )     xz x xz

dw
x z

dx
 

(4)d 

 

xx  is the reference surface extensional strain in the x-direction, 

xz  is the in-plane shear strain, 

and 
xx is the reference surface curvature in the x-direction. 
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Stress-Strain Relations 
 

Case I: Isotropic Beam 
The stress-strain relation is given as [16]: 

 xx xx  

 

(5) 

  xz xz s xzG k G   

 

(6) 

where sk is the shear correction factor. 

 

Case II: Anisotropic Beam 
The stress-strain relation of a lamina in matrix notation is given by [17-18]: 
 


























xz

xx

sxz

xx

Qk

Q









55

11
~

~

 

(7) 

The complete derivation of Eqn. (7) can be seen in Appendix A.  

 

Piezoelectric Constitutive Relations 
In a linear piezoelectric theory, the electric enthalpy density H is expressed by [19-20]:  

jiij
s

ijkkijklijijkl EEEecH 
2

1

2

1


 

(8) 

where ijklc , kije , and 
s

ij   are the elastic, piezoelectric, and permittivity constants, respectively.  By 

taking the derivatives of Eqn. (8) with respect to the strain and the electric field components 

there result the piezoelectric constitutive equations [21-22]: 

kkijklijklij Eec  

 

(9) 

k

s

ikklikli EeD  

 

(10) 

where, i ,  j =1,….,6   and    k , l =1,….,3  

 

Thus, the only non-zero terms in the present model are as follows [23]: 

 

 




































































z

s

x

z

xz

xx

s

z

xz

xx

E

Ee

Ee

e

Qk

Q

D 33

15

31

31

33

11

~

~

~

000~
0

~
0

00
~











,

 

(11) 

 

where Q'
s
 are  given in appendix A, and the piezoelectric coefficients are given by:      

          22

3232~

Q

ees

zz

s

zz        
22

12
323131

~

Q

Q
eee            

24

1425
1515

~

e

ee
ee                              

The electric field components are related to the electrostatic potential    by the equation: 

3E
z

E kk 






 .

 

(12) 
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Energy Formulation 
The total energy of the structure system is represented by [24]: 

WUU e  ˆ ,

 

(13) 

where the internal strain energy Û  is represented by [25]: 

dvU ij

v

kl
2

1ˆ ,

 
(14) 

and the electric energy eU  is expressed by [21-22-26]: 


v

ike dvDEU
2

1

 
(15) 

For an electro-mechanical medium, the internal strain energy for the structure system U  is the 

sum of internal strain energyÛ , Eqn. (14), and the electric energy eU , Eqn. (15), such as: 

 dvEEEecU
v

ji

s

ijijkkijklijijkl 







 

2

1

2

1

 
(16) 

The work done due to the external mechanical and electrical loads represents the sum of the 

work done by surface traction force t , transverse force tf , axial forces af , and the surface charge 

density  , and it is expressed by [23-25]: 

                                      dxdzufdxdywftuW
R

a

R

t                                        (17) 

where   is the electric potential. 

 

The mass matrix can be obtained using the kinetic energy which is given by: 

 dvwuT
v

  22

2

1


 
(18) 

where, ρ is the mass density of the beam material. 
 

Substituting by the strains components of Eqn. (2) into Eqns. (16), (17), and (18) the equations 

representing the strain energy, the external work, and the kinetic energy take the following 

forms: 

 

dv

z

x

w

x
z

x

u

z
e

x

w
Qk

x
z

x

u
Q

U
v

s

x
x

xs
x





































































































































33

2

00
31

2

0
55

2

0
11

~

2

1

~~~

2

1










  (19) 

                                            dydzufdxdywfzutW
R

a

R

tx   000  ,                       (20) 

, and 

                                                         dvwzuT
v

x 
2

0

2

0
2

1
                                                (21) 

where the surface charge density   is defined as [23]:   V
hp

s

33
  .     
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Finite Element Formulation 
In formulating the finite element equations, a five nodes beam element with nine mechanical 

degrees of freedom representing the deformations u, w, and , in addition to two electric degrees 

of freedom are used as shown in Figure (2). The predicted results of the model are converged 

and used for calculating the deflection and the natural frequency of the smart beam structure.  

 

 

Figure (2): Element with nodal degrees of freedom.  

 

The axial displacement can be expressed in the nodal displacement as follows [16-27]: 

                                



4

1

443322110

j

jjuuuuuxu                                               (22) 

The Hermit cubic shape functions  j  are found to be: 

                                 
32

1 231 


















L

x

L

x
  

                                   
2

32

2 2
L

x

L

x
x 








  

                                 
32

3 23 
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The transversal displacement w  can be expressed in terms of the nodal displacement as [28]: 
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where, the quadratic interpolation shape functions are given by: 
2
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(25) 

The rotation angle x  is expressed as [29]: 
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2
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2211)(
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jjx x                                                         (26) 

where the linear interpolation shape functions j   have the form: 

                                                           
L
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For the piezoelectric element, the electric potential function takes the form [30]: 
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The electric potential is considered as a function of the thickness and the length of the beam, 

thus by the product of equations (27) and (29) and impose the homogenous boundary condition 

on the bottom surface to eliminate the rigid body modes. The shape functions are finally takes 

the form [14]: 
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Variational Formulation 
By applying the principle of the virtual displacements to a representative physical element of the 

beam, thus, 

                                       TWU                                                                                      (31) 

 

The first variation of the strain energy, the external work, and the kinetic energy presented in 
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Substituting by Eqns. (22), (24), (26), and (28) into Eqn. (32), one can obtain: 

 

                                                dvHHHU
v

  321                                                  (33) 

where, 
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, and 

 








  

 

2

1

2

1

333
~

j i

i
i

j

j

s

dz

d

dz

d
H







                                     

                                                (36) 

 

Using Eqns. (34), (35) and (36), Eqn. (33) takes the following form: 
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In Eqn. (37), perform the integration through the thickness, the stiffness matrix elements are 

represented by: 
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For isotropic beam, the constants EQ 11

~
, and GQ 55

~
.  The laminate stiffness matrix elements 

are:  

   1

1

1111

~




 kk

k

N

k

zzQA

 

   1

1

5555

~




 kk

k

N

k

zzQA

 
(38)b 

   2

1

2

1

1111

~

2

1




  kk

k

N

k

zzQB     
kkk

k

N

k

zzQD 3

1

3

1

1111

~

3

1




  . 

The first variation of the external work, Eqn (20), is expressed as:  
 

      dydzufdxdywfzutW
R

a

R

tx   000 

 
(39) 

By substituting Eqns. (22), (24), (26), and (28) into Eqn. (39), one can obtain: 
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          dxdydydzufdxdywfdxdytzdxdyutW i

R R

jiajit

R

jx

R

ji

R

j    

 
(40) 

 

Thus, the elements of the load vector are: 
 

   dydzfdxdytF

h

h

b

b

a

b

b

L

  
 


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2/

2/

2/

1

2/

2/ 0

111                dydzfdxdytF

h

h

b

b

a

b

b

L

  
 


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2/

2

2/

2/ 0

212       

 

   dydzfdxdytF

h

h

b

b

a

b

b

L

  
 
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121               dxdyfF

b

b

L
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


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2/ 0

222       dxdyfF

b

b

L

t 



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2/ 0

323                      (41) 

 

 dxdytzF

b

b

L

 



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2/ 0

131                          dxdytzF

b

b

L

 



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2/ 0

232   

 

 dxdyF

b

b

L

 

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2/ 0

141                            dxdyF

b

b
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 

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The first variation of the kinetic energy is expressed as:    

                                 dtdvwuT
t

t
v

 



























2

1

22

2

1
                                                (42) a 

                                dtdvwwuuT
t

t
v

  









2

1

                                                    (42) b 

By integration by parts with respect to time, note that the time 1t and 2t are arbitrary, except that 

at 1tt   , and 2tt  , all variations are zero. 

                                     dvwwuuT
v

                                                                    (43) 

By substituting the shape functions Eqns. (22-27) in Eqn. (43), the mass matrix elements are 

expressed as follows: 

                   dxIM i

L
T

i 
0

011          i =1,..,4                                012 M                    

                   

L

j

T

i dxIM
0

113       i =1, ..,4  , and   j=1,2 

                021 M            

L

i

T

i dxIM
0

022        i =1,..,3             023 M                     (44) 

                   

L

j

T

i dxIM
0

131    i=1,2 , and j =1, ..,4                 032 M  

           

L

i

T

i dxIM
0

233    i=1,2      and        
A

dAzzIII 2

210 ,,1,,   

where I  is the moment of inertia and  ρ is the mass density of the material.  
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Substituting by the shape function equations (23), (25), (27) and (30) into Equations (38)a, Eqn. 

(41) and Eqn.(44), and perform the integration for a beam element with length L, width b and 

height h, The elements of stiffness matrix, load vector, and mass matrix are obtained and given 

in Appendix B.  

 

 

Equation of Motion    
The equation of motion of the whole structure system is represented by: 
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qqqqq
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





00

0

 

(45) 

 

where uuM  is the global mass matrix of the structure and U  is the global nodal generalized 

displacements coordinates vector,    is the global nodal generalized electric coordinates vector 

describing the applied voltages at the actuators [23],  F  is the applied mechanical load vector, 

and  G  is the electric excitation vector.  
 

The proposed finite element model is presented and tested for verification in Ref. [31] for the 

analysis of solid Timoshenko beams only. For the present study, a MATLAB code is 

constructed to perform the finite element analysis of isotropic and anisotropic smart beams with 

piezoelectric materials using Timoshenko beam theory. The static and free vibration analyses are 

preformed for beams subjected to different kinds of mechanical and electrical loads. The inputs 

to the code are the geometric properties of the structure such as the dimensions, the moment of 

inertia of beam, the adhesive layer, the piezoelectric patch, number of layers, ply orientations 

angle, and the material properties of the structure system units. The present model is capable of 

predicting the nodal (axial and transversal) deformation, and the fundamental natural frequency 

of the beam.  

 

 

Validation Examples 
In the following, the behavior of a laminated aluminum beam and a graphite epoxy composite 

beam with a piezoelectric actuator are investigated using the interactive MATLAB code. The 

geometry of the smart beam, structure substrate, earth connection, adhesive layer, and 

piezoelectric layer (PZT- 4) are shown in Figure 3. The properties of both isotropic and 

anisotropic beams are listed in Table 1 [9].  

 
Figure (3): Smart Beam with PZT layer. 
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Convergence of the Proposed Model Results 
The convergence of the predicted results of the MATLAB code is checked for both isotropic and 

anisotropic smart beams, respectively. The code is fed with the data listed in Table 1 for each 

type of smart beams. Figure 4 plots the predicted change of transverse deflection with the 

number of elements for the isotropic smart beam, whereas Figure 5 plots the same behavior for 

anisotropic smart beam.  For each smart beam, it is seen from its respective figure that the trend 

of the predicted transverse deflection decreases with increasing the number of elements until it 

finally reaches a constant asymptotic value at certain numbers of elements. The obtained result 

proves the convergence of the predicted results of the present finite element model. 
 

Table (1): Material properties of aluminum beam, T300/934 Graphite/ 

epoxy [0] composite Beam, and piezoelectric actuator [9]. 
 

Properties 
Aluminum 

beam 

T300/934 Graphite/ epoxy 

[0] composite beam 

Adhesive 

layer 

PZT-4 

actuator 

11E  (GPa) 68.9 126 6.9 83 

33E  (GPa) 68.9 7.9 6.9 66 

13  0.25 0.275 0.4 0.31 

13G  (GPa) 27.6 3.4 2.46 31 

31d  (m/v) 0 0 0 1210122   

33d (m/v) 0 0 0 1210285   
s

33  (F/m) 0 0 0 910*53.11 
 

  (
3/ mkg ) 2769 2527 1662 7600 

Length (m) 0.1524 0.1524 0.1524 0.1524 

Thickness( m ) 0.01524 0.01524 0.000254 0.001524 

Width (m) 0.0254 0.0254 0.0254 0.0254 
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Figure (4): The predicted change of transverse deflection with 

 number of elements for smart isotropic beam. 

2 layers of AL 

1 layer of PZT-4 
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Figure (5): The predicted change of transverse deflection 

 with number of elements for smart anisotropic beam. 

 

Smart Beam Results 
 

Static analysis 
Each of isotropic or anisotropic smart beams with its respective data listed in Table 1 is 

subjected to a constant electric potential of 12.5 kV. The electric load was applied on the upper 

surface of the PZT-4 layer, while the lower surface was grounded (0 V) [14]. The proposed 

model predicts the transverse deflections of the isotropic and anisotropic smart beams, 

respectively, using number of elements of twenty, the parameter  311131 dce  , and shear 

correction factor ks of 5/6. Figure 6 plots the predicted transverse deflections obtained by the 

present model for the isotropic beam (AL-PZT), whereas Figure 7 plots the predicted transverse 

deflections for the anisotropic beam (Graphite/epoxy [0] composite T300/940-PZT). The 

corresponding predictions obtained by Refs. [8-9-14] for each smart beam are plotted on their 

respective figure. Good agreement is generally obtained between the obtained results by the 

present model and that of Refs. [8-9-14].  

 

The response of both cantilever beams of aluminum and T300/934 Graphite/epoxy [0/90/0/…] 

composite beams operating in a sensory mode with a transverse load of 1000 N upwards at the 

free end of the beam  is  investigated. The lower surface of the piezoelectric layer is grounded (0 

volt) and the signal is acquired from the electrode on the top surface. The Effect of number of 

layers of the beams on the transverse deflection is shown in Figure (8) and they compare with 

the results obtained by Ref. [14]. It is seen from the figure that as the number of layers increases, 

the beam stiffness increases, and the non-dimensional transverse deflection decreases. 

 

Figures (9) and (10) present the effect of the applied voltages on the transverse displacements of 

aluminum beam and T300/934 Graphite/epoxy [0] composite beam with PZT-4 actuator, 

respectively. For each smart beam, the corresponding predicted effect using the proposed model 

of Ref. [14] is plotted on its respective figure. It is seen from both figures that the transverse 

displacement increases with the increase of applied voltage. In addition, the obtained results of 

the proposed model are matched with that predicted by Ref. [14].  

  2 layers of T300/934 

  1 layer of PZT-4 
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Figure (6): Comparison between the transverse deflections obtained by the proposed 

model and that of Refs.[8- 9-14] for aluminum beam with PZT. 
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Figure (7): Comparison between the transverse deflections obtained by the proposed 

model and that of Refs.[8-9-14] for T300/934 Gr./epoxy [0] composite beam with PZT. 
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Figure (8): Non-dimensional transverse deflection vs. non-dimensional 

 distance along the beam lenght x/L. 
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Figure (9): Transverse displacement vs. applied voltage for 

aluminum beam with piezoelectric actuator. 
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Figure (10): Transverse displacement vs. applied voltage for T300/934  

Graphite/epoxy [0] composite beam with piezoelectric actuator. 
 

Figures (11) and (12) show the effect of applied voltage on the axial displacements of aluminum 

beam and T300/934 Graphite/epoxy [0] composite beam with PZT-4 actuator. For each smart 

beam, the corresponding predicted results by the model of Ref. [14] are plotted on its respective 

figure. It is seen from both figures that the axial displacement increases almost linearly with 

increasing the applied voltages. In addition, the increased value of axial displacement is found to 

be an order of magnitude smaller than the increased value of the transverse displacement.  

 

 

Dynamic Analysis 
Table 2 lists the free dynamic predictions of the fundamental natural frequencies of the 

aluminum beam when the applied voltage on the upper surface of the PZT-4 is equal to zero. 

The natural frequencies predicted by the present model are compared with that of Refs. [9-10-

14]; excellent agreement is obtained by the present model using number of elements of twenty.   

 
Table (2): Predicted natural frequencies of aluminum 

 beam with single PZT- 4 layer. 
 

No. of 

elements 

Natural frequencies obtained by 

Ref. [9] Ref. [10] Ref. [14] 
Present 

Model 

10 539.3 539.7 530.9 540.5 

20 538.6 539.3 530.9 539.3 

30 538.5 539.1 530.8 539.1 

17 

Model 
 

Ben. et al. [14] 

                Model 
     
  

 Ben. et al. [14] 
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Figure (11): Axial displacement vs. applied voltage for aluminum 

 beam with piezoelectric actuator. 
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Figure (12): Axial displacement vs. applied voltage for T300/934  

Graphite/epoxy [0] composite beam with piezoelectric actuator. 

 

The obtained results of the proposed finite element model prove its validity and predictive 

capabilities in comparison with the results of some models proposed by other investigators as 

follows: 

 

1. The proposed model is based on Timoshenko beam theory which does not need more 

computational effort as the layer wise method that used for constructing the model proposed 

Ref. [14]] 

     T300/934-PZT 

     Ben. et al. [14] 

                Model 
  

 Ben. et al. [14] 
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by Saravanos and Heyliger due to the greater degrees of freedom used [9].  In addition, the 

present model has the following advantages: 

-  It represents the strong heterogeneity in composite laminate with  piezoelectric layer 

model 

-  It is capable of capturing the effects induced from the discontinuous variation of properties 

and anisotropy through-the-thickness of the laminate.  

-  It is suitable for predicting the response of moderate laminate thicknesses and smart 

structure system which entails additional heterogeneity from the piezoelectric layer and 

induced strain actuation [9]. 

-  The use of the shear correction factor improved the present model prediction. 

2. The present model has better predictions compared to the model proposed by Bend. et al. [14] 

in which the CBT theory is used for constructing such model without including the shear 

effect. 

3. The predictions of the present model have lower accuracy than the predictions of the model 

proposed by Clinton et al. [8] for the following:  

-  The mathematical model of Ref. [8] was based on a high order displacement field coupled 

with a layer wise linear electric potential. However, the predictions of the present 

Timoshenko model with suitable number of elements not only give close results to that 

predicted by the model of Ref. [8], but also it does not need a computational effort as this 

reference done.  

-  The present model allows any element to be non-active or active (an actuator or a sensor), 

like the model of Ref. [8] highlighted.  

 

 

Conclusions 
A finite element model has been proposed to predict the static and the free dynamic 

characteristics of laminated aluminum and fiber reinforced composite beams with piezoelectric 

materials using Timoshenko beam theory. The following conclusions have been drawn: 

 

1. The good agreement between the present model predictions using Timoshenko beam theory, 

and the corresponding predicted results of other investigators using a layer wise theory with 

different models and HODT modeling, proves the predictive capabilities of such model with 

less computational effort. 

2. The present model predictions using Timoshenko beam theory was better than the results 

obtained by a simple Euler-Bernoulli's beam theory but it required more computational effort 

due to inclusion of the transverse shear effects.  

3. The validity of representing the electric potential function in the proposed finite element 

model of the Timoshenko beam. 

4. The proposed finite element model results were obtained at resizable number of elements 

5. As the applied voltage increases, both the transverse and axial displacements increase, 

respectively. 

6. As the number of layers increases, the transverse deflection decreases.  

7. The inclusion of shear correction factor in the present model improved its predictions. 

8. The model can be extended to the following: 

- Using the simple higher order shear deformation theory made by Reedy, to improve the 

predictions of the transverse shear effects. 

- Taking into account the geometric nonlinearities in the finite element model which may 

improve the obtained results. 
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Appendix A  
The stress-strain relation for a thin orthotropic lamina of an anisotropic beam having 

coincidence of principal axis on geometric axis is given by [18]: 
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(A-1) 

   
where, ijQ  is the reduced stiffness coefficient.  

  
The components of the lamina stiffness matrix in terms of the engineering constants are given 

as: 
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where; 1E  and 
2E  are the Young’s modulus in the longitudinal and the transversal directions of 

the fiber, respectively, and
12 , and 

21 are Poisson’s ratios in the two directions. The stress-

strain relation of a lamina in the geometric directions x, y and z is given by: 
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where ijQ is the transformed reduced stiffness coefficient. 

 

The stress-strain relation of a lamina is rewritten as [23]: 
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where ijQ is the transformed reduced stiffness coefficient and given by: 

For anisotropic layer: 
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For isotropic layer: 

              EQ 11

~
            GQ 55

~
        , and         ijij QQ                                        (A-5) b 

The resultant forces and moments per unit length, xN and xM , acting on a lamina are obtained 

by integrating the stresses in each layer through the lamina thickness as:  
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Substituting by Eqn. (13) into Eqn. (14) and (15) yields: 
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By substituting Eqn. (4) into Eqn. (A-4) yields the stress-strain relation for the lamina as 

follows: 
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The mid-plane strains and curvatures are given in terms of forces and moments per unit length 

as [17]: 
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where
 ijij BA ,  and ijD  represent the elements of the lamina extensional stiffness, coupling 

stiffness and bending stiffness matrices, respectively, and they are given by: 
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Appendix B 
The element load vector is: 
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The element stiffness matrix  qqK   for isotropic Timoshenko Beam is: 
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The element stiffness matrix  qqK   for Anisotropic Timoshenko Beam is: 
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The element mass matrix  qqM  for the Timoshenko Beam is: 
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         

     

           

 

1 1

1 1

13
0 0 0

20 105 420 140 30

8
0 0 0 0 0 0

15 15 15

9 3 13 13 11 7
0 0 0

70 20 420 35 210 20

13

420

I L I L I L I L I L

I L I L I L

I L I L I L I L I L I L

I L

           
           

           
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     
     

           
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(B-4) 
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The electro-mechanical coupled stiffness matrices are: 

   

   

31 31 31 31 31 31 31 2

31 31 2 31 31 31 31 31 1

 
1 5 1 2 1 1 1

1
2 6 12 3 2 12 6

1 1 1 2 1 1 5

2 6 12 3 2 12 6

p p p p p p p p p

q

p p p p p p p p p

T

e b e b e L b e b e b e L b e b

K

e b e b e L b e b e b e L b e b



 
     

     
      
  

 
(B-5) 

33 33

33 33

1 1

3 6

1 1

6 3

s s

p p p p

p p

s s

p p p p

p p

L b L b

h h
K

L b L b

h h



 

 

 
  
 
    
 
  
  

 
(B-6) 

   

   

31 31 31 31 31 31 31 2

31 31 2 31 31 31 31 31 1

1 5 1 2 1 1 1
1

2 6 12 3 2 12 6

1 1 1 2 1 1 5

2 6 12 3 2 12 6

p p p p p p p p p

q

p p p p p p p p p

e b e b e L b e b e b e L b e b

K

e b e b e L b e b e b e L b e b


 
     

     
      
  

 
(B-7) 

where  
2 2

31

1 31

2 2
31

2 31

1 1

4 2 4 3

1 1

4 2 4 6

p

p p p

p

p

p p p

p

e b h h
h e L b

h

e b h h
h e L b

h

    
            

    
            

 
(B-8) 

 

where, p refers to the piezoelectric layer. 


