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Abstract: A gradient based aerodynamic optimizer has been built for nozzle inverse design 

problem. Solution sensitivity at nozzle walls is calculated using the analytic solution of quasi 

one dimensional nozzle flow while the flow field solution is computed using CFD finite 

volume solver. The gradient of the inverse design objective function is computed using the 

solution sensitivity at nozzle walls which is computed analytically, and using also the 

computed Mach distribution resulting from CFD simulation. As the nozzle wall contour 

changes during optimization iterations; we used linear spring mesh movement analogy to 

adapt the mesh grid points in the entire flow field to the new nozzle contour shape. A 

supersonic inverse design test case is presented and it shows the success of the proposed 

method as an aerodynamic design and optimization technique. 

 
 

1. Introduction 

Aerodynamic design using numerical optimization has been widely used in aerospace 

industry nowadays [1]. Gradient based optimization techniques is known to be faster in 

finding the optimal point in a design space compared to the non-gradient based optimization 

techniques[2]. Quadratic programming is the fastest among gradient based optimization 

methods and hence it is implemented in our research[3].  

We use MATLAB
®

 optimization toolbox as an optimizer; Quasi- Newton line search method 

is used with BFGS approximation of the Hessian matrix; it is chosen due to its super-

linear/quadratic convergence to the optimal design point [3, 4]. 

The objective function gradient can be calculated using finite differences or adjoint strategy 

and it requires a lot of effort and programming [5]. We present results of using CFD 

simulations to calculate the objective function value, and using the analytic quasi one 

dimensional flow equations to calculate the solution sensitivity (wall Mach sensitivity) with 

respect to geometry design variables. The nozzle contour is represented by higher order least 

squares spline which is controlled by geometry design points. In order to avoid grid 

regeneration after updating the nozzle contour during optimization iterations, we use spring 

analogy mesh morphing scheme to update the mesh grid in the entire flow field to fit with the 

new boundary shape (nozzle walls) [6, 7]. Typical aerodynamic optimization cycle is shown 

in figure (1).  We present a supersonic inverse design test case which shows that the use of a 

simple analytic solution as a gradient evaluation technique can be of useful use in 

aerodynamic design. 
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Figure (1): Schematic flowchart of the aerodynamic optimization cycle. 

 

 

2. Flow Governing Equations 
Euler’s flow model is used, the integral form of the two dimensional Euler’s equations can be 

written as, 

 ˆ. . . 0
d

Q dV F n dl
t




 

   , (1) 

where  jninn yx ˆ  is the outward pointing normal to the control volume faces, and 
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Equation (1) is integrated for each control volume in the unstructured mesh used for 

numerical simulation. Computing element faces fluxes is done using Roe flux differencing 

scheme [8]. The flow properties at control volume center point is updated as follows, 
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3. Flow Sensitivity Calculations 
In this section, we present the equations needed to compute the flow sensitivity values at the 

wall for Laval nozzle flow and we will compare it with the flow sensitivity values computed 

using finite difference. Figure (2) shows the mesh grid used for CFD simulation, the nozzle 

contour is described by the following equation, 

 

    .  
 

  
/           . 

 

 
 

Figure (2): Unstructured triangular mesh of Laval nozzle 

 

The flow sensitivity with respect to geometry design variables using finite difference strategy 

requires two CFD simulations, and is calculated as follows, 

 

 Calculate the flow solution Q as the geometry design variables is changed from its 

original value     to      . Using CFD simulation. 

 Calculate the flow solution Q as the geometry design variables is changed     to 

      using additional CFD simulation. 

 Solution sensitivity is calculated as, 
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The solution sensitivity can be approximated using the analytical quasi one dimensional 

solution. As an example of we present a procedure to evaluate density sensitivity with respect 

to specific y location in the nozzle contour, which can be summarized as follows, 

 Let      . 
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 (4) 

Figure (3) shows a comparison between the density sensitivity computed using analytical 

quasi one dimensional relations as of equation (4), and the density sensitivity calculated using 

finite difference as of equation (3). In this validation case, nozzle inlet was at sonic speed, the 

geometry design variable is the wall point at the mid section of the nozzle. The analytical 

density sensitivity value resulting from equation (4) is (-0.222) while the finite difference 

density sensitivity using equation (3) is of value (-0.251). The analytical sensitivity value is of 

the same order of magnitude of the finite difference sensitivity and doesn’t require two 

expensive CFD simulations to be evaluated. This will dramatically reduce the amount of 

computational work needed to evaluate the objective function gradient needed for gradient 

based optimizer. 
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Figure (3): Density sensitivity computed using finite difference “green” 

 and analytical quasi one-dimensional relations “red”. 

 

 

4. Geometry Parameterization 
The wall contour can be represented using a higher order polynomial, to prevent obtaining 

oscillations that gives non smooth geometry; the wall contour polynomial is obtained using 

number of control points larger than the number of its unknown coefficients. The higher order 

polynomial that is used to represent the nozzle contour take the form: 

 

  ( )            
     

     
     

     
     

   (5) 

 

                , 

 

we use 11 control points to find the wall contour as shown in figure (4); the resulting least 

squares system can be written as follows, 
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Figure (4): schematic drawing of a nozzle  

contour and its 11 control points 

 

 

Solution of this least squares linear system is done using singular value decomposition (SVD) 

method as it is the best method for solving ill conditioned linear systems [9]; the condition 

number of the above system is of order 10
7
. We use (dgesvd) function of LAPACK

®
 library 

to find the SVD decomposition of the least squares system in equation (6) and use it to 

compute pseudo inverse of the coefficient matrix and the polynomial coefficients as follows,  
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To find the dependency of the wall profile(      ) at certain x location (  ) on one of the 

design variables   , the pseudo inverse †A  is used as follows, 
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where 
   

   
        are the eight numerical elements of the k

th
 column in the pseudo inverse 

matrix †A .  The above procedure can be modified to apply any geometric constrained 

according to Mohammad Azab and Carl Ollivier-Gooch [5]. 
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5. Mesh Morphing 
We use the linear spring analogy [5, 6, 10] to adapt the 

grid in the flow field as the wall contour is changed by the 

optimizer. This saves the computational effort needed for 

regenerating a new mesh grid based of the new boundary 

shape (nozzle contour). The mesh grid is treated as a net of 

springs, the difference between the original boundary 

shape and the new boundary profile is used as 

displacement vector applied to this spring net. The final 

mesh grid shape is the shape that satisfies the equilibrium 

of the linear spring system. The edge stiffness is inversely 

proportional to its length; the nodal forces at edge end 

points related to displacement by Hook’s law as follows 

[5], 

 

 

 

[
 
 
 
   
   
   
   ]
 
 
 

 
 

   
 [

     
     
     
     

]  [

   
   
   
   

],  (9) 

 

where     is the length of the edge as shown in figure (5). After assembly of the global 

stiffness matrix, the system of equations that relates grid point displacement with nodal forces 

can be written as 

  , -  ̅  * +,  (10) 

 

where   is the displacement vector of the mesh points. The displacement vector   consist of 

two groups, the interior mesh points displacement    and the boundary mesh points   . 

Therefore Eq. (10) can be written as 
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] ,  (11) 

 

We do not need to know the values of boundary nodal forces    because the boundary points 

displacement vector    is known explicitly; it is basically the deformation required in the 

nozzle contour to minimize the objective function; therefore, equation (11) can be written as,  
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, (12) 

 

The stiffness matrices    ibii KK ,  depends on the mesh face lengths, which is changed during 

the mesh morphing stage; therefore equation (12) is a non linear equation and need to be 

solved iteratively as follows, 
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where 
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



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y

x
ri  the position vector of the internal nodes in the mesh grid. Equation (13) is 

obtained by substituting 
k

i

k

ii rrU 
1

 ; equation (13) is solved iteratively till tolU i   , 

where tol is mesh morphing solver specified tolerance. We use tol = 10
-7

 in our mesh 

Figure (5): General face in a 

triangular mesh 
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morphing solver. As a validation of the above procedure, the proposed mesh morphing 

procedure is applied to a rectangular square domain with unstructured  triangular mesh, the 

boundaries as deformed and the mesh is morphed in order to adapt to the new boundary 

shape; the above procedure successfully adapt the grid in the entire field. More than 50% 

reduction in the domain total area in this validation case as shown in figure (6) but the 

proposed non-linear mesh morphing solver showed the robustness of the proposed scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          a) before mesh morphing b) after mesh morphing 

 

Figure (6): Mesh morphing validation case, deformation of unstructured 

grids in a square domain. 

 

 

6. Supersonic Nozzle Inverse Design 
In this section we present an inverse design test case for a supersonic nozzle. Supersonic 

operation of a nozzle is of great importance for rocket engine. 

Inverse design is basically trying to find a nozzle contour that produces wall Mach 

distribution identical to a specified wall Mach distribution. We use inverse design test case 

because the optimization space contains only one minima of the objective function. The 

objective function, (F), to be minimized and its gradient can be written as, 
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 Noting that )( tMM  is calculated from CFD simulation, 
wally
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


 is calculated using 

analytical quasi one-dimensional relations, and 
designk
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y

y

.


 is computed using equation (8). 

 

Figure (7) shows the initial and target nozzle geometries with a surface plot of the Mach 

distribution. 
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a) Initial geometry and Mach solution b) Target geometry and Mach solution 
 

Figure (7): initial and target nozzle Mach distribution 

 

We use only nine wall contour control points as we fix the inlet and exit area, so we excluded 

the first and last nozzle wall control points from the optimization design space. The 

optimization results showed that the proposed technique for evaluating the solution sensitivity 

and the objective function gradient was successful. Optimization convergence history is 

shown in figure (8). The resulting inverse design contour is in excellent match with the target 

contour as shown in figure (9). 
 

 

 
Figure (8): Optimization convergence history 

 

 
Figure (9): Inverse design profile 
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7. Conclusion 
We demonstrated the concept of using the quasi one-dimensional relations as a solution 

sensitivity evaluator; we used the computed sensitivity to evaluate the objective function 

gradient. The objective function value is calculated using 2
nd

 order Euler’s CFD simulation. 

Although the solution sensitivity is not accurate enough (error 18%) but the computed 

gradient direction is almost the same, so the error in the gradient magnitude will not affect the 

optimizer because it uses line search technique. The nozzle inverse design test case 

demonstrated a success in using low order and computational cheap flow models in 

evaluating the objective function gradient, while evaluating the objective function value using 

expensive CFD simulation. This can also be applied in rocket motor design and optimization 

using quasi one-dimensional chemically reacting model. 
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