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Abstract: Pneumatic actuators exhibit highly nonlinear characteristics due to air 

compressibility, significant friction presence and the nonlinearities of control valves. 

Monitoring by acquiring the system’s transfer function accurately can be difficult for 

nonlinear systems. This paper outlines the use of a statistical multivariate technique called 

Principal Component Analysis (PCA) and Projection to Latent Structure Discriminant 

Analysis (PLS-DA) and applies them to the monitoring of electro-pneumatic system.  This 

approach is used to integrate system sensory using data (Pressure, displacement and vibration) 

from a printing machine, an electro-pneumatic system. Experiments were conducted under 

three conditions, normal, throttled and leaked system. The models were tested under different 

conditions with the experimental results, showing that the proposed technique can be used for 

electro-pneumatic system monitoring in a real-time environment and could successfully 

differentiate between new process conditions.  
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1. Introduction 
In recent printing industry, on-line monitoring of process performance is extremely important 

for printing machines safety, production efficiency and product quality. Printing machines are 

consisting of very expensive parts. They include many of pneumatic systems which have 

various pneumatic parts like compressor, accumulators, valves, actuators and other pneumatic 

elements. As the mechanical condition of the machine is changed, due to variation of its 

technical state, the changes in operating environments, throttled state, leakage state, etc., 

result in variation in its performance. Vibration in printing machines is caused by air flow and 

mechanical parts …… etc. Vibration analysis is most commonly used for machine condition 

monitoring [1]. In addition the pressure and displacement analysis is discussed in [2,3]. A 

generic fault detection and diagnosis approach for pneumatic driven railway assets was made 

but with no dynamic analysis [4]. Discussion of the properties of the TSK/Mamdani 

approaches (Takagi and Sugeno, 1985; Sugeno and Kang, 1988 and Mamdani (1995, 1996) 

combined with NN learning algorithms) and neuro-fuzzy (NF) fault diagnosis within an 

application study of an electro-pneumatic valve actuator in a sugar factory [5]. Also there is 

an approach for process monitoring using a multivariate statistical technique, namely kernel 

principal component analysis is studied on an electro-pneumatic valve actuator [6]. In this 

work, a statistical multivariate technique called Principal Component Analysis (PCA) and 

Projection to Latent Structure Discriminant Analysis (PLS-DA) is applied to a Printmaster 
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QM 46 type of printing machine. As health monitoring techniques in order to predict the 

machine faults prior appearing to save effort and money spent through traditional techniques 

used for machine monitoring. The pneumatic system of the printing machine under 

investigation, as shown in figure 1, consists of an electric motor with compressor, 

accumulator, electro pneumatic directional control valve and the cylinder. This cylinder 

connects the plate cylinder to the blanket cylinder of the printing machine. 

Most monitoring techniques presently available describe the variation of one or a limited 

number of machine components using a heuristic approach which gives limited information 

about machine condition. Among these techniques, artificial neural network ANNs and its 

combination with other methods have been the most predominant to date [7,8]. ANNs 

techniques are characterized as black box approaches which model the relation between 

different variables to a desired response without giving any information about what happens 

inside the process. 

 
 

Also some of these approaches are susceptible to missing data due to sensor reliability issues, 

and some applications use many charts to monitor individual process. In addition, issues 

associated with collinearity and dimensionality needs to still be specifically addressed in these 

techniques. Looking for a generic approach to solve many of these limitations can be 

addressed through the use of multivariate statistical analysis, a data driven modeling approach 

[9]. Multivariate statistical process control (MSPC) takes a different approach as compared to 

the other methods mentioned previously; the most fundamental difference with this approach 

is that the model is based on non-causal empirical correlations extracted from normal plant 

operating data when only common cause variation exists [10]. The simplicity of this approach 

is that there is no need for a fundamental model of the system and only data from normal 

operation needs to be used, which is generally available in some form at most machines. 

Among the approaches used in multivariate analysis are: a projection method which called 

Compressor 

Fig. 1   Scheme drawing for Printmaster QM 46 pneumatic system 
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(PCA) [11,12] and projection to latent structure (PLS) [13]. Many applications of these two 

techniques have been successfully applied in other fields of process monitoring [7, 14-19] 

ranging from batch to continuous processes. (PCA) is the   most widely used data-driven 

technique for process monitoring which has been heavily studied and applied to industrial 

systems over the past decade. PCA is an optimal dimensionality reduction technique in terms 

of capturing the variance of the data, and it accounts for correlations among variables. The 

lower-dimensional  representations  of  the  data produced  by  PCA  can  improve  the  

proficiency  of detecting  and  diagnosing  faults  using  multivariate statistics.   The   

principal   components   span   a   low dimensional subspace used for analysis.  The details of 

linear PCA can be found elsewhere [20].  

This paper outlines the use of multivariate projection approach to develop a framework to 

monitor the printing machine under study. By integrating different data collected from 

different accelerometers, pressure, displacement transducers fixed at different machine 

positions under different operating pressures and conditions. Models based on PCA and PLS-

DA can be developed into a single user interface at which, machine performance can be 

monitored using the latent space of these models. 

 

 

2. Multivariate PCA and PLS-DA Basic Theory 
 

a. Multivariate PCA theory: 
PCA decomposes the variance and covariance structure of a data matrix by defining linear 

combinations of the columns in the original matrix. Moreover, PCA extracts information from 

data sets by computing a smaller data set and other summary information that adequately 

captures most of the underlying features from the larger data set. The point that needs to be 

stressed is that the data can be reduced to a size which is more manageable but contains the 

features that are often of interest. PCA extracts a score matrix, T, and a loading matrix, P, 

from X. These matrices have the following dimensions: 

 

X: N × K       T: N × A          P: K × A                                  [12,21]                     

 

We call the first column of T and P by their shorter forms, t1 and p1 respectively. The lower 

case letters indicate that these are vectors, upper case letters indicate matrices. Extracting only 

one principal component (that is, a single score vector and loading vector) gives: 

 

X = t1  + E1     and extracting a second principal component: X = t1  + t2 + E2 [12,21] 

 

We continue in this manner until we extract principal components and then group these score 

and loading vectors to form matrices T and P: 

 

                                      T = [t1 t2 . . . tA] and P = [p1 p2 . . . pA]                             [12,21] 

 

The eigenvectors of the real symmetric matrix X
T
X give us exactly the loading matrix P. This 

is the loading matrix obtained by extracting all principal components. Once we have P we use 

the last line of the following relationship to compute T: 

 

              TP
T
 = X                              TP

T
P = XP                         T = XP                [12,21] 

 

A more in-depth discussion, which also highlights some geometric concepts of PCA, can be 

found in [11]. The algorithm used to calculate the PCA is the NIPALS (Nonlinear Iterative 

Partial Least Squares) algorithm [12,21].  
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b. Multivariate PLS-DA Theory 
The PLS-DA aims to find a line or a plane that separates classes of observations based on 

their values, The PLS-DA model is based on building classes or clusters using pre-knowledge 

about existing groups (supervised learning). The model is established using a set of 

experimental runs (training set). PLS-DA works on two matrices, X-matrix as input and  

Y-matrix as output. The X-matrix contains all the data (i.e. sensory data) with all the known 

groups (i.e. normal and faulty states). The Y-matrix contains dummy variables in columns 

equal to the number of already known class of data. In the Y-matrix we assign to each 

observation from the same group a code number constant for the entire group. For example, in 

case we have three groups to cluster, the first group (e.g. sharp tool data) is assigned with a 

code value of “1, 0, 0” for each row (observation) of the same group. Depending on the 

number of samples or observations from each group, there will be an equal number of code 

values with the same value “1, 0, 0”. The second group will take another code of “0, 1, 0”, 

and so on for other groups (i.e. 0, 0, 1 etc...). In this way the approach tries to model X-Y 

variables by finding the latent directions that best separates the known groups. In other words, 

sometimes factors are introduced that describe the data from different groups. So, we must 

assign some distinct levels to these factors to help discriminate between different groups. We 

call these factors qualitative or dummy variables. Mathematically this can be illustrated by 

adding new variables “G” to the model with some regression coefficients say “c”, and  set 

G = 1 for data from one group and G = 0 for data from another group in the following way: 

Y = f + (c * G). Suppose that (f) represents the fitted model, so when G = 0, the data from the 

first group is highlighted: Y = f and by putting G = 1, the data from the second group is 

highlighted: Y = f + c where c estimates the difference in levels between the responses of two 

groups of data. In this way the data from different groups will be clustered depending on their 

regression coefficient values [13,16]. 

 

 

3. Experimental Setup 
Figure 2 shows the schematic of the experimental setup used to validate the proposed method. 

The main feature of the test rig is to perform integrated components of mechanical, 

electronics, and computer interface structure, with high computational capacity and software. 

The position of the pneumatic cylinder, of the servo-system, presents the system 

characteristics depending on its variation. The pneumatic unit consists of a compressor, 5/2 

directional control valve with on-off solenoid which operating at voltage 23 V, a cylinder has 

stroke length of 52.5 mm. The sensors are used to monitor the system mentioned in Table 1 

shown below: 

 

 

Table 1   The sensors are used to monitor the system 
 

No. Name Specification 

1 
Linear variable differential transformer 

(LVDT) 

A voltage range source 0 to 10 V, a 

displacement range from 0 to 100 mm, 

sensitivity 9.5 V +/- 0.05%. 

2 Pressure transducer 
A voltage range source 0 to 10 V, a 

pressure range from 0 to 10 bars. 

3 Non- magnetic accelerometer transducer 
A/120/V has a voltage sensitivity 

10 mV/g. 

4 Non- magnetic accelerometer transducer 
ACC103 has a voltage sensitivity 

10 mV/g. 

 



Paper: ASAT-14-114-HF 

 

 

5 

All signals were sent to a computer via a National Instruments (NI) DAQ card PCI 4472 

Dynamic Signal Analyzer (DSA) through an A/D converter terminal. The DAQ card has 

8 channels with a maximum sampling rate of 102.4 kS/s. The solenoid of the valve has been 

controlled by a digital output from the DAQ card. The testing algorithm has been achieved 

under control operation of the pneumatic system input pressure 4 - 6.4 bar for the two states: 

normal and faulty cases using Labview software.  
 

 
 

 

 

4. Model Building, Configuration and Results 
The multivariate PCA model is a linear model given in matrix form by:  X = TP

T
 + EA 

[12,21]. However, there exist non-linear PCA versions even by augmenting the original 

matrix with the non-linear factors or by building a non-linear relation between score factors 

[12]. To build the model using process variables, let X include variables containing the 

information in the sensory data. Figure 3 illustrates how the score plot is built for a simple 

case 3-variables and 2-scores. After determining the direction of maximum variation by 

iterative steps and get the second orthogonal direction by the same way after subtracting the 

first component, we rotate the new plane determined by the new score variables t1 and t2 and 

then monitor the movement of the process variables in the reduced dimensional space during 

printing. 

A total of 4 variables were used to generate the input matrix “X”. These variables represent 

the root mean square of the time domain records of the sensory signals (actuator 

displacement, system pressure, valve vibration and actuator vibration). 

All of the models were built using SIMCA-P code developed by Umetrics based on PCA [9]. 

The PCA model is based on building classes or clusters using existing information inside the 

data (unsupervised learning). The model is established using a set of experimental runs called 

the training set that represents the normal operation of the printing machine. Finally, 

regression is made on the matrix X based on NIPALS algorithm.  

Fig. 2   Schematic of the experimental setup 
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Fig. 3   Establishing score plot for three variables 

 

 

To explore the collected data a first model using PCA was built using all the dataset by cross-

validation, now obtaining a two component model, with: R2X(cum): 0.81,  Q2(cum) : -0.105. 

It is seen that the model factor Q2cum, is very small, but it is still better to first get a general 

look at the whole dataset without removing any variable or observation. Figure 4 illustrates a 

scatter plot of the two score vectors (t1 and t2) of the PCA model using a set of 10 

observations. It provides a clear vision of the dispersion of the data, with the normal process 

data being discriminated against the faulty data along the first two components. This 

clustering is shown by a straight line separating the different conditions (normal operation of 

the electro-pneumatic system and different levels of leaked and throttled states of the system). 
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Fig. 4   A scatter plot of the two score vectors (t1 and t2) of the PCA model 

 

More analysis is made by examining the loading plot which shows the relation between the 

different variables. Figure 5 shows the loading plot clarifying the relation between the 4 

variables. In addition, the score and loading plots are superimposed; this means that variables 

lying in each quarter of the loading plot are contributing to the changes between the 

observations in the score plot. So, by investigating the loading plot (figure 5), one can detect 

directly which variables are responsible or more affecting a specified group of data in the 

score plot. 
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Fig. 5   PCA-X loading plot 

 

From these two figures, one can notice, how pressure, displacement and valve vibration 

variables in the right corner of the loading plot contribute to the right swarm (faulty states) of 

data in the score plot. In other words, these variables are directly correlated to the faulty states 

while the cylinder vibration is inversely correlated with them.   

More investigation carried out using control charts and contribution plots as shown in figure 6 

to quickly assess which factors affect these different process shifts. Figure 6 shows the 

contribution plots for high throttle state. 
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Fig. 6 Control chart for the contribution plots for high throttle state 

 

One can notice that both valve and cylinder vibrations are responsible for this shift, alarming 

on the occurrence of high throttle. 

The main target is to build a monitoring system to the printing machine. Also, the PCA 

approach is based on using available database that give an acceptable level of process quality 

to build the monitoring system and then the model can detect any fault or shift from normal 

operation. Therefore, the same setting is repeated again with the use of data of the normal 

process operation as a training set under different system pressure values. For better 

classification, another attempt has been made by augmenting the x-matrix with square terms 

between variables. It ends with 8 variables and is fitted by cross-validation, to get a two 

component model with: R2X (cum): 0.734, Q2 (cum): -0.21. Figure 7 illustrates a scatter plot 

of the two score vectors (t1 and t2) of the PCA model using the normal process data. 
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Fig. 7   A scatter plot of the two score vectors (t1 and t2) of the PCA model 

using the normal process data 
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Fig. 8   The developed PCA model used for validation set 

 

The developed PCA model was used on a validation set of the remaining 5 observations 

(1 normal at 5.5 bar, 4 faulty states: High and low throttle and high and low leakage). The 

PCA scores values (t1, t2) for these test observations are indicated by triangle points and 

manually highlighted with dotted circles in the t1 vs. t2 score plot in figure 8. It can be seen 

from the figure that the PCA model succeeds in classifying the new observations normal, 

throttled and leaked data. One can notice that the high leakage state lies near the normal group 

as a result of the same data nature (low pressure). 

More investigation carried out using control charts and contribution plots as shown in figure 9 

to quickly assess which factors affect these different shifts showing the contribution plots for 

high throttled state. One can notice that cylinder vibration is responsible for this shift, 

alarming on the occurrence of throttled pneumatic system (high throttle results in low air 

pressure going to the cylinder, lowering system vibration level) and showing the Hotelling’s 

T
2
 and DModX model residual plots with the test set. A clear advantage is realized from 

modeling the X-space over the present approaches.  In case of the occurrence of high leakage 

(not modeled) but similar to the same normal process state, the Hotelling’s T
2
 chart failed to 

detect this process shift but is alarmed through the model residual DModX. 

The second model will be based on PLS-DA. Let X includes variables containing the 

information in the sensory data (Pressure, vibration, and displacement). Then, let Y consists 

of two dummy variables which code the two groups intended to separate: normal data, faulty 

states. Finally, regression is made between X and Y based on a superficially "similar" 

NIPALS (Nonlinear Iterative Partial Least Squares) algorithm. 
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Fig. 9   The contribution plots for high throttled state 

 

 

Out of the 10 observations (6 normal, 4 fault), a training set of 8 observations (5 normal, 3 

fault) representing the two groups (normal, fault) were chosen to develop the PLS-DA 

regression model. The PLS-DA model developed was then tested on a subset of the remaining 

2 observations (1 normal, 1 fault). The PLS-DA model was built on a training dataset by 

cross-validation, now obtaining a two components model, with: R2X (cum): 0.76, R2Y 

(cum): 0.92, Q2 (cum): 0.29. Figure 10 illustrates a scatter plot of the two score vectors (t1 

and t2) of the trained PLS-DA model using the training set data. Solid box points represent 

the training set samples of the normal data group and solid stars represent the faulty data 

group. According to the manually highlighted point clusters in the figure (done only for visual 

purposes), it can be seen that the discrimination between normal and faulty data is very good. 

The figure provides a clear view of the dispersion in the data, with the normal data being 

discriminated against the faulty states data along the first component, due to the fact that now 

this is the one having the most discriminating power, because the PLS-DA model maximizes 

the covariance between the X and Y matrices, constituted by the different groups of data. 
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Fig. 10   A scatter plot of the two score vectors (t1 and t2) of the 

trained PLS-DA model using the training set data 
 

A model developed from a training set must be validated and tested with new observations 

not included in the original training set. Hence, the PLS-DA model developed was used on a 

test set of the remaining 2 observations. The PLS-DA score values (t1, t2) for these test 

observations are indicated by triangle points and manually highlighted with dotted circles in 

the t1 vs. t2 score plot in figure 11. It can be seen from the figure that the PLS-DA model 

succeeds in classifying the new observations normal, and high throttled data. The t1-t2 score 

of normal data is magnified to illustrate the classification of the tested observations. 

 

 

5. Conclusions  
Multivariate projection techniques are statistical methods, which can be used to describe, 

analyze and model multivariate data, while simultaneously measuring several predictors and 

response variables. The application of multivariate techniques to monitor an electro 

pneumatic system of a printing machine is the main contributions to the development of a 

generic machine monitoring, fault detection and optimization system. The approach uses 

experimental data for model building and testing. Multivariate approaches model the data in 

the X-space where the advantage of the contribution plots can be seen for machine 

monitoring. These plots facilitate the detection of the variables responsible for any condition 

change both those modeled or unmodeled. Through the use of a well selected system of 

sensors which augments the matrix of input variables (X-matrix) with key feature components 

from these signals, a machine components condition can be detected. 
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Fig. 11 Validation and testing model of PLS-DA 
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