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Abstract: Recently, Unmanned Aerial Vehicles (UAVs) have attracted a great deal of 

attention in academic, civilian and military communities as prospective solutions to a wide 

variety of applications. The use of cooperative UAVs has received growing interest in the last 

decade and this provides an opportunity for new operational paradigms. In this paper, the 

problem of formation reconfiguration for a group of N cooperative UAVs in an obstacle-

loaded environment is solved using decentralized Learning Based Model Predictive Control 

(LBMPC). The formation of the multiple cooperative UAVs respects the general rules of 

flocking known as Reynold’s rules. Each UAV is required to avoid collision with nearby 

flockmates, attempts to match the velocity of other team members and attempts to stay close 

to other team members respecting the desired formation. When static obstacles appear, the 

UAVs are required to steer around the obstacle or pass through avoiding collision with the 

obstacles or with each other. A state transformation algorithm is applied to linearize the UAV 

dynamics generating a linear system allowing the implementation in real life. Our main 

contribution in this paper lays in solving the formation reconfiguration problem for a group of 

cooperative UAVs forming a desired formation using decentralized LBMPC in the presence 

of obstacles. 
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1. Introduction 

Due to their great importance especially in the last decade, UAV attracts a great attention and 

concern in both the military and civilian communities and the efforts in their researches and 

development have gained a great attention through the whole world. Objects like unmanned 

aircraft, underwater exploiters, satellites and intelligent robotics are widely investigated as 

they have potential applications.[1, 2]. 
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In the last two decades, a great deal of effort has been invested in the development of 

unmanned aerial vehicles (UAVs). UAVs are interesting alternatives to manned aircraft for 

missions that can be dangerous for the human crew. They are also attractive for missions 

where automation can improve the efficiency such as surveillance and inspection. These 

autonomous vehicles are widely investigated as they have potential applications [1]. 

 

New UAVs’ capabilities and flexibility provide an opportunity for new operational 

paradigms. These vehicles are developed to be capable of working in different circumstances 

and weather conditions with some assistance of human control, also these vehicles have the 

ability to handle complicated or uncertain situations. These vehicles may have different 

shapes, sizes, configuration and characteristics. UAV is either described as a single air vehicle 

(with associated surveillance sensors), or a UAV system, which usually consists of three to 

six air vehicles, a ground control station, and support equipment  [3]. 

 

With the increase in the cooperative UAVs applications performed in the civilian and military 

communities, the need of a general strategies to control the performance of the autonomous 

cooperative UAVs started to get the attention in research. These general strategies are defined 

as the approaches used by the co-operative vehicles during the execution of their missions and 

are denoted as UAV tactics [4]. 

 

UAV tactics can be either centralized as a single centralized decision maker in the team is 

responsible to transmit the coordinated instructions to the other members; or decentralized, in 

which each member is responsible for take its own control decision. UAV tactics can be 

classified into [4]: 

• Swarming and formation 

• Task / Target assignment 

• Formation reconfiguration 

• Dynamic encirclement 

 

Formation reconfiguration is defined as the dynamic ability of a UAV team to change their 

formation according to the surrounding circumstances and due to the response to different 

external factors such as changing of the mission, UAV team populations and surrounding 

environments. A guidance law for formation reconfiguration of a group of cooperative UAVs 

is needed to satisfy requirements of optimality and constraints of short computational time. 

The new UAVs formation must guarantee safety, also, it must be compatible with the UAV 

dynamics and may be governed by time constraint to pass between   obstacles. 

 

Formation reconfigurations have different behaviors according to the following factors 

affecting the UAV team [5]: 

• Changing the position of UAVs during mission execution. 

• Combining small groups to form a large group according to the required 

mission. 

• Breaking a large group into smaller group to perform more than one 

application at the same time. 
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Some of the main formation structure approaches  are: 

1. LeaderFollowerApproach:In this approach, some UAVs in the team are 

designed as leaders while others are followers. Its main advantage is that it 

can be easily understood and implemented but its main disadvantage is that it 

is not robust in case of leader failure [6, 7, 8]. 

2. Virtual Structure Approach:In this approach, the whole team is treated 

as a single rigid body and instead of following a certain path, each UAV 

follows a certain moving point which allows them to be attached to each 

other. In this case, the formation is treated as a single object which increases 

robustness. On the other hand, it can only perform synchronized maneuvers 

and it cannot deal with obstacle avoidance constraints or reject external 

disturbances [9]. 

3. Behavior Based Approach:A desired behavior is designed for each UAV, 

including the required information for mission, goal seeking and collision 

avoidance. The control action of each UAV is a weighted average of the 

control for each behavior and it is suitable for uncertain environments but it 

lacks theoretical guarantees of stability [10]. 

 

There is a large amount of research in the field of formation reconfiguration for 
multiple cooperative UAVs. The range of applications is steadily growing 
including applications such as surveillance, exploration of regions, creating 
decoys, delivery of payloads (i.e. distributing ground based sensor networks), 
and radar and communication jamming [11, 12, 13, 14]. 

 

For instance, in [14], a robust control algorithm accompanied with a higher 
level path generation method is used to control the structure of a group of 
cooperative UAVs. The goal was to perform formation change maneuvers with 
a guaranteed safe distance between the different members of the team 
throughout the whole mission. The robust control ensures the stability of the 
formation during maneuver while the path generation method provides the 
vehicle with the safe paths. In [15], a dual mode control strategy was used to 
control the navigation of an UAV formation in a free and an obstacle-laden 
environment. In the obstacle-free environment, the safe mode was used and the 
danger mode was activated in the presence of obstacles to avoid collision using 
the Grossberg neural network (GNN). 

 

The control of a group of autonomous cooperative UAVs performing various 
missions and applications is consider a great challenge in the field of robotic 
control and artificial intelligence. The designed controller has to modify the 
response and behavior of the non-linear systems to meet certain performance 
requirements and to respect the dynamics and hard constraints of UAV system. 
Therefore, MPC is a good control technique for this problems as MPC is 
characterized by its ability to handle difficult states and control inputs 
constraints, taking into account actuator limitations and allowing operation 
within constraints [16, 17]. 

 



 Paper: ASAT-16-131-US  
 

In the field of cooperative UAVs formation, MPC has been used to solve the 
optimization control problem for a group of autonomous vehicles in different 
formation reconfiguration tactic [15, 18, 19].For instance, in [19], a non-linear 
MPC was used to control the formation of a fleet of UAVs in the presence of 
obstacles and collision avoidance. The UAV formation depends on a virtual 
reference point strategy, while the obstacle avoidance was guaranteed by 
adding a new cost penalty and inter-vehicle collision avoidance is guaranteed 
by a collision cost penalty, using the delayed neighboring information, 
combined with a new priority strategy. 

 

Recently, control designers started to investigate the effect of adding a learning 
algorithm to the predictive decentralized approach especially MPC. Applying 
the learning algorithm to the MPC will improve the performance of the system 
andguarantee safety, robustness and convergence in the presence of states and 
control inputs constraints. In [20], the stabilization problem of a quadrotor in a 
desired altitude was solved using LBMPC. During the flight, a dual extended 
kalman filter (DEKF) was used as a method for learning by the quadrotor to 
learn about its uncertainties, while an MPC was used to solve the optimization 
control problem. In [21], LBMPC was used by a single quadrotor to learn to 
catch a ball during flight. 

 

Our main contribution in this paper lays in solving the problem of formation 
reconfiguration for a group of cooperative UAVs using a decentralized LBMPC 
in an obstacle-loaded environment. A state transformation technique combined 
with a decentralized LBMPC and a collision avoidance technique are used to 
solve the formation reconfiguration problem. The state transformation 
technique introduces a linear model equivalent to the UAV non-linear 
dynamics, while the decentralized LBMPC compensates these non-linear 
dynamics using the learning technique and solves the optimization control 
problem using the MPC. Finally, the collision avoidance algorithm will steer 
the UAVs around the obstacles or pass between them avoiding collision with 
them. 

 

The paper is organized as follows. We start with a discussion of theof notation 
used throughout the paper in Section II, followed by the problem formulation 
and the control objectives in Section III. The development of the decentralized 
LBMPC is introduced in Section IV, while in Section V, we present the results 
of our simulations. Section VI presents the conclusion of the work as well as 
discusses some future work. 

 

2. Preliminaries 

In this section, we define the notations used in this paper. Vectors are not 
typesetspecially, but will be identified as such when introduced (e.g.       ,). 
All vectors are column vectors. We use superscript    to denote the transpose of 
a matrix A and    to denote the transpose of a vector  . 
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Variables that change at each discrete time step have the time index denoted by 
the subscript. However, as we are using a group of cooperative UAVs, the 
number of the UAV in the team is subscripted (e.g, xi,τmeans the state x of the 
i
th

 vehicle at time step τ ). In equations describing the update of such a variable 
in the next time step (τ + 1), the variable is denoted by xi,τ +1. 

 

The notation    
 denotes the quadratic formvTMv.Symbols with a dot above 

them are the time derivative of that quantity. Marks above the variable indicate 
the different models of the same system. For instance,thetrue system has the 
state x, the linearnominal system has the state   , thesystem with the 
oraclehas the state   and the estimated system has the state   .Similar 
marks are used for the corresponding control inputs and outputs. 

 

3. Problem Formulation 

 
We aim to stabilize a team of multiple cooperative UAVs forming a desired 
configuration during tracking a reference trajectory using LBMPC. In order to 
simplify our problem, we consider that the UAVs act in a two dimensional space 
such that the height and yaw controllers have no influence on the lateral 
movement of the vehicles, although the problem could be extended to the three 
dimensional case with increased computational demands. 

 

 3.1 System Modeling 

 

In this section, we represent the dynamics of the vehicle, for each UAV   
       , the states and control inputs are denoted by 

 

      

 
 
 
 
     

     

     

      
 
 
 
         

 

 

(1a) 

  

       
    
    

          
 

(1b) 

 

wherexiand yiis the position of the i
th
 UAV in 2D- Cartesian frame, θi is the 

heading angle and Vi is the linear velocity of the vehicle. The dynamics of the i
th
 

UAV is described by: 

 

       

 
 
 
 
             

             

     

      
 
 
 
         

 

 

(2) 
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Where ωi is the angular turning rate of the i
th
 UAV and ai is the linear 

acceleration of the vehicle. 

 

As we are interested in the position of the vehicles during the flight, a state 
transformation take place to linearize (2). The new state vector for the i

th
 vehicle 

Zi is given such that α1,i = xi, 
α2,i = yi, α3,i =     and α4,i =    , and the new control inputs are given such that 
          and             The state space representation of the new system is as 
follows: 
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(3b) 

 

By using the new states introduced in (3b), the linear system states for eachUAV 
are the position in (X − Y ) Coordinates besides their time derivatives, while the 
control input for each i

th
 UAV are the accelerations. The time linear- affine 

dynamics model state space representation of each vehicle is given as: 

 

                                   (4a) 

  

                  (4b) 

 

Where g(zi, ui) is the unmodeled dynamics of the i
th
 UAV in the team and   

represents the measurement noise, assumed to be bounded stochastic quantity.  
We assume that the modeling error g(zi, ui) isbounded and lies within a 
polytope  such that g(zi, ui)  ∀(zi, ui)   ( ,   ). Thus the nominal dynamics 
state (the case in which g(zi, ui)≡ 0)  is 

 

                                          (5) 

 

The sets of state vectors are denoted          
      

        , while the sets 

of control inputs are denoted          
      

        . 

 

Generally, the system dynamics for all the vehicles            in the 
formation can be represented in a concatenated vector form as: 

 

                               given       (6) 
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where                               . 

 

As we are interested in the position of the UAVs to accomplish the desired 
formation, an integrated cost function for multiple vehicles formation 
stabilization is presented as follows [22]: 

 

                        
 
  

        

          
 
         

 

        

(7) 

 

Where ω, υ, µ   are positive constant weighting,     is the position vector of 

the i
th

 vehicle, while    is the position vector of the j
th 

neighbor vehicle in the 

fleet and       
  is the desired separating distance between every two 

vehiclesin the formation. The average position vector for N vehicles is denoted 

by    = (  +...+  )/N, while 

     = (      + ... +       )/Nis the desired center of geometry for the N 

vehicles. The set ζ0 is the set of all pair-wise neighbors that defines the 

formation for the multiple cooperative UAVs team [22]. 

 

For each vehicle             at time step  , the distributed optimization cost 
function is given as  

 

  
∗                  

  
                         

where 

 

                      

               
 
           

 
         

         

 

Such that 

          
∗              

 

   

 

(8) 

 

For the compatibility with our objective, we rewrite the system dynamics in(4) 

in the error form. By subtracting the linear states for the i
th
 UAV with its 

neighbor j, we get the following error dynamics: 
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where     is the error dynamic vector between the i
th
 UAV and the j

th
 UAV in 

the formation. The overall error dynamics for the N UAV system    is given as 

follows: 

                       

 

 

 
 
 
 
 
     

       
 

      
 
 
 
 

  

 
 
 
 
       

         

    
        

 
 
 

 
 
 
 
    
      
 

     
 
 
 

  

 
 
 
 
       

         

    
        

 
 
 

 

  
  
 
  

  

 

 

(9) 

 

     3.2 Oracle Modeling 
 

An oracle is used to update the state dynamics of the system to compensate the 

unmodeled dynamics neglected through the linearization process. For each 

vehicle i           , the unmodeled dynamics           for the i
th
 UAV is 

represented by a linear, time varying oracle      
          , 

parameterized by a vector of parameters β. The state space form of the oracle is 

given as: 

 

                                   (10) 

 

Where                 ∀                  returns an estimate of the 

uncertainties,       is the oracle updates to the dynamics matrix for the i
th
 

vehicle,      is the oracle updates to the control inputs matrix and   is the true 

vector learning parameters in the oracle model. 

 

The oracle updates the state dynamics for each vehicle every time step, we aim 

by that to converge the predicted state dynamics to the accurate state dynamics. 

In other words, by converging the learning state matrices       and       for 
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the i
th

 vehicle to zero, the predicted system dynamics will be similar to the 

accurate UAV system dynamics. 

 

To show the difference between all the above equations, one should define the 

following:     is the true system state dynamics,       is the state dynamics of the 

system with oracle state, while       is the estimated state dynamics of the system 

and       is the state dynamics of the nominal system. The states and control 

inputs constraints are used to guarantee both feasibility and convergence of the 

designed control policy [21]. 

 

     3.3 Collision Avoidance 

This section describes the ability of the UAV system to sense the presence of 
the obstacles in the surrounding environment. Each UAV in the team has a 
sensing system allowing it to measure the distance to the obstacles in a sensing 
range rs. The measured distances from the obstacles are integrated in the 
formation control such that the UAV formation is able to steer around the 
obstacles or pass between them. 

In our collision avoidance technique, each UAV measures its distance to the 
obstacle, re-plans its trajectory with respect to the other members using  ∗ 
algorithm in order to steer smoothly around the obstacle and then returns back 
to the pre-planned desired trajectory after passing the obstacle with a safe 
distance 

 

In Fig.(1), UAV  2 shares its information about an obstacle with the other 

members of the team, the UAV team then decides to re-plan their path using  ∗ 
algorithmand steer in the upper direction over the obstacle with a safe distance 

ds.  After passing the obstacle, the team members return back to their desired 

path. 
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Figure1:A team of UAVs in a line formation steer around an 

obstacle after sensing it within the sensor radius rs ,after a safe 

distance ds from the obstacle, the team return back to the desired 

path.

 

 

In the case of the presence of more than one obstacle in the environment, the 
UAV team reconfigures its formation to a new configuration and chooses a new 
path in order to allow the team to pass through the obstacle-loaded environment 
safely. After passing the obstacles with a safe distance, the team reconfigures 
again and returns to the desired formation and desired    path. 

 

The collision avoidance algorithm used in this paper is presented in Algorithm 
1. At initialization of the Algorithm 1, each UAV activates its sensor radius rs 
to sense the presence of obstacles. By sensing the obstacle, the UAV shares the 
separating distance do from the obstacle with the other members. The team re-
plans its path to steer right/left around the obstacle. In case of N obstacles, the 
sensed UAV shares the separation distances 
 (do1, do2, ...,doN) with the other members, and the team decided to reconfigure 
and chooses the suitable path using ∗ algorithm. 

 

This algorithm depends on calculating the separating distance from the UAV 
team at every time step. The vehicle i uses the previous suboptimal control 
input of the other vehicles in the fleet to define the re-planned path trajectory. 
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Algorithm1CollisionAvoidanceAlgorithmforaGroupofcooperative
UAVs 

 

 

For eachUAV 

• Initialize rs andds 

If one obstacle is sensed 

• Measure(do) 

• Share dowith other members of theteam. 

• Use A∗ algorithm to re-plan the new path to steer around thetarget with a 
safe distanceds. 

• Apply u(t) to the system. 

• Solve the optimization problem(15) 

IfNobstaclesaresensed 

• Measure(do1,do2,...,doN) 

• Share (do1, do2, ..., doN) with other members of theteam. 

• Reconfigure to a suitable formation using pref and re-plan the new path 

using A∗algorithm. 

• Apply u(t) to the system. 

• Solve the optimization problem(15) 

EndFor  

 

4. Control Design 
 

A decentralized LBMPC is used to solve the problem of formation 
reconfiguration for a group of cooperative UAVs in the presence ofstate and 
control inputs constraints in an obstacle-loaded environment. The designed 
control policy seeks to combine attributes of elements of adaptive or learning 
schemes which promise to improve performance by improving system models 
based on data obtained on-line with MPC which encode safety requirements 
and has the ability to enforce constraints. 

 

In this section, we will outline the design of a decentralized learning based 
model predictive controller for the cooperative UAVs team. This process is 
then repeated at each time instant, with the predicted optimal control trajectory 
being recalculated as new information becomes available. The overall control 
architecture is composed from two main parts: 

• Estimation of the vehicles states and learning the uncertainties; 

• Solving the Quadratic Programming (QP) optimization control problem 

for the closed loop system. 

 

Fig.2 represents an overview of our proposed decentralized LBMPC. 
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4.1  Learning Phase 
 

A Dual Extended Kalman Filter (DEKF), introduced by Wan and Nelson, is an 
extension of the ordinary Extended Kalman Filter (EKF) that have been 
developed for the state and parameter estimation in non-linear systems [23]. 
The main concept in the DEKF is the combination between the state estimation 
and theparameter estimation using two EKFs in parallel, which allows to switch 
off the parameter estimator once we reached a sufficiently good set of estimates 
for the parameters. This should improve the performance of the system by 
improving the state estimation by reducing the parameter uncertainties [24]. 

 

Figure2:The scheme of the proposed decentralized LBMPC 

for each UAV.

 

 

The basic equations used for building the DEKF are stated as follows [24]: 

 Parameter Prediction: 
 

   
               (11a) 

  
        

           (11b) 

 State Prediction: 
 

                          
      (12a) 

  
              

        
         (12b) 

         
      

           
      

     (13a) 

                              
        (13b) 
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 State Correction: 
 

 Parameter Correction: 
 

 

Where    is the estimated state vector,     the estimated parameter vector, u is 

the control input vector and y is the measurement vector. The error covariance 

matrix of the state vector is denoted by   , while the error covariance matrix of 

the parameter vector is denoted by   . Also,    and    are the user specified 

process noise covariance matrcies for the state and parameter estimators, 

respectively, while the corresponding output noise covariance matrcies for the 

state and parameter estimators are denoted by    and   , respectively. 

Moreover,    and   are the DEKF gain matrcies for the state and the 

parameter, respectively, while    and    are the Jacobian matrcies of the 

output for state/parameter estimator and    is the Jacobian matrices for state 

estimates.    

 

 4.2 Optimization Phase 

A decentralized MPC controller, based on the idea of tube-MPC, is combined 

with the learning algorithm introduced in section 4.1 to control the cooperative 

UAVs during performing their desired formation. For the decentralized 

LBMPC prediction horizon M , by given a nominal trajectory, the true 

trajectory for each agent i is guaranteed to lie within the MPC tube around the 

given  trajectory. 

 

At the heart of the LBMPC control scheme is the on-line solution of a convex 

optimization problem. The optimization cost function will contain the learning 

part for each vehicle in the team 

 

                    
     (13c) 

         
      

           
      

     (14a) 

          
                      

        (14b) 

                    
     (14c) 
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(15) 

subject to: 

 

                                

                                             

 

                                
                               

                         

  

 

 

 

 

 

(16) 

 

where M is the predication horizon,       is the predicted dynamic states of the  

i
th

 vehicle while        denote the vector of the estimated dynamic state of the 

neighbors of iand       is the optimal control inputs to the system. The 

polyhedral sets   and   are bounded and convex; they encode the allowable 

states control inputs, respectively. 

 

Marrices P, Q and R are semi-definite positive matrices weights on the final 
state srror cost, the intermediate state error cost and the control input cost, 
respectively. Moreover, the desired state is denoted by   , while    is the 
steady state control that would maintain the desired steady state   , the nominal 
feedback gain Ki serves to limit the effect of model uncertainty for agent i and it 
is chosen so that the discrete-time algebraic Ricatti equation (DARE) 

 

          
                     

        (17) 

is satisfed. Finally, the actual control inputs       in (16) are used to determine 
the predicted learning dynamic states       in (15) and the predicted nominal 
state       used for constraint satisfaction in (16) for the i

th
 vehicle. 

5. Simulation Results 

The control strategy discussed in sections 3 and 4 is successfully implemented 
in simulation by a team of cooperative UAVs consists of three vehicles. The 
objective of this simulation is to show that, the designed control policy is fit for 
solving the problem of formation reconfiguration for a group of cooperative 
UAVs in an obstacle-loaded environment. One should notice that the solutions 
found in this paper may be scaled to accommodate larger teams of UAVs in 
more complex environments. 
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As discussed in 3.3, each UAV has a sensor radius rs = 15m to sense the 
presence of obstacles. By sensing the obstacle, the UAV shares the obstacle 
information with the other members. The UAV team decided to change its path 
and steer/pass through around the obstacles smoothly with a safe distance ds = 
10m. After passing the obstacle, each UAV re-calculates the desired path and 
return back to the desired formation. Moreover, in case of different obstacles, 
the UAVs cooperate to choose the optimum formation and steer/pass through 
the obstacles safely. 
 

One can summarize the requirements of our simulations to be as  follows: 

• Separation distance dref = 10m between each two neighborvehicles. 

• Matched velocity between all members of theteam. 

• The ability of the team to re-plan its path to avoidobstacles. 

The simulation can be run for different formation structures and with different 
number of vehicles which prove the robustness of our designed control policy. 
For all simulations, the prediction horizon is M = 5, simulation time is T = 24s 
and the sampling time is τ = 0.2s. 

 

Now, we will present the simulation results for one of our different scenarios. 
In this presented case, three UAVs located at (0,0), (0,12) and (0,-12), 
respectively, cooperate to form a triangular formation flying along the X- axis 
while avoiding obstacles. 

 

The UAV1 sensed the presence of two rectangular obstacles located at (60,2) 
and (60,-2). UAV1 shared the obstacles information with the other members of 
the team and each UAV in the team calculates its desired path. The team 
chooses to reconfigure to a new formation that allow all the members to pass 
through the obstacle-loaded environment. After passing the obstacles, the UAV 
team reconfigure to form a triangular formation again with UAV1 at the head 
of the formation. 

 

The paths of the three UAVs during the flight along the X-axis are presented in 
Fig. 3, where the cooperative UAVs succeed to converge to the desired 
requirements in the presence of system uncertainty and obstacles. The team 
decided to reconfigure such that UAV2 pass after UAV1 and before UAV3 with 
separating distance d = 10m. After a safe distance from the obstacles, the team 
reconfigure its formation again to the desired triangular formation. The 
command control inputs ui for each agent in the fleet are presented in Fig. 4, 
where the control inputs converge to zero as the vehicles are stabilized in their 
desired formation during flight. The separating distances between UAV1 and its 
neighbors in the X direction are presented in Fig. 5, while the separating 
distances between UAV1 and its neighbors in the Y direction are shown in Fig. 
6, where all the separating distances converge to the desired distances d=10m 
in an obstacle-loaded environment. 
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Figure 3:The three UAVs in a triangular formation change their formation to pass through two 

obstacles and reconfigure again to the desired triangular formation.

 

 

Figure 4: The optimal command control inputs for the three agents, the control inputs converge to 

zero due to the stabilization of the desired formation around the reference trajectory. 
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Figure 5: The separation distance between the three cooperative UAVs in X direction. 

 

 

Figure 6 :The separation distance between the three cooperative UAVs in Y direction. 

  



 Paper: ASAT-16-131-US  
 

References 

[1]G.Cai,K.Lum,B.Chen,andT.Lee,“Abriefoverviewonminiaturefixed-wing unmanned 

aerial vehicles,” in 8th IEEE International Conference on Control and Automation 

(ICCA),2010. IEEE,2010,pp.285–290. 

[2] A. Alshbatat and Q. Alsafasfeh, “Cooperative decision making using 
a collection of autonomous quadrotor unmanned aerial vehicle 
interconnected by a wireless communicationnetwork.” 

[3]E. Boneand C. Bolkcom, “Unmanned aerial vehicles: Background 
and issues for congress.”  DTIC Document,2003. 

[4]A.Marasco,S.N.Givigi,andC.A.Rabbath,“Dynamicencirclementofamov
ing target using decentralized nonlinear model predictive 
control,”Amer-icanControlConference,pp.3966–3972,2013. 

[5]A.Ryan,M.Zennaro,A.Howell,R.Sengupta,andJ.Hedrick,“Anoverviewof emerging 

results in cooperative UAV control,” in 43rd IEEE Conferenceon Decisionand 

Control (CDC),vol.1. IEEE,2004,pp.602–607. 

[6] K. Do and J. Pan, “Nonlinear formation control of unicycle-

typemobilerobots,”RoboticsandAutonomousSystems,vol.55,no.3,pp.191–204,2007. 

[7]D.Scharf,F.Hadaegh,andS.Ploen,“Asurveyofspacecraftformationflyingguidanceand

control.partii:control,”inAmericanControlConference,2004.Proceedingsofthe2004,v

ol.4. IEEE,2004,pp.2976–2985. 

[8]Y.Ding,C.Wei,andS.Bao,“DecentralizedformationcontrolformultipleU
AVs based on leader-following consensus with time-varying delays,” 
in2013ChineseAutomationCongress(CAC).IEEE,2013,pp.426–431. 

[9]W.RenandR.Beard,“A decentralized scheme for spacecraft formation flying via the 

virtual structure approach,” in American Control 

Conference,2003.Proceedingsofthe2003,vol.2. IEEE,2003,pp.1746–1751. 

[10]J.Lawton,R.Beard,andB.Young,“A decentralized approach to formation maneuvers, 

”IEEETransactionsonRoboticsandAutomation,vol.19,no.6,pp. 933–941,2003. 

[11]R.Olfati-Saber,“Flockingformulti-agent dynamic systems: Algorithms and theory, 

”IEEETransactionsonAutomaticControl,vol.51,no.3,pp.401–420,2006. 

[12]H.Rezaee,F.Abdollahi,andM.B.Menhaj,“Model-freefuzzyleader-follower formation 

control of fixed wing UAVs, 

”in201313thIranianConferenceonFuzzySystems(IFSC).IEEE,2013,pp.1–5. 

[13]D.Luo,T.Zhou,andS.Wu,“Obstacleavoidanceandformationregroupingstrategy and 

control for UAV formation flight,” in 10th IEEE International Conference on 

Control and Automation (ICCA), 2013. IEEE, 2013,pp.1921–1926. 

[14]G.RegulaandB.Lantos,“FormationcontrolofalargegroupofUAVswithsafepathplannin

g,”in21stMediterraneanConferenceonControl&Automa-tion (MED).   IEEE, 2013, 

pp.987–993. 

[15]X.Wang,V.Yadav,andS.Balakrishnan,“CooperativeUAVformationflyingwith 

obstacle/collision avoidance,” IEEE Transactions on ControlSystemsTechnology,. 



 Paper: ASAT-16-131-US  
 

[16] E. F. Camacho and C. Bordons, Model Predictive Control. London:Springer-

Verlag,2007. 

[17]R.Negenborn,B.DeSchutter,M.Wiering,andH.Hellendoorn,“Learningbased model 

predictive control for markovdecision processes,” 

inProceedingsofthe16thIFACworldcongress,2005,pp.1–7. 

[18]J.Lavaei,A.Momeni,andA.G.Aghdam,“Amodelpredictivedecentralized
control scheme with reduced communication requirement for 
spacecraft formation, ”IEEETransactionsonControlSystemsTechnology, 
vol.16,no.2,pp. 268–278,2008. 

[19]Z.Chao,S.-L.Zhou,L.Ming,andW.-

G.Zhang,“UAVformationflightbasedonnonlinearmodelpredictivecontrol,”Mathema

ticalProblemsinEngineer-ing, vol. 2012,2012. 

[20]A.Aswani,P.Bouffard,andC.Tomlin,“Extensions of learning-based 
model predictive control for real-time application to a quadrotor 
helicopter,”inAmericanControlConference(ACC),2012.IEEE,2012,pp.4
661–4666. 

[21]P.Bouffard,A.Aswani,andC.Tomlin,“Learning-basedmodelpredictivecontrol on a  

quadrotor:  Onboard  implementation  and experimental results, 

”IEEEInternationalConferenceonRoboticsandAutomation(ICRA), 2012.IEEE, 2012, 

pp.279–284. 

[22] W. B. Dunbar and R. M. Murray, “Distributed receding horizon 
controlformultivehicleformationstabilization,”Automatica,vol.42,no.4,
pp.549–558,2006. 

[23] E. A. Wan and A. T. Nelson, “Dual extended kalman filter ethods,”Kalmanfiltering 

and neural networks, pp. 123–173,2001. 

[24]T.A.Wenzel,K.Burnham,M.Blundell,andR.Williams,“Dualextendedkalmanfilterforve

hiclestateandparameterestimation,”VehicleSystemDynamics,vol.44,no.2,pp.153–171,2006 


