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A New Closed Form Equation to Design Laminated Composite 

 Tubes with Specified Torsional Stiffness 
 

A. M. Musrati*, M. I. El-Geuchy†, A. A. Al-Soualy‡, A. E. Hussein§ 

 

Abstract: A New theoretical formula is derived to calculate the torsional stiffness of both thin 

and thick-walled laminated composite tubes of [θ/-θ]n configuration. This equation can also 

be used to design the composite tube with a specified value of torsional stiffness accurately 

and simply. A numerical example is presented to illustrate the design procedure. The method 

is validated using the results obtained from an accurate method based on three-dimensional 

elasticity theory from the literature. 

 

 

1. Introduction 
The use of composite materials is ever increasing in commercial, defense, and industrial 

applications. Composite tubes are often used as idealized models for structures such as 

aircraft fuselages, missile bodies, drive shafts, and storage tanks. Important parameters such 

as axial stiffness, bending stiffness, and torsional stiffness decide the properties of the 

composite tube. Torsional stiffness is a key factor judging the performance of cylindrical 

structural members that are used as torsion bars or drive shafts. There are some research 

studies concerned the analysis of the twisting behavior of composite tubes. A number of these 

analytical works on the torsional stiffness of composite tubes, are presented in next lines. 

Based on 3D elasticity theory, Jolicoeur, C. and A. Cardou [1] obtained a general analytical 

solution for an elastic body consisting of an assembly of coaxial hollow circular cylinders 

made of orthotropic material, and subjected to axisymmetric loadings. The analysis was based 

on the three-dimensional elasticity theory. The torsional stiffness (GJ) of the whole assembly 

was calculated.  Another theoretical solution was presented by E. E. Elsoaly and R. M. 

Gadelrab[2] to determine twisting angle of filament winding composite tubes under pure 

torque, based on the classical lamination theory. Average properties of these layers are 

considered for the multilayered composite tubes, which were manufactured by filament 

winding angles of [θ/-θ]. Mo Yang and Ingoing Zhang [3] derived a new theoretical solution 

for the torsional stiffness of thin-walled composite tube based on the classical lamination 

theory. Experimental work was done on a tube made of carbon/Epoxy with different of 

winding angles. M. I. El-Geuchy and S. V. Hoa [4] studied the flexural behavior of thin and 

thick walled composite tubes and demonstrated the effect of the interaction between the tube 

layers on enhancing the tube flexural stiffness. 
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In the present work, a simple new closed form equation is derived to design and calculate 

torsional stiffness of both thin and thick-walled composite tubes. The derivation is based on 

the interaction effects between the tube layers of [θ/-θ]n configuration presented in [4]. The 

numerical results are compared with those of Jolicoeur, C. and A. Cardou [1] to validate the 

derived formula. 

 

 

2. Derivation of the Theoretical Formula 
Figure (1) shows a hollow thick-walled tube, with internal and external diameters Di and Do 

made of a homogeneous orthotropic material. The tube is of thickness t, made of n thin layers 

with stacking sequence [θ/-θ] and subjected to pure torsional loading T. 

 

 

Fig. (1)   A laminated composite tube with [θ/-θ]n configuration 

 

The constitutive equations for one lamina with θ orientation can be written in the following 

matrix equation: 

 

 

 

   (1) 

 

 

 

where 𝑆𝑖̅𝑗 are the coefficients of off-axis compliance. There are different coupling parameters 

in the composite lamina at orientation [θ]. These parameters make the composite lamina to 

deform in one direction due to a generated deformation in the direction of loading. One can 

observe the first coupling parameters are the Poisson’s ratios (υxy) and (υyx) which relate the 

axial strain (εx) and the hoop strain (εy) as shown in the following equations: 

  𝜐𝑥𝑦 = −
𝜀𝑦

𝜀𝑥
= −

𝑆̅12

𝑆̅11
            (2) 

  𝜐𝑦𝑥 = −
𝜀𝑥

𝜀𝑦
= −

𝑆̅12

𝑆̅22
     (3) 

These coupling parameters exist in both isotropic and anisotropic materials. Other coupling 

parameters that exist only in anisotropic materials are the mutual influences of both first and 

second kinds. These parameters relate the normal strains to shear strains. The mutual 

influences of first kind are stated in the following equations: 

t 

z 

y 

x - θ 

θ 



Paper: ASAT-17-142-ST  

 

3/9 

  𝜂𝑥,𝑥𝑦 =
𝜀𝑥

𝛾𝑥𝑦
                       𝜂𝑦,𝑥𝑦 =

𝜀𝑦

𝛾𝑥𝑦
 (4) 

These parameters can be written in terms of transformed compliances as follows: 

  𝜂𝑥,𝑥𝑦 =
𝑆̅16

𝑆̅66
                       𝜂𝑦,𝑥𝑦 =

𝑆̅26

𝑆̅66
 (5) 

While, the coefficient of mutual influence of the second kind (ηxy,x) and (ηxy,y) are used to 

calculate the generated shear strains as a cause of axial strains when the lamina is subjected to 

normal stresses such that: 

     𝜂𝑥𝑦,𝑥 =
𝛾𝑥𝑦

𝜀𝑥
                               𝜂𝑥𝑦,𝑦 =

𝛾𝑥𝑦

𝜀𝑦
 (6) 

Similarly, these coefficients can be written in terms of transformed compliances,  

  𝜂𝑥𝑦,𝑥 =
𝑆̅16

𝑆̅11
                       𝜂𝑥𝑦,𝑦 =

𝑆̅26

𝑆̅22
 (7) 

For carbon-epoxy composite material, of properties provided in Table (1), Figures (2-7) 

illustrate the variation of these coupling coefficients of interaction with orientation angle θ. 

 

Table (1)   Mechanical properties of (Carbon/Epoxy)  [6] 

E1(GPa) E2(GPa) E3(GPa) v12 v23 v13 G12(GPa) G23(GPa) G13(GPa) 

155 12.1 12.1 0.248 0.458 0.248 4.4 3.2 4.4 

 

From these presented figures, one can observe the following: 

  𝑥𝑦() = 𝑥𝑦(−)                            𝑦𝑥() = 𝑦𝑥(−) (8) 

While  

    
𝑥𝑦,𝑥

() = −
𝑥𝑦,𝑥

(−)                        
𝑥𝑦,𝑦

() = −
𝑥𝑦,𝑦

(−) (9) 

  
𝑥,𝑥𝑦

() = −
𝑥,𝑥𝑦

(−)                      
𝑦,𝑥𝑦

() = −
𝑦,𝑥𝑦

(−) (10) 

Fig. (2)   υxy variation with θ for carbon/epoxy 
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 Fig. (3)   υyx variation with θ for carbon/epoxy 

   

  

Fig. (4)   ηx,xy  variation with θ for carbon/epoxy  
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Fig. (5)   ηy,xy variation with θ for carbon/epoxy 

 

 

 

Fig. (6)   ηxy,x variation with θ for carbon/epoxy 
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Fig. (7)   ηxy,y variation with θ for carbon/epoxy 

 

In case of a composite tube composed of a layer with one lamina of θ orientation and 

subjected to a torsional load, axial strains (εx, εy) are generated in the x and y directions due to 

the generated shear strain (xy). While in a layer made of two laminas [θ,-θ], and taking into 

considerations equation (10). One can observe the following: 

  𝜂𝑥,𝑥𝑦𝐿𝑎𝑦𝑒𝑟1
= −𝜂𝑥,𝑥𝑦𝐿𝑎𝑦𝑒𝑟2

      and      𝜂𝑦,𝑥𝑦𝐿𝑎𝑦𝑒𝑟1
= −𝜂𝑦,𝑥𝑦𝐿𝑎𝑦𝑒𝑟2

  (11) 

So, the generated axial strains (εx and εy) in the lamina of orientation (+θ) are opposing the 

generated axial strains in the lamina of orientation (-θ), such that at the interface between the 

two laminae  

  εx= εy= 0  (12) 

This interaction at the interface generates axial stresses (σx and σy). This situation leads to 

enhance the rigidity of the composite lamina at the interface such that it will have a higher 

effective shear modulus than Gxy for a layer composed of two laminae of only [/] 

orientation. This situation is explained in details at the following paragraphs. 

 

By substituting equation (12) in the constitutive matrix equation, we get the following 

equations: 

  𝜀𝑥 = 𝑆1̅1𝜎𝑥 +  𝑆1̅2𝜎𝑦 +  𝑆1̅6𝜏𝑥𝑦 = 0  (13) 

  𝜀𝑦 = 𝑆1̅2𝜎𝑥 +  𝑆2̅2𝜎𝑦 +  𝑆2̅6𝜏𝑥𝑦 = 0 (14) 

Form equation (13), using equations (2), (7) 

   𝜎𝑥 =
−1

𝑆̅11
(𝑆1̅2𝜎𝑦 + 𝑆1̅6𝜏𝑥𝑦)  (15) 

  𝜎𝑥 = 𝜐𝑥𝑦𝜎𝑦 −  𝜂𝑥𝑦,𝑥𝜏𝑥𝑦 (16) 

And from equation (14), using equations (3), (7) 
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  𝜎𝑦 =
−1

𝑆̅22
(𝑆1̅2𝜎𝑥 + 𝑆2̅6𝜏𝑥𝑦) (17) 

So,  𝜎𝑦 = 𝜐𝑦𝑥𝜎𝑥 −  𝜂𝑥𝑦,𝑦𝜏𝑥𝑦  (18) 

By substituting of equation (18) into equation. (16), the generated normal stress, σx, becomes 

  𝜎𝑥 = 𝜐𝑥𝑦(𝜐𝑦𝑥𝜎𝑥 −  𝜂𝑥𝑦,𝑦𝜏𝑥𝑦) − 𝜂𝑥𝑦,𝑥𝜏𝑥𝑦  (19) 

Equation (19) can be written in a form to give a relation between normal stress σx and shear 

stress τxy as; 

  𝜎𝑥 =
−1

( 1−𝜐𝑥𝑦𝜐𝑦𝑥)
(𝜂𝑥𝑦,𝑥 + 𝜐𝑥𝑦𝜂𝑥𝑦,𝑦)𝜏𝑥𝑦  (20) 

Substituting equation (20) into equation (18), the normal stress σy can be written as: 

  𝜎𝑦 = [
−𝜐𝑥𝑦

( 1−𝜐𝑥𝑦𝜐𝑦𝑥)
(𝜂𝑥𝑦,𝑥 + 𝜐𝑥𝑦𝜂𝑥𝑦,𝑦) − 𝜂𝑥𝑦,𝑦]𝜏𝑥𝑦  (21) 

One can simplify equations (20) and (21) to the following forms: 

      𝜎𝑥 = 𝑋1. 𝜏𝑥𝑦 (22) 

  𝜎𝑦 = 𝑋2. 𝜏𝑥𝑦 (23) 

where  𝑋1 and 𝑋2 are coefficients in terms of the material properties such that:  

  X1=
−1

( 1−𝜐𝑥𝑦𝜐𝑦𝑥)
(𝜂𝑥𝑦,𝑥 + 𝜐𝑥𝑦𝜂𝑥𝑦,𝑦)  (24) 

  X2= 
−𝜐𝑥𝑦

( 1−𝜐𝑥𝑦𝜐𝑦𝑥)
(𝜂𝑥𝑦,𝑥 + 𝜐𝑥𝑦𝜂𝑥𝑦,𝑦) − 𝜂𝑥𝑦,𝑦   (25) 

Similarly, the shear strain γxy can be obtained, using the constitutive matrix equation, in the 

following form:  

  𝛾𝑥𝑦 = 𝑆1̅6𝜎𝑥 +  𝑆2̅6𝜎𝑦 +  𝑆6̅6𝜏𝑥𝑦 (26)  

By substituting of equations. (22) and (23) into equation (26), the shear strain γxy is obtained 

as:  

       𝛾𝑥𝑦 = (𝑆̅16𝑋1 +  𝑆2̅6𝑋2 +  𝑆6̅6)𝜏𝑥𝑦        (21) 

 

So, 

  
 𝜏𝑥𝑦

𝛾𝑥𝑦
=

1

(𝑆̅̅̅
16𝑋1+ 𝑆̅26𝑋2+ 𝑆̅66)

 (22) 

But, the shear modulus of a lamina in the global coordinates (Gxy) equals 
 1

𝑆̅66
 , so equation (22) 

can be written in the form:  

 
𝜏𝑥𝑦

𝛾𝑥𝑦
=

𝐺𝑥𝑦

( 
𝑆1̅6

𝑆6̅6
𝑋1 +

𝑆2̅6

𝑆6̅6
 𝑋2 +  

𝑆6̅6

𝑆6̅6
)

 

or,  𝐺𝑒𝑓𝑓 =
𝐺𝑥𝑦

( 𝜂𝑥,𝑥𝑦𝑋1+𝜂𝑦,𝑥𝑦𝑋2+ 1)
  (23) 

where: Geff   is the effective shear modulus of the layer with [θ/-θ] configuration. One can 

observe that the torsional stiffness of a tube with (n) layers of [θ/-θ], can be written as: 

   𝐺𝐽 = ∑ 𝐺𝑒𝑓𝑓,𝑛( 𝐽1 + 𝐽2)𝑛𝑛
1   (24) 
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where: J1, J2 :  polar moment of inertia of lamina(+θ) and lamina (-θ), respectively. In order to 

validate equation (24), the obtained torsional stiffness is compared with the numerical values 

calculated using the analytical solution presented in [1]. This analytical method is chosen 

because it is based on the three-dimensional elasticity theory. A MATLAB code is written, 

and the torsional stiffness is calculated for thick-walled tubes made of Carbon/Epoxy, with 

[/-]20 configuration, and of t/Do =0.45. Figure (8), shows GJ values from both the derived 

closed form equation and 3D based analytical solution of [1]. One can observe that the values 

coincide with each other, which validates the accuracy of derived equation  

for all .  

 

Fig. (8)   GJ versus θ for composite tube of [θ/-θ]n , t/Do= 0.45 

 

 

3. Numerical Example 
In this section, the procedure to design a composite tube with a required torsional stiffness 

value is illustrated through a numerical example. It is required to specify the tube 

configuration of torsional stiffness equal to 3500 N.m2. At first, Carbon/Epoxy composite 

material is chosen for making the composite tube, the mandrel diameter is taken to be 14mm 

which is considered to be the inner diameter of the composite tube. From figure (8), one can 

observe that the highest torsional stiffness is obtained at (=45o), which means that the 

maximum value of Geff.is when the tube has [45/-45]n configuration. So, this configuration is 

chosen for the composite tube and it is required to calculate (n) value that give the specified 

torsional stiffness. The wall thickness of one lamina is assumed to be (tlamina= 0.15mm). So, 

equations (24) can be arranged to be as follows: 

  𝐺𝐽 = 𝐺𝑒𝑓𝑓 ∗ 𝐽𝑡𝑜𝑡𝑎𝑙 (25) 

Since  𝐽𝑡𝑜𝑡𝑎𝑙 =
𝜋

32
(2𝑡 + 𝐷𝑖)4 − 𝐷𝑖

4 (26) 

Making some arrangement to have the following equation: 

  𝑡 = √2

𝜋
𝐽𝑡𝑜𝑡𝑎𝑙 +

𝐷𝑖
4

4

4

−
𝐷𝑖

2
 (27) 

Since  𝑡 = 𝑛 ∗ 2𝑡𝑙𝑎𝑚𝑖𝑛𝑎 (28) 
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So substitute by equations (25), (27) in equation (28) to have the following equation: 

  𝑛 =

( √
2(𝐺𝐽)

𝜋𝐺𝑒𝑓𝑓
+

𝐷𝑖
4

4

4
−

𝐷𝑖
2

)

2𝑡𝑙𝑎𝑚𝑖𝑛𝑎
 (29) 

So n=29.87, and it must be approximated to the next bigger integer, which means that the tube 

configuration should be [45/-45]30 to have the needed torsional stiffness value. The analytical 

solution, presented in [1], is used to calculate the torsional stiffness for this configuration and 

the results are compared in the following table.  

 

Table (2) Torsional stiffness values using the derived equation and 

the 3D based analytical solution of [1] 

Torsional stiffness GJ ( N.m2) 

3D based analytical 

solution of [1] 
Closed Form Formula % error 

3515.5 3500 0.44% 

 

The comparison of results, in table 2, shows that the percentage of error of closed form 

solution is 0.44%, which means that equation (29) can be used to design the torsional stiffness 

accurately and simply. 

 

 

4. Conclusion 
A simple and accurate closed form equation for torsional stiffness of multi-layers composite 

tubes is derived. It can be used for both thin and thick-walled composite tubes. It mainly 

depends on the understanding the interaction effects at the interface between two laminas of 

[/-] configuration. And it is found that main parameters that make this interaction effect are 

the mutual influence coefficients (ηxy,x), (ηxy,y), (ηx,xy) and (ηy,xy) of these layers.  

Lastly, equation (29) provides an accurate and easy tool to design multi-layered composite 

tubes with the required torsional stiffness value. 
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