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Effect of Automatic Ball Balancer on Unbalanced Rotor 

Vibration 
 

{Michael Makram*, Ahmed F. Nemnem†, and Mohamed K. Khalil‡}§ 

 

Abstract: Rotor vibration due to unbalance causes a lot of problems during operation. One of 

the simplest ways to reduce rotor vibration is the passive balancing. Unbalanced vertical rotor 

is modeled by a two degrees of freedom system considering Jeffcott model assumption. A (2+n) 

degrees of freedom mathematical model is derived with respect to a Cartesian co-ordinate 

system for the unbalanced rotor with the automatic ball balancer. The model equations are 

expressed as state equations then solved numerically to calculate vibration amplitudes and 

angular positions of balancing balls. Model validation is achieved by comparing these results 

with a three-dimensional model. The effect of the automatic ball balancer on vibration 

amplitudes is explained at different speed ranges. A parametric study is done to explain the 

effect of the system damping coefficient on the ball balancer behaviors.  

 

Keywords: Rotor vibrations, unbalance, online balancing, passive balancing, automatic ball 

balancer, dynamic balancer. 

 

 

Nomenclature  
A vibration amplitude. 

a radial distance between ball center and disk center. 

c damping coefficient. 

cb damping coefficient for balancing ball motion in oil filled track. 

e Eccentricity 

i order of ball. 

k shaft stiffness. 

m mass of disk. 

mb mass of balancing ball in one ball ABB. 

mb1, mb2 mass of balancing ball in two balls ABB. 

mimb rotor imbalance mass. 

n  number of balancing balls. 

t time. 

x linear displacement in x-axis direction. 

y linear displacement in y-axis direction. 

θ angular displacement of disk. 

θb angular displacement of ball. 

ω angular velocity of rotor. 
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Abbreviations 
ABB automatic ball balancer. 

DOF degree of freedom. 

 

1. Introduction 

Rotors are commonly used in several systems including vehicle wheels, electrical motors, 

machine tools, compressors, turbo machinery, aircraft gas turbine engines and helicopter 

blades. Vibration affects all these rotating systems. Unbalance, misalignment, bowed shafts, 

material imperfections and cracks are some causes of the vibration, but mass imbalance still 

one of the most primary sources of vibrations, which occurs when the principal inertia axis of 

the rotor is not coincident with rotational axis. An imbalance can arise through imperfections 

in the manufacturing process or resulting from wear, missing balance weights or damage. A 

heavy spot in a rotating component will cause vibration when the unbalanced weight rotates 

around the rotor axis, creating a centrifugal force. So, that imbalances can create the worst 

operating conditions by causing translational and rotational vibrations which in turn cause large 

stresses. As rotor speed changes, the effects of imbalance may become higher. In some cases, 

imbalances can be factors in poor performance, high noise levels, reduced bearing life, and 

reduced human comfort. 

Balancing methods can be classified to two common balancing methods as shown in Fig. 1, one 

method is off-line balancing in which the rotating machine is stopped for the adjustment of 

mass distribution, and the second method is on-line balancing in which the mass distribution 

rearrangement happens continuously during rotation. Because it is often impractical to take a 

machine out of service to realign and balance its components, especially if balancing usually 

needs to be done, engineers have long searched for ways to automatically balance equipment 

using simple devices that allow mass redistribution to compensate for any unknown imbalance.  

 

 
Fig. 1   Balancing methods classification 

 

There are two types of automatic balancers, active and passive. Active devices utilize computers 

and sensors which continuously read the vibrations, then apply control laws to counteract these 

vibrations and most of them use electromagnetic actuators and can balance the machine very 

effectively [1], but from its disadvantages are complexity, expensive cost and high weight.  

Where the passive balancers usually consist of freely moving masses, tend to move to positions 

that counteract the inherent imbalance of the system and do so without the use of computers 

and control laws. Simplicity, reliability, and relatively low cost of passive balancing systems 

make them a very attractive solution, and thus they have been significant subjects for past 

research. Applications of automatic balancers (ABs) include optical disk drives, jet engines, 

internal-combustion engines, washing machines, food blenders, grinding wheels, and vehicle 

wheels. 
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The ring balancer was the first form of automatic balancers that appeared in 1872 by A. Fesca 

who patented improved centrifugal machine equipped with three rings balancer [2], in this 

balancer the freely moving masses are rings. In the same year, the second type of passive 

balancers was registered by M. Leblanc who patented his automatic balancer for rotating 

bodies, in this design the balancer consisted of a simple cylindrical chamber field with a heavy 

liquid [5] and it was called Lablanc balancer. The third type is the ball balancer which was first 

designed in a detailed experimental study by Thearle [3] in 1932. In 1946 K. Clark used four 

non-centrally attached pendulums to reduce the level of centrifugal machines’ vibrations, and 

this is considered the first documentation of pendulum type balancer [4]. Thearle [5] compared 

several different types of automatic dynamic balancers, such as a ring, pendulum and ball 

balancers. This is the first appearance of an automatic pendulum-balancer in the literature. In 

this paper Thearle concluded that by placing the pivot of pendulums at the center of rotation 

the pendulum balancer become equivalent to the ring balancer. In addition, he concluded that 

ball balancers were a superior system. 

Passive balancing techniques especially pendulum and ball automatic balancers have received 

a great deal of attention in recent research. Automatic passive self-balancing systems are 

important tools for reducing the effects of synchronous vibration in a variety of rotating 

machinery. Such systems are capable of precise balancing at certain speed ranges above the 

critical speed which is called stable region, but they may play an opposite role in other speeds. 

Pendulum balancers tend to be costlier to construct than ball balancers and the weight of the 

pendulums must be supported in special ways, which leads to additional mechanical 

complexity, however, ball balancer systems have some problems such as friction between the 

balls and the cylindrical race or channel where they move, the ball balancer still more popular 

than the pendulum balancer and successfully applied to different fields. A traditional ball-type 

balancer is composed of several balls moving only in tangential direction along a fixed circular 

orbit. To increase the stable region of the perfect balancing configuration, a new design of 

balancer was proposed [6] in which an extra degree of freedom in the radial direction is 

introduced to the balls.  

 

 

2. Mathematical Model 

The rotor shaft system is considered as a 2 DOF system taking in consideration Jeffcott model 

assumptions. The used model as shown in Fig. 2 consists of: a vertical simply-supported 

massless flexible shaft, and a disk mounted at the mid span of the shaft is rotating in a horizontal 

plane with a radial mass imbalance causing a shift between its geometry center and its center 

of gravity. The disk model has two degrees of freedom, x and y, which are mutually orthogonal 

linear displacements in the same horizontal plane. The model is symmetric, having the same 

spring stiffness kx , ky and damping coefficient cx, cy in both directions, and ideal friction bearing 

is assumed. 

The differential equations of motion  

 2 cosmx cx kx me t         

 2 sinmy cy ky me t      (1) 

 ,x y x yc c c k k k     (2) 

 

The analytical solution of radially unbalanced system is: 
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 2 2A x y   (5) 

Each ball in the ABB reaches its own angular coordinate (θ), and this coordinate is independent 

on the linear coordinates of the rotor, so that the rotor and the ABB can be modeled by a (2+n) 

DOF system, where (n) is the number of balls in ABB. 

 

 

An eccentric rotating disc is studied with an ABB consisting of several balls free to move in a 

race filled with a viscous fluid and positioned at a fixed distance from the center of rotation of 

the disc. This set-up is shown schematically in Fig. 3. Point (G) represents the center of mass 

of the disc (without the balancing balls) and is located a distance (e) from the center of  

rotation (C).  

The equations of motion of our model are derived, where the assumption that all motion is 

confined to the two-dimensional plane. Also, it is assumed that no interactions between the 

balls. This assumption is valid provided the balls are in an equilibrium state. Note that 

neglecting impacts between the balls makes this study similar to that of an ABB with double 

ball races [7]. 
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   2 2 sin cosbn bn bn bn bn bn bnm a c a m a x t y t              (8) 

Fig. 2   Jeffcott model    
Fig. 3   Schematic drawing of an 

automatic dynamic balancer 
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Equations (6) and (7) describe the horizontal and vertical displacements in the same plane, 

equation (8) is the equilibrium equation of ball in the tangential direction, and for more than 

one ball ABB this equation is repeated for each ball. 

 

 

3. Numerical Solution  
The state equations can be conveniently used in solving the model equations, and these 

equations are solved numerically using MATLAB software (ode-45).  Let us rewrite the model 

equations in the form of state equations. To do this, it is necessary to denote new symbols as 

shown: 

 

Let:   

(9) 

 

 

The equations of motion can be expressed as the state equations which are (2n+4) first order 

differential equations. The state equations may be written in a matrix vector equation. 

 

 x A x x B                                                          (10) 

where;  

 

 

 

 

(11) 
 

I   is (2+n) × (2+n) identity matrix 

M is (2+n) × (2+n) matrix determined from the above equations, 

B is (4+2n) × (4+2n) matrix determined from the model equations. 

 

 

4. Validation of the Mathematical Model 

The unbalanced rotor is analytically solved using Jeffcott equations (3-5), also the model is 

solved numerically with and without the ABB using the above mathematical model. In the 

numerical simulation, the same model parameters (shown in appendix a) and initial conditions 

are used. Then, the numerical simulation results are compared to Bolton’s results in three cases: 

the model without balancer, the model with one ball ABB, and the model with two balls ABB. 

The rotor vibration amplitudes are calculated at different three values of angular speeds 15 

rad/s, 50 rad/s, and 200 rad/s that are taken by Bolton  [8]. The first speed is below the linear 

spring natural frequencies, the second speed is greater than the linear spring natural frequency 

and less than the torsional spring natural frequency, and the third one is higher than the torsional 

spring natural frequency, Table 1 shows the comparison of vibration amplitudes values. 

This comparison shows a great agreement between our model results and the results in the 

reference, the difference between calculated results for rotor amplitude does not exceed 3.7% 

which corresponds to 4.5 × 10−7 𝑚𝑒𝑡𝑒𝑟, in case of model with one ball ABB at 15 rad/sec. 

This value can be accepted comparing to the available practical measuring sensitivity. 
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Table 1   Comparing values of rotor vibration amplitudes 

(a) without ABB.   (b) with one ball ABB.   (c) with two balls ABB. 

 

 

The ball angular positions are calculated in the two cases model with one ball ABB and with 

two balls ABB, at the different given values of angular speed 15 rad/s, 50 rad/s, and 200 rad/s.  

The model with one ball ABB numerical simulation results are compared to Bolton’s results 

[8] as shown in Fig. 4. The continuous curve shows our model simulation and the dotted curves 

are Bolton’s results. A great agreement in the steady state results is shown, but a small deviation 

in ball dynamic response speed in case of model with one ball ABB. This can be occurred due 

to imbalance initial angular position [9], and this delay is not interesting in studying the steady 

state behaviors of the ABB. 

Fig. 5.(a) shows the instability of balancing balls at speed of 15 rad/s, this is agreed with the 

principle of ABB and this speed below the critical speed out of the balancer stable region. Also, 

Fig. 5 shows a greet matching of the curves obtained from comparing the numerical solution 

for the model with two balls ABB and Bolton’s results.   

 

 

 

 

 

(a) 

Angular 

speed [rad/s] 

Amplitude [m] 

Unbalanced rotor 
Reference 

Analytically Numerically 

15 8.4731 × 10−5 8.4742 × 10−5 8.582 × 10−5 
50 2.9993 × 10−4 2.9988 × 10−4 3.032 × 10−4 

200 3.132 × 10−4 3.1323 × 10−4 3.1699 × 10−4 
 

(b) 

Angular 

speed [rad/s] 

Amplitude [m] 

Model with one ball ABB Reference 

15 1.1965 × 10−4 1.192 × 10−4 
50 2.8558 × 10−7 0 

200 2.2836 × 10−9 0 
 

(c) 

Angular 

speed [rad/s] 

Amplitude [m] 

Our model Reference 

15 (instable) 
2.008 ×
10−4  

𝑛𝑜 𝑠. 𝑠 𝑣𝑎𝑙𝑢𝑒 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 

50 5.24 × 10−8 0 

200 
5.21
× 10−10 

0 
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(c) 

 

Fig. 4   Angular position of balancing ball in the model with one ball ABB at  

(a) 15 rad/s, (b) 50 rad/s, (c) 200 rad/s. 

 

 

 

(b) 

(a) 
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(c) 

Fig. 5   Angular position of balancing balls in the model with two balls ABB at  

 (a) 15 rad/s, (b) 50 rad/s, (c) 200 rad/s. 

 

(b) 

(a) 
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5. ABB Effect at Various Speed Ranges 

The ABB effect is clearly shown in Fig. 6 which represents the resonance diagrams of the rotor 

with and without the balancer across a speed range of 0 to 200 rad/sec. It is shown that the ABB 

can decrease the vibration amplitudes nearly to zero in angular speeds above the critical speed, 

but its rule is opposed in speeds below the critical speeds. This is because when the rotor 

operates at a speed below the natural frequency of the support, the geometric center and the 

mass imbalance will be on the same side of the disc mass center. While on rotor operating above 

the natural frequency, an interesting phenomenon occurs, the geometric center and the 

imbalance are on opposite sides of the disc mass center. 

 

 

Fig. 6   Resonance diagram 

 

 

6. System Damping Coefficient Effect on ABB Behaviors 

It is observed from model simulations that system damping coefficient is one of the most factors 

affecting ABB rule in damping the vibration results from imbalance. Damping ratio affects the 

behavior of the unbalanced rotor as known, so that to study its pure effect on ABB, the angular 

positions of balls are studied in comparison with the wanted balanced position, using different 

values of damping ratio (0,0.1, 0.3,0.4, 0.7, 1, and 1.3) in model simulation at the same three 

previous speeds. 

Fig. 7(a) shows one ball ABB angular position compared to the expected ball balanced position 

at the speed of 15 rad/sec, it is observed that increasing damping ratio (from 0 to 1.3) bring the 

balancing ball closer to the balanced position and so improving the balancer behavior, while in 

Fig. 7(b) one of the balancing balls of the two balls ABB approaches the balanced position and 

the other goes away from it in the range of damping ratio from 0 to 0.3, above this damping 

ratio the balls starts to be instable so that the damping ratio not only affect the steady state 

position of balancing balls but also it affects clearly the stable range of the ABB.  
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(c) 

Fig. 7   Angular position of ABB balls at 15 rad/sec. 

(a) One ball ABB.   (b)Two ball ABB (mb1,2=28gm).  (c) Two ball ABB(mb=14gm).   

 

(a) 

(b) 
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Balancing ball instability appears at high damping ratio in Fig. 7(b) produced also from bad 

selection of mass of balancing balls of the two balls ABB. When considering the same balancing 

masses summation (mb = mb1 + mb2), the effect of damping ratio appears purely and it is observed 

from Fig. 7 (c) that the two balls approach the balanced position and it is shown that it is better 

to use  balls of 14 gm mass in the two balls ABB instead of 28 gm that is used by Bolton [8], 

so that the total mass of the two balls equal to the mass of the unique balancing ball in one ball 

ABB and the comparison between them will be more reasonable. 

Fig. 8(a) shows one ball ABB angular position compared to the expected ball balanced position 

at the speed of 50 rad/sec, it is observed that varying the damping ratio does not affect the 

balancing ball position in steady state  but it delays the dynamic response of the balancing ball 

impairing the balancer behavior, while in Fig. 8 (b) varying the damping ratio from 0 to 1 has 

the same effect on the two balancing balls of the ABB , above this damping ratio the balls starts 

to be instable, using balancing balls of 14 gm mass for the two balls ABB gives the same effect 

without ball instability. 

 

 

(a) 

(b) 

Fig. 8   Angular position of ABB balls at 50 rad/sec. 

(a) One ball ABB.   (b)Two ball ABB (mb1,2=28gm).   
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Fig. 9 shows the angular position of ABB balancing balls compared to the expected ball 

balanced position at the speed of 200 rad/sec, it is observed that varying the damping ratio does 

not affect the balancing ball position in steady state  but it delays the dynamic response of the 

balancing ball impairing the balancer behavior, in this speed the balancing balls in the two balls 

ABB are stable in the range of damping ratio from 0 to 1.3 so that balls stability in high speeds 

is lower sensitive to damping ratio variation. 

 

 

 

 

 

 

 

 

(a) 

(b) 

Fig. 9   Angular position of ABB balls at 200 rad/sec. 

(a) One ball ABB.   (b)Two ball ABB (mb1,2=28gm).   
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7. Conclusion 

A mathematical model is built up, and solved numerically using MATLAB, to simulate the 

motion of ABB balancing balls and the vibration amplitudes of a rotor shaft system with and 

without ABB. After model validation, the model is trusted to simulate rotor shaft systems with 

ABB. The ABB main parameters of balancing ball mass, ball damping coefficient, and radial 

distance of ball track are important in balancer design, but the great relation between the system 

parameters as damping coefficient of the system and the balancing ball response cannot be 

ignored. System damping coefficient increase has a good effect on ABB balancing balls motion 

at low speeds while it delays its responses at high speeds. So, that the ABB is more efficient for 

damped systems. Summation of ABB balancing balls’ masses should be nearly equal or little 

larger than the expected rotor imbalance, the large difference may disable the balancer from 

rotor perfect balancing or causes balancing balls instability. Optimization of the balancer 

parameters taking in consideration system parameters should takes place in the future work, 

beside the experimental investigation of the ABB rule in damping the vibration of unbalanced 

rotor. 
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Appendix (a) 
 

System parameters used in numerical simulation 

 
 

Initial conditions used in numerical simulation 

 
 

m 1.242 slugs 18.125627 kg

t 8 in 0.2032 m

8 in 0.2032 m

9 in 0.2286 m

0.0019 slugs 0.0283268 kg

8 in 0.2032 m

0.0155 lb.ft 0.005756 N.m

e 0.0125 in 0.0003176 m

0 deg 0 rad

g 32.2 ft/sec2 9.81 m/s2

1000 lb/ft 14632.309 N/m

1000 lb/ft 14632.309 N/m

100000 lb/ft 1463230.9 N/m

49.3 lb.sec/ft 721.37284 N.sec/m

49.3 lb.sec/ft 721.37284 N.sec/m

500 lb.sec/ft 7316.1546 N.sec/m

0.005 lb.sec/ft 0.0731615 N.sec/m

0.0019 slugs 0.0283122 kg

8 in 0.2032 m

Viscous damping coefficent, 

Balancing ball mass, 

Radias of ball track, 

Stiffness in x-direction,  

Stiffness in y-direction,  

Stiffness in z-direction,  

Damping coefficientin x-dir.,  

Damping coefficientin y-dir.,  

Damping coefficientin z-dir.,  

Gravity acceleration,  

value parameter

Rotor mass,  

Rotor thickness,   

Rotor inner radias,

Rotor outer radias,

Imbalance mass

Imbalance radial distance

Imbalance moment

Eccentricity,  

Angular position of imbalance

𝑟 
𝑟 

  

  

  
𝑐 

𝑐 

𝑐 

𝑐 

𝑚 

𝑎 

   

30 degree 0.52 radian

272 degree 4.75 radian

0 0 rad/sec

 initial condition value

First balancing ball’s position,  

Second balancing ball’s position, 

Balls' angular velocity   1 ,    

 1

  


