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Modeling, Trimming and Simulation of a Full Scale Helicopter  
 

Hassan Shahat Hassan*, Amgad M. Bayoumy†, Gamal M. El-Bayoumi‡, 

Mohamed Madbouly Abdelrahman§ 

 

Abstract: The complex configuration of helicopter guarantees that the vehicle modeling, trim 

and simulation are significantly more difficult than fixed-wing aircrafts. In this paper, general 

expressions for aerodynamic forces and moments, acting on helicopter due to its main and tail 

rotors at any flight conditions, are derived by using momentum and blade element theories. 

These complex expressions are inserted in the rigid body equations of motion, derived from 

Newton second law, to build a generic nonlinear mathematical model for single main and tail 

rotors helicopters; in order to obtain their responses to arbitrary control inputs. This model can 

be used in pilot training, control system design, and studying the helicopter stability 

characteristics.  Trimming problem is solved at general flight conditions; arbitrary turn rate, 

flight path and side slip angles. The power required to fly helicopter at forward flight with 

several flight path angles is determined. The flight path angle required for helicopter 

autorotation condition is calculated at any forward speed. The mathematical model is solved by 

numerical integration (Runge-Kutta method) in the simulation code. The resulting trim 

conditions are verified by supplying the trim control inputs to the simulation code and verifying 

that the helicopter is flying in steady-state. 
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Nomenclature  
𝑎 Main rotor blade section lift curve slope 

𝑎𝑡𝑟 Tail rotor blade section lift curve slope 

𝐴 Main Rotor Area, 𝜋𝑅2 

𝐴𝑡𝑟 Tail rotor area 

𝑐 Main rotor blade chord 

𝐶𝑇 Main rotor thrust coefficient 

𝐶𝑇𝑡𝑟
 Tail rotor thrust coefficient 

𝐶𝑋ℎ
, 𝐶𝑌ℎ

, 𝐶𝑍ℎ
 Main rotor forces coefficients in 𝑋ℎ, 𝑌ℎ, 𝑍ℎrespectively. 

𝐶𝑋𝑤
, 𝐶𝑌𝑤

, 𝐶𝑍𝑤
 Main rotor forces coefficients in 𝑋𝑤, 𝑌𝑤, 𝑍𝑤respectively. 

𝑓 Fuselage equivalent drag area. 

ℎ𝑚 Distance from A.C. center of gravity and hub center in z direction 

𝐼𝑏 Blade inertia 

𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 Moment of inertia about 𝑋𝑏, 𝑌𝑏 , 𝑍𝑏 respectively   

𝑙𝑡𝑟 Distance from A.C. center of gravity and tail rotor hub center in x direction 

𝑝, 𝑞, 𝑟 Angular velocity about 𝑋, 𝑌, 𝑍 body axes respectively 

𝑝ℎ𝑤, 𝑞ℎ𝑤, 𝑟ℎ𝑤 Angular velocity about 𝑋ℎ𝑤, 𝑌ℎ𝑤, 𝑍ℎ𝑤 hub-wind axes respectively 

𝑅 Main rotor radius 
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𝑅𝑡𝑟 Tail rotor radius 

𝑇𝑡𝑟 Tail rotor thrust 

𝑇 Main rotor thrust 

𝑈𝑇 Tangential component of velocity vector at the blade section 

𝑈𝑝 Radial component of velocity vector at the blade section 

𝑈𝑝 Perpendicular component of velocity vector at the blade section 

𝑢, 𝑣, 𝑤 Velocity components in 𝑋, 𝑌, 𝑍 body axes respectively 

𝑢ℎ, 𝑣ℎ, 𝑤ℎ Velocity component in 𝑋ℎ, 𝑌ℎ, 𝑍ℎ hub axes respectively 

𝑢𝑡𝑟 , 𝑣𝑡𝑟 , 𝑤𝑡𝑟 Velocity components acting on the tail rotor 

𝑉𝑓𝑒 Flight velocity 

𝑥𝑐𝑔 Distance from A.C. center of gravity and hub center in x direction 

𝑧𝑡𝑟 Distance from A.C. center of gravity and tail rotor hub center in x direction 

𝛼𝑓 Fuselage angle of attack 

𝛽𝑤𝑡𝑟
 Tail rotor side slip angle. 

𝛽0 Blade conning angle 

𝛽1𝑐𝑤
, 𝛽1𝑠𝑤

 Main rotor longitudinal and lateral flapping angles in hub-win axes 

𝛽1𝑐 Main rotor longitudinal flapping angle 

𝛽1𝑠 Main rotor lateral flapping angle 

𝛽𝑓 Fuselage side slip angle 

𝛾 Main rotor blade lock number 

𝛾𝑓𝑒 Spin angle (positive downward) 

𝜃0 Main rotor collective pitch 

𝜃1𝑐𝑤
, 𝜃1𝑠𝑤

 Main rotor lateral and longitudinal cyclic pitch in hub-wind axes 

𝜃1𝑐 Lateral cyclic pitch 

𝜃1𝑠 Longitudinal cyclic pitch 

𝜆 Total induced flow ratio through main rotor disk 

𝜇 Forward flight advance ratio  

𝜇𝑡𝑟 Tail rotor advance ratio 

𝜙, 𝜃, 𝜓 Euler angles 

 Ψ̇ Horizontal turn rate 

𝜎, 𝜎𝑡𝑟 Main rotor and tail rotor solidity respectively 

Ω, Ω𝑡𝑟 Main rotor and tail rotor rotational speed 

 

Subscripts and superscripts 
𝑏 body 

𝑒 equilibrium 

𝑓 fuselage 

ℎ Hub 

ℎ𝑤 hub wind  

𝑚𝑟 Main rotor 

𝑡𝑟 tail rotor 

 

1. Introduction 
Helicopter has six degrees of freedom in its motion. The helicopter control is based on changing 

the direction and magnitude of main rotor thrust vector. Helicopter has four control inputs 

associated to its main rotor. These controls are the main rotor collective pitch 𝜃0, longitudinal 

cyclic pitch 𝜃1𝑠, lateral cyclic pitch 𝜃1𝑐 and tail rotor collective pitch 𝜃0𝑡𝑟
. The cross coupling 

between these inputs makes the vehicle unstable without the stability augmentation system [1]. 

To design a control system and to analyze the helicopter complicated control and dynamics, it 

is necessary to develop a complete dynamic model which should be linearized about an 
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equilibrium point. This modeling is divided into three levels according to their complexity [2]. 

Level 1 is the simplest model that describes the system whereas level 3 consist of set of complex 

models and it is more accurate in predicting the system response [2]. In level 1 helicopter is 

assumed rigid body and the blade dynamics are simplified to rigid blade motion, but level 3 

incorporates detailed modeling of rotor blades and the modes of structure vibration. Level 2 

complexity is in between level 1 and level 3. In the literature, most researchers in the field of 

helicopter dynamic modeling, simulation and control uses Level 1 and reasonable and accurate 

results [3] and [4]. The rigid body nonlinear model has helicopter orientation, position, linear 

and angular velocity components as states. This model is 12th order system [5]. Level 3 models 

are used in structure and rotor mechanical design [6]. The helicopter trim problem, determining 

control inputs required for steady flight, is solved in forward flight [7], [8] and [9]. All 

publications in the field of helicopter control solve the trim problem in steady forward flight 

only [10] and [11]. The conventional forward simulation or direct simulation is used to get the 

vehicle motion (as a function of time) as a response to a given control inputs by solving the 

non-linear differential equations of motion. This simulation is applied to fixed wing aircraft and 

helicopter and the results are compared with flight test data [4].  

The main objective of this study is to build a complete non-linear model for the helicopter. This 

model can be used in the control system design and building direct simulation model for a full 

scale helicopter. In this paper the mathematical model of a single main rotor and tail rotor is 

presented, the total forces and moments acting in the helicopter due to its components are 

discussed in details, helicopter general trim problem is solved, and a simulation of helicopter 

motion at a steady maneuver is introduced.  

The prouty example helicopter [1] is used in calculations in this study. Its characteristics could 

be summarized in Table.1 and Fig. 1. 

 

Table 1. Prouty example helicopter characteristics 

Property 
Value 

British units SI units 

Design gross weight 20000 lb. 9070 Kg 

Main rotor radius 30 ft. 9.14 m 

Main rotor disk area  2827 ft.2 262.64 m2 

Main rotor chord  2 ft. 0.61 m  

Main rotor tip speed  650 ft./sec. 198.12 m/s 

Tail rotor radius 6.5 ft. 1.98 m. 

Tail rotor disk area  133 ft.2 12.36 m2 

Tail rotor tip speed 650 ft./sec. 198.12 m/s 

Fuselage length 57 ft. 17.37 m 

Main rotor height above CG 6 ft. 1.8 m. 

Tail rotor arm 37 ft. 11.28 m 

Fig. 1. Prouty example helicopter [1] 
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2. Helicopter Mathematical Model  
Helicopter is treated as a rigid body of six degrees of freedom. Newton’s second law can be 

applied to get six dynamic equations: three equations in the translational motion and three 

equations in the rotational motion. There are six kinematic equations relating the angular 

velocities of helicopter to the rate of change of its orientation or attitude w.r.t the fixed earth 

axis. The six kinematic equations are obtained from Euler angle transformation [2]. There are 

four control inputs (𝜃0, 𝜃1𝑐, 𝜃1𝑠 , 𝜃0𝑡𝑟
) that controls the force and moment components 

(𝑋, 𝑌, 𝑍. 𝐿, 𝑀, 𝑁). The system of equations that presents helicopter model is as: 

𝑢̇ = −(𝑞𝑤 − 𝑟𝑣) + 𝑋/𝑚 − 𝑔 sin 𝜃 

𝑣̇ = −(𝑟𝑢 − 𝑝𝑤) + 𝑌/𝑚 + 𝑔 sin 𝜙 cos 𝜃 

𝑤̇ = −(𝑝𝑣 − 𝑞𝑢) + 𝑍/𝑚 + 𝑔 cos 𝜙 cos 𝜃 

 𝑝̇ = (𝐼𝑧𝑧𝐿∗ + 𝐼𝑥𝑧𝑁∗)/(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼𝑥𝑧
2 ) 

𝑞̇ = (𝑀 + (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟𝑝 + 𝐼𝑥𝑧(𝑟2 − 𝑝2))/(𝐼𝑦𝑦) 

𝑟̇ = (𝐼𝑥𝑧𝐿∗ + 𝐼𝑥𝑥𝑁∗)/(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼𝑥𝑧
2 ) 

𝜙̇ = 𝑝 + 𝑞 sin 𝜙 tan 𝜃 + 𝑟 cos 𝜙 tan 𝜃 

𝜃̇ = 𝑞 cos 𝜙 − 𝑟 sin 𝜙 

𝜓̇ = 𝑞𝑠𝑖𝑛𝜙 sec 𝜃 + 𝑟 cos 𝜙 sec 𝜃 

𝑥̇ = 𝑢 𝐶𝜃𝐶𝜓 + 𝑣(𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓) + 𝑤(𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓) 

𝑦̇ = 𝑢 𝐶𝜃𝑆𝜓 + 𝑣(𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓) + 𝑤(𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜓𝐶𝜓) 

𝑧̇ = −𝑢 𝑆𝜃 + 𝑣 𝑠𝜙𝐶𝜃 + 𝑤 𝐶𝜙𝐶𝜃 

(1) 

where: 

𝐿∗ = 𝐿 + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 + 𝐼𝑥𝑧𝑝𝑞 

𝑁∗ = 𝑁 + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 − 𝐼𝑥𝑧𝑞𝑟 
(2) 

The forces and moments acting on helicopter (𝑋, 𝑌, 𝑍, 𝐿, 𝑀, 𝑁) are due to main rotor, tail rotor 

and fuselage. The forces and moments due to main rotor, tail rotor and fuselage are expressed 

in body axes system in detail in the following section.  

 

3. Forces and Moments 
Main Rotor Model  

Main rotor is assumed to be the main source of generation forces and moments. 

Aerodynamically, momentum theory is used to obtain inflow ratio, the blade element theory is 

utilized and the forces and moments of blade section are integrated over the radius of blade. 

Because of ignorance of compressibility effects, reversed flow region, and stall effects, the total 

forces and moments are obtained by summation the contribution of each blade. A previous 

study showed that this type of study is valid for control and stability investigations of the 

helicopter for advance ratio up to 0.3 [12].  

The rotor forces and moment are expressed in the hub wind axes system then transformed in 

the hub axes and body axes. The velocity components in (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏)axes are (𝑢, 𝑣, 𝑤) 

respectively and the angular rates are (𝑝, 𝑞, 𝑟). Fig. 2 shows the hub, body and tail rotor axes. 

It also shows the horizontal distance helicopter center of gravity and tail rotor hub 𝑙𝑡𝑟 and the 

vertical distance between main rotor hub and CG.  



Paper: ASAT-17-016-MO 

 

5/14 

 
Fig. 2. Helicopter body axes, hub axes, and tail rotor axes [3] 

 

The velocity components in body axes are transformed to the hub axes as following.  

𝑢ℎ =  𝑢 − 𝑞 ℎ𝑚 

𝑣ℎ = 𝑣 + 𝑝 ℎ𝑚 + 𝑟  𝑥𝑐𝑔 

𝑤ℎ = 𝑤 − 𝑞 𝑥𝑐𝑔  

(3) 

where: 𝑥𝑐𝑔 is the distance between vehicle CG and main rotor hub in 𝑥𝑏 direction. 

Side slip angle, the angle between 𝑋ℎaxis and 𝑋ℎ𝑤axis, is defined as:  

𝛽𝑤 = sin−1
𝑣ℎ

√(𝑢ℎ
2 + 𝑣ℎ

2)
 (4) 

The tangential and perpendicular velocity components on the blade sections are:  

𝑈𝑇
̅̅̅̅ = 𝑟̅ + 𝜇 sin 𝜓 + 𝑟̅ 𝛽 (𝑃ℎ𝑤

̅̅ ̅̅ ̅ cos 𝜓 − 𝑞ℎ𝑤̅̅ ̅̅ ̅ sin 𝜓) 

𝑈𝑝
̅̅̅̅ = 𝜆 + 𝑟̅𝛽. + 𝜇𝛽 cos(𝜓) − 𝑟̅(𝑃ℎ𝑤

̅̅ ̅̅ ̅ sin 𝜓 + 𝑞ℎ𝑤̅̅ ̅̅ ̅ cos 𝜓) 
(5) 

where, 

𝑃ℎ𝑤
̅̅ ̅̅ ̅ =

𝑝

Ω
cos 𝛽𝑤 +

𝑞

Ω
sin 𝛽𝑤 

𝑞ℎ𝑤̅̅ ̅̅ ̅ =  −
𝑝

Ω
sin 𝛽𝑤 +

𝑞

Ω
cos 𝛽𝑤 

(6) 

Transformation of control input from hub axes to hub wind axes is as following: 

[
𝜃1𝑐𝑤

𝜃1𝑠𝑤

] = [
cos 𝛽𝑤 − sin 𝛽𝑤

sin 𝛽𝑤 cos 𝛽𝑤
] [

𝜃1𝑐

𝜃1𝑠
] (7) 

  From momentum theory, the induced flow ratio is: 

𝜆 =  −
𝑤ℎ

Ω𝑅
+

𝐶𝑇

2√𝜇2 + 𝜆2
 (8) 

Main rotor loads hub-wind axes 

The hub wind axes are like the wind axes in the fixed wing aircraft. The loads are calculated in 

the hub-wind axes and then transformed in the hub axes. The blade element theory is applied 

to get loads at blade sections and integrated along the span and over the azimuth to obtain 

general expressions for forces and moments coefficients in hub-wind axis. 

Thrust coefficient: 

𝐶𝑇 =
𝜎𝑎

2
[
𝜃0

3
(1 +

3

2
𝜇2) +

𝜃𝑡𝑤

4
(1 + 𝜇2) +

𝜇

2
𝜃1𝑠𝑤 −

𝜆

2
+

𝜇

4
 𝑝ℎ𝑤̅̅ ̅̅ ̅] (9) 

Drag force coefficient:  

𝐶𝑥𝑤
=

𝜎𝑎

2
[𝜃0 (

𝜆𝜇

2
−

𝛽1𝑐𝑤

3
−

𝑝ℎ𝑤̅̅ ̅̅ ̅

6
) + 𝜃𝑡𝑤 (

𝜆𝜇

4
−

𝛽1𝑐𝑤

4
−

𝑝ℎ𝑤̅̅ ̅̅ ̅

8
)

+ 𝜃1𝑠𝑤 (
𝜆

4
−

𝜇𝛽1𝑐𝑤

4
−

3

16
𝜇𝑝ℎ𝑤̅̅ ̅̅ ̅) + 𝜃1𝑐𝑤 (−

𝛽0

6
−

1

16
𝜇𝑞ℎ𝑤̅̅ ̅̅ ̅)

+
3

4
𝜆𝛽1𝑐𝑤 +

𝛽1𝑠𝑤𝛽0

6
+

𝜇

4
(𝛽0

2 + 𝛽1𝑐𝑤
2 ) −

1

6
𝛽0𝑞ℎ𝑤̅̅ ̅̅ ̅ +

𝜆

2
𝑝ℎ𝑤̅̅ ̅̅ ̅

+
1

16
𝜇𝛽1𝑐𝑤𝑝ℎ𝑤̅̅ ̅̅ ̅ +

1

16
𝜇𝛽1𝑠𝑤𝑞ℎ𝑤̅̅ ̅̅ ̅] +

𝜎

2
(
𝜇

2
𝛿) 

(10) 
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Side force coefficient:  

𝐶𝑌𝑤
= −

𝜎𝑎

2
[𝜃0 {

3

4
𝜇𝛽0 +

𝛽1𝑠𝑤

3
(1 +

3

2
𝜇2) −

1

6
𝑞ℎ𝑤̅̅ ̅̅ ̅} + 𝜃𝑡𝑤 {

𝜇𝛽0

2
+

𝛽1𝑠𝑤

4
(1 + 𝜇2) −

1

8
𝑞ℎ𝑤̅̅ ̅̅ ̅}

+ 𝜃1𝑐𝑤 {
𝜆

4
+

1

4
𝜇𝛽1𝑐𝑤 −

1

16
𝜇𝑝ℎ𝑤̅̅ ̅̅ ̅}

+ 𝜃1𝑠𝑤 {
𝛽0

6
(1 + 3𝜇2) +

1

2
𝜇𝛽1𝑠𝑤 −

1

16
𝜇𝑞ℎ𝑤̅̅ ̅̅ ̅} −

3

2
𝜆𝜇𝛽0

+ 𝛽0𝛽1𝑐𝑤 (
1

6
− 𝜇2) −

3

4
𝜆𝛽1𝑠𝑤 −

𝜇

4
𝛽1𝑐𝑤𝛽1𝑠𝑤 +

1

6
𝛽0𝑝ℎ𝑤̅̅ ̅̅ ̅ +

1

2
𝜆𝑞ℎ𝑤̅̅ ̅̅ ̅

+
5

16
𝜇𝛽1𝑠𝑤𝑝ℎ𝑤̅̅ ̅̅ ̅ +

7

16
𝜇𝛽1𝑐𝑤𝑞ℎ𝑤̅̅ ̅̅ ̅] 

(11) 

Moment coefficient about 𝑋ℎ𝑤axis: 

𝐶𝑀𝑋𝑤
=

𝜎𝑎

2
[
𝛽1𝑐𝑤

8
+

𝜃1𝑠𝑤

8
+

1

4
𝜇𝜃𝑡𝑤 +

1

3
𝜇𝜃0 −

1

4
𝜆𝜇 −

1

16
𝜇2𝛽1𝑐𝑤 +

3

16
𝜇2𝜃1𝑠𝑤

+
𝑝ℎ𝑤̅̅ ̅̅ ̅

8
] +

𝑁

2

1

𝜌𝜋𝑅2(Ω𝑅)2𝑅
𝑘𝛽𝛽1𝑠𝑤  

(12) 

Moment coefficient about 𝑌ℎ𝑤axis: 

𝐶𝑀𝑌𝑤
=

𝜎𝑎

2
[−

1

8
𝜃1𝑐𝑤 +

1

8
𝛽1𝑠𝑤 −

𝑞ℎ𝑤̅̅ ̅̅ ̅

8
+

1

6
𝛽0𝜇 −

1

16
𝜇2𝜃1𝑐𝑤 +

1

16
𝜇2𝛽1𝑠𝑤]

−
𝑁

2

1

𝜌𝜋𝑅2(Ω𝑅)2𝑅
𝑘𝛽𝛽1𝑐𝑤 

(14) 

Moment coefficient about 𝑍ℎ𝑤axis: 

𝐶𝑀𝑍𝑤
=

𝜎𝑎

2
[𝜃0 (−

1

3
𝜆 +

1

6
𝜇𝑝ℎ𝑤̅̅ ̅̅ ̅ )

+ 𝜃1𝑐𝑤 (−
1

8
𝛽1𝑠𝑤 +

1

8
𝑞ℎ𝑤̅̅ ̅̅ ̅ −

1

6
𝛽0𝜇 −

1

16
𝛽1𝑠𝑤𝜇2)

+ 𝜃1𝑠𝑤 (
1

8
𝛽1𝑐𝑤 +

1

8
𝑝ℎ𝑤̅̅ ̅̅ ̅ −

1

4
𝜆𝜇 −

1

16
𝛽1𝑐𝑤𝜇2)

+ 𝜃𝑡𝑤 (−
1

4
𝜆 +

1

8
𝑝ℎ𝑤̅̅ ̅̅ ̅𝜇) −

𝛿

4𝑎
(1 + 𝜇2) +

1

8
𝛽1𝑐𝑤

2 +
1

8
𝛽1𝑠𝑤

2

+
1

4
𝛽1𝑐𝑤𝑝ℎ𝑤̅̅ ̅̅ ̅ +

1

8
𝑝ℎ𝑤̅̅ ̅̅ ̅2 −

1

4
𝛽1𝑠𝑤𝑞ℎ𝑤̅̅ ̅̅ ̅ +

1

8
𝑞ℎ𝑤 ̅̅ ̅̅ ̅̅ 2 +

1

2
𝜆2 +

1

3
𝛽0𝛽1𝑠𝑤𝜇

−
1

3
𝛽0𝑞ℎ𝑤̅̅ ̅̅ ̅𝜇 +

1

2
𝛽1𝑐𝑤𝜆𝜇 +

1

4
𝛽0

2𝜇2 +
3

16
𝛽1𝑐𝑤

2 𝜇2 +
1

16
𝛽1𝑠𝑤

2 𝜇2] 

(15) 

 

where, the flapping angles can be obtained from the flapping model as follows: 

𝛽0 = 𝛾 {
𝜃0

8
(1 + 𝜇2) +

𝜃𝑡𝑤

10
(1 +

5

6
𝜇2) +

𝜇

6
𝜃1𝑠𝑤 −

𝜆

6
} 

𝛽1𝑠𝑤 − 𝜃1𝑐𝑤 =
−

4
3 𝜇𝛽0

1 +
1
2 𝜇2

+

16
𝛾 (

𝑝ℎ𝑤
Ω ) + (

𝑞ℎ𝑤
Ω ) 

1 +
1
2 𝜇2

 

𝛽1𝑐𝑤 + 𝜃1𝑠𝑤 =
−

8
3 𝜇 (𝜃0 −

3
4 𝜆 +

3
4 𝜇𝜃1𝑠𝑤 +

3
4 𝜃𝑡𝑤)

1 −
1
2 𝜇2

+

16
γ (

𝑞ℎ𝑤
Ω ) − (

𝑝ℎ𝑤
Ω )

1 −
1
2 𝜇2

 

(16) 

Rotor profile drag coefficient 𝛿 is required in calculation of torque and drag force coefficients. 

Ref. [12] provides an expression for the profile drag coefficient which matches the measured 

section characteristics as follows:  

𝛿 = 0.009 + 0.3 (
6𝐶𝑇

𝜎𝑎
)

2

 (17) 

Main rotor loads in hub axes 

The aerodynamic forces and moments coefficients are derived in hub-wind axis. These 

expressions should be transformed to hub axis and body axis to be used in aircraft modelling 

and simulation. The load transformation from hub-wind axes to hub fixed axes is as follows: 
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𝐶𝑋ℎ
= 𝐶𝑋𝑤

cos 𝛽𝑤 + 𝐶𝑌𝑤
sin 𝛽𝑤 

𝐶𝑌ℎ
= −𝐶𝑋𝑤

sin 𝛽𝑤 + 𝐶𝑌𝑤
cos 𝛽𝑤 

𝐶𝑍ℎ
= 𝐶𝑇 

𝐶𝑀𝑋ℎ
= 𝐶𝑀𝑋𝑤

cos 𝛽𝑤 + 𝐶𝑀𝑌𝑤
sin 𝛽𝑤 

𝐶𝑀𝑌ℎ
= −𝐶𝑀𝑋𝑤

sin 𝛽𝑤 + 𝐶𝑀𝑌𝑤
cos 𝛽𝑤  

𝐶𝑀𝑍ℎ
= 𝐶𝑀𝑍𝑤

 

(18) 

 

Main rotor loads in body axes 

The contribution of main rotor in the total forces and moments acting on the aircraft is obtained 

from the transformation of its loads from hub axes to body axes as follows: 

𝑋𝑚𝑟 = −𝐶𝑋ℎ
𝜌𝐴(Ω𝑅)2 

𝑌𝑚𝑟 = 𝐶𝑌ℎ
𝜌𝐴(Ω𝑅)2 

𝑍𝑚𝑟 = −𝐶𝑍ℎ
𝜌𝐴(Ω𝑅)2  

𝐿𝑚𝑟 = [−𝐶𝑀𝑋ℎ
−

𝐶𝑍ℎ
𝑦ℎ

𝑅
+

𝐶𝑌ℎ
𝑧ℎ

𝑅
] 𝜌𝑅𝐴(Ω𝑅)2 

𝑀𝑚𝑟 = [𝐶𝑀𝑌ℎ
+

𝐶𝑋ℎ
𝑧ℎ

𝑅
−

𝐶𝑍ℎ
𝑥ℎ

𝑅
] 𝜌𝑅𝐴(Ω𝑅)2 

𝑁𝑚𝑟 = −𝐶𝑀𝑍ℎ
𝜌𝑅𝐴(Ω𝑅)2 

(19) 

 

Tail Rotor Model  
Tail rotor is a powerful solution for torque balance in single main rotor helicopter. It is also a 

tool for direction stability and control Tail rotor is modeled as a teetering rotor without cyclic 

pitch input (𝜃1𝑐, 𝜃1𝑠 = 0). Flapping motion is not evident in tail rotor because the blades are 

rigid and shorter than main rotor blades. The velocity components acting on the tail rotor are as 

follows: 

𝑢𝑡𝑟 = 𝑢  
𝑣𝑡𝑟 = 𝑣 + 𝑝 𝑧𝑡𝑟 − 𝑟 𝑙𝑡𝑟 

𝑤𝑡𝑟 = 𝑤 + 𝑞𝑙𝑡𝑟 

(20) 

Tail rotor side slip angle is:  

𝛽𝑤𝑡𝑟
= sin−1

𝑤𝑡𝑟

𝑢𝑡𝑟
 (21) 

Tail rotor advance ratio is: 

𝜇𝑡𝑟 =
√𝑢𝑡𝑟

2 + 𝑤𝑡𝑟
2

Ω𝑡𝑟𝑅𝑡𝑟
 (22) 

Aircraft pitch and yaw rates are transformed to the tail rotor axis as follows: 

𝑝𝑡𝑟̅̅ ̅̅ =
𝑝 cos 𝛽𝑤𝑡𝑟

+ 𝑟 sin 𝛽𝑤𝑡𝑟

Ω𝑡𝑟
 (23) 

The induced inflow ratio of tail rotor is given by: 

𝜆𝑡𝑟 =
𝑣𝑡𝑟

Ω𝑡𝑟𝑅𝑡𝑟
+

𝐶𝑇𝑡𝑟

2√𝜇𝑡𝑟
2 + 𝜆𝑡𝑟

2
 (24) 

By applying blade element on the tail rotor blade section, the tail rotor thrust coefficient is 

obtained as follows: 

𝐶𝑇𝑡𝑟
=

𝜎𝑡𝑟𝑎𝑡𝑟

2
[
𝜃0𝑡𝑟

3
(1 +

3

2
𝜇𝑡𝑟

2 ) +
𝜃𝑡𝑤𝑡𝑟

4
(1 + 𝜇𝑡𝑟

2 ) −
𝜆𝑡𝑟

2
+

𝜇𝑡𝑟

4
𝑝𝑡𝑟̅̅ ̅̅ ] (25) 

Tail rotor thrust is: 

𝑇𝑡𝑟 = 𝐶𝑇𝑡𝑟
𝜌𝐴𝑡𝑟(Ω𝑡𝑟𝑅𝑡𝑟)2 (26) 

 

 



Paper: ASAT-17-016-MO 

 

8/14 

 

Tail rotor loads in body axes system are as follows: 

𝑌𝑡𝑟 = 𝑇𝑡𝑟 

𝐿𝑡𝑟 = 𝑇𝑇𝑟𝑧𝑡𝑟 

𝑁𝑡𝑟 = −𝑇𝑡𝑟𝑙𝑡𝑟 

(27) 

 

 

 

Fuselage Model  
For calculation the fuselage forces and moments, it is assumed that the longitudinal forces are 

dependent on the angle of attack and lateral forces are dependent on the side-slip angle. The 

drag force is dependent on both angle of attack and side-slip angle. The velocity components 

on the fuselage are as follows: 

𝑢𝑓 = 𝑢 

𝑣𝑓 = 𝑣 

𝑤𝑓 = 𝑤 + 𝑤𝑖𝑓 

(28) 

where 𝑤𝑖𝑓is the induced velocity due to main rotor and can be expressed as:  

𝑤𝑖𝑓 = (
𝑤𝑖𝑓

𝑣𝑖
) 𝑣𝑖 (29) 

where 𝑣𝑖  the main rotor is induced velocity and (
𝑤𝑖𝑓

𝑣𝑖
) defined as the following empirical relation 

[12]: 

(
𝑤𝑖𝑓

𝑣𝑖
) = 1.299 + 0.671𝜒 − 1.172𝜒2 + 0.35𝜒3 

𝜒 = tan−1
𝜇

−𝜆
 

𝑣𝑖 =
𝐶𝑇

2√𝜇2 + 𝜆2
(Ω𝑅) 

 

 

(30) 

 

The fuselage angle of attack is: 

𝛼𝑓 = tan−1
𝑤𝑓

𝑢𝑓
 (31) 

The fuselage side slip angle is: 

𝛽𝑓 = sin−1
𝑣𝑓

𝑉𝑓
 (32) 

where: 𝑉𝑓 = √𝑢𝑓
2 + 𝑣𝑓

2 + 𝑤𝑓
2 . The fuselage drag force is 

𝐷𝑓 =
1

2
𝜌𝑉𝑓

2𝑓 (33) 

The fuselage drag force coefficient is: 

𝐶𝐷𝑓
=

1
2 𝜇𝑓

2𝑓

𝐴
 

(34) 

where, 𝜇𝑓 =
𝑉𝑓

Ω𝑅
 .The fuselage load is transformed to the body axes at aircraft center of gravity 

as follows: 

𝑋𝑓 = (−𝐶𝐷𝑓
cos 𝛼𝑓 cos 𝛽𝑓)𝜌𝐴(Ω𝑅)2 

𝑌𝑓 = (−𝐶𝐷𝑓
sin 𝛽𝑓)𝜌𝐴(Ω𝑅)2 

𝑍𝑓 = (−𝐶𝐷𝑓
sin 𝛼𝑓 cos 𝛽𝑓)𝜌𝐴(Ω𝑅)2 

(35) 

 

4. General Trim Problem  
The general trim problem is the helicopter trim at a steady turn maneuver in a spin mode (spiral 

climb or decent) with horizontal turn rate Ψ̇. During this maneuver, the spin axis is vertically 

and there isn’t any change in fuselage roll and pitch attitude (𝜙𝑒 , 𝜃𝑒), so the components of 
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weight force in body axes are constant. In general trim problem, velocity vector magnitude 

𝑉𝑓𝑒does not change and helicopter is flying with a side slip angle 𝛽 and spin angle 𝛾𝑓𝑒. Fig. 3 

shows the general trim problem flight conditions. . By defining the following four quantities 

(𝛾𝑓 , 𝑉𝑓 , 𝛽, Ψ̇), any maneuver can be defined. That is the cause of choosing these variables. For 

example, at steady forward flight, the maneuver is defined by putting 𝛽,𝛾𝑓, and Ψ̇ zeros. 

Another example, to define horizontal turn maneuver, put Ψ̇ by the horizontal turn rate, flight 

path angle is zero and side slip angle is also zero.  

 
Fig. 3. General trim problem flight conditions [2] 

 

The trim equations are non-linear algebraic equations as follows:  

−(𝑤𝑒𝑞𝑒 − 𝑣𝑒𝑟𝑒) +
𝑋𝑒

𝑚
− 𝑔 sin 𝜃𝑒 = 0 

−(𝑢𝑒𝑟𝑒 − 𝑤𝑒𝑝𝑒) +
𝑌𝑒

𝑚
+ 𝑔 cos 𝜃𝑒 sin 𝜙𝑒 = 0 

−(𝑣𝑒𝑝𝑒 − 𝑢𝑒𝑞𝑒) +
𝑍𝑒

𝑚
+ 𝑔 cos 𝜃𝑒 cos 𝜙𝑒 = 0  

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑒𝑟𝑒 + 𝐼𝑥𝑧𝑝𝑒𝑞𝑒 + 𝐿𝑒 = 0 

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟𝑒𝑝𝑒 + 𝐼𝑥𝑧(𝑟𝑒
2 − 𝑝𝑒

2) + 𝑀𝑒 = 0 

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑒𝑞𝑒 + 𝐼𝑥𝑧𝑞𝑒𝑟𝑒 + 𝑁𝑒 = 0 

(36) 

 

where: The quantities 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 , 𝐿𝑒 , 𝑀𝑒 , 𝑁𝑒 are the aerodynamic forces acting on helicopter due 

to main rotor, tail rotor and fuselage. These forces and moments are functions of four control 

inputs (𝜃0, 𝜃1𝑐, 𝜃1𝑠, 𝜃0𝑡𝑟
), translational velocities (𝑢𝑒 , , 𝑣𝑒 , 𝑤𝑒), and angular velocities (𝑝𝑒 , 𝑞𝑒 , 𝑟𝑒).  

Equations (36) are six equations in twelve unknowns: translational velocities (𝑢𝑒 , 𝑣𝑒 , 𝑤𝑒), 

angular velocities (𝑝𝑒 , 𝑞𝑒 , 𝑟𝑒), four control inputs (𝜃0, 𝜃1𝑐, 𝜃1𝑠 , 𝜃0𝑡𝑟
), roll angle 𝜙𝑒, and pitch 

angle 𝜃𝑒. The four given quantities are: flight velocity 𝑉𝑓𝑒, spin angle 𝛾𝑓𝑒, horizontal turn 

rate Ψ̇, and side slip angle 𝛽.  

 

The steady roll, pitch and yaw rates are related to the spin rate as: 

𝑝𝑒 = −Ψ̇ sin 𝜃𝑒 

𝑞𝑒 = Ψ̇ sin 𝜙𝑒 cos 𝜃𝑒 

𝑟𝑒 = Ψ̇ cos 𝜙𝑒 cos 𝜃𝑒 

(37) 

The velocity vector 𝑉𝑓𝑒makes an angle 𝛾𝑓𝑒with the horizontal plane as shown in Figure 4.2. 

Then, 
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𝑥̇ = 𝑉𝑓𝑒 cos 𝛾𝑓𝑒 cos 𝜒 

𝑦̇ = 𝑉𝑓𝑒 cos 𝛾𝑓𝑒 sin 𝜒 

𝑧̇ = 𝑉𝑓𝑒 sin 𝛾𝑓𝑒 

(38) 

where: 𝜒 is the angle between projection of velocity vector and 𝑋0. Using the transformation 

matrix 𝑅 between earth fixed axes and body axes.  

𝑢𝑒 = 𝑉𝑓𝑒[cos 𝛾𝑓𝑒 cos 𝜃𝑒 cos 𝜒𝑒 − sin 𝛾𝑓𝑒 sin 𝜃𝑒] (39) 

𝑣𝑒 = 𝑉𝑓𝑒[cos 𝛾𝑓𝑒 sin 𝜙𝑒 sin 𝜃𝑒 cos 𝜒𝑒 + cos 𝛾𝑓𝑒 cos 𝜙𝑒 sin 𝜒𝑒

+ sin 𝛾𝑓𝑒 sin 𝜙𝑒 cos 𝜃𝑒] 
(40) 

𝑤𝑒 = 𝑉𝑓𝑒[cos 𝛾𝑓𝑒 cos 𝜙𝑒 sin 𝜃𝑒 cos 𝜒𝑒 − cos 𝛾𝑓𝑒 sin 𝜙𝑒 sin 𝜒𝑒

+ sin 𝛾𝑓𝑒 cos 𝜙𝑒 cos 𝜃𝑒] 
(41) 

 

where: 𝜒𝑒 = 𝜒 − 𝜓 is the track angle. This angle is constant with time, but the heading angle 

changes with time 𝜓 = Ψ̇𝑡. Track angle is the angle between velocity vector and 𝑋𝑏axis 

projected in the earth horizontal plane. From the definition of side slip angle 𝛽 = sin−1 𝑣𝑒

𝑉𝑓𝑒
, eq. 

(40) will be: 

sin 𝛽 = [cos 𝛾𝑓𝑒 sin 𝜙𝑒 sin 𝜃𝑒 cos 𝜒𝑒 + cos 𝛾𝑓𝑒 cos 𝜙𝑒 sin 𝜒𝑒

+ sin 𝛾𝑓𝑒 sin 𝜙𝑒 cos 𝜃𝑒] 
(42) 

 

Solution of General Trim Problem  
From equations (37), the angular velocity components (𝑝𝑒 , 𝑞𝑒 , 𝑟𝑒) are function of given variables 

and (𝜙𝑒 , 𝜃𝑒). Hence, the six equilibrium equations (36) and equations (39, 41, and 42) are 

nonlinear nine equations in nine unknowns (𝜃0, 𝜃1𝑐 , 𝜃1𝑠 , 𝜃0𝑡𝑟
, 𝜙𝑒 , 𝜃𝑒 , 𝑢𝑒 , 𝑤𝑒 , 𝜒𝑒) and can be 

solved by any numerical iterative method (Newton Raphson method) or fsolve matlab function. 

 

5. Direct Simulation Procedure 
Direct simulation for helicopter is a technique used to estimate the airplane motion and 

represent the time history of the change of the six kinematic components (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓), the 

translational and angular velocity components (𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟) for any control input 

(𝜃0, 𝜃1𝑠 , 𝜃1𝑐 , 𝜃0𝑡𝑟
). This method is used to predict the helicopter response to a sequence of 

control inputs. It is conventionally called initial value problem.  

Helicopter model consists of six dynamic equations and six kinematic equations which can be 

represented as 

 𝒙̇ = 𝑓(𝒙, 𝑢),    𝒙(0) = 𝒙0 (43) 

where: The vectors 𝒙 and 𝑢 represent the helicopter states and control inputs respectively. To 

get the aircraft response to any control input 𝑢 as function of time, these equations are integrated 

by Runge-kutta method [13] 

Fig. 4 represents the direct simulation procedure. The control inputs and previous states are the 

inputs for the helicopter aerodynamic model to get the total aerodynamic forces and moments 

acting on the helicopter. Then, these forces and moments are inserted in the vehicle equations 

of motion derived by Newton’s second law. Finally, the model equations are integrated by using 

Runge-kutta method to get the helicopter response due to any set of control inputs.  

 

6. Results and Discussion 
The complete non-linear model is solved at the trim conditions (steady flight) to get the control 

inputs required to trim the vehicle at any flight conditions.  
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Fig. 4.  Helicopter direct simulation procedure  

 

Trim at Several Flight Path Angles 
Fig.5 shows the four control inputs required to trim the helicopter at several flight path angles 

and different flight speeds. As shown, the main rotor collective pitch increases as the flight path 

angle increases which means that the vehicle needs more thrust to raise its altitude. Also, the 

longitudinal cyclic become more negative as increasing the flight path angle since the main 

rotor must tilt forward by a higher angle to support the weight of the airplane. Due to the 

coupling between the longitudinal and lateral cyclic, the lateral cyclic changes and the tail rotor 

control also changes to balance the helicopter laterally. 

Fig. 5. Trim control inputs at several flight path angles 
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Trim at Several Side Slip Angles 
Fig 6 presents the change of the required control inputs at various side slip angles. The main 

change is observed in the lateral cyclic pitch and tail rotor collective pitch.  

 

Fig. 6. Trim control inputs at several side slip angles 

 

General Trim Results  
The general trim problem is solved at turn rate 0.1 rad/sec., spin angle -5 deg., side slip angle 0 

deg., and an advance ratio 0.3 then the required control inputs and helicopter attitudes at the 

trim condition are as follows: 

 

 

Table.2 Trim control inputs and helicopter attitudes at 

 𝝁 = 0.3, 𝜷=0 deg., 𝜸𝒇𝒆=-5 deg., 𝚿̇=0.1 rad. /sec. 

Main rotor collective pitch 𝜃0  14.3541 deg. 

Longitudinal cyclic pitch 𝜃1𝑠 -3.2058 deg. 

Lateral cyclic pitch 𝜃1𝑐 0.9255 deg. 

Tail rotor collective pitch 𝜃0𝑡𝑟
 12.2436 deg. 

Helicopter roll angle 𝜙𝑒 30.6468 deg. 

Helicopter pitch angle 𝜃𝑒 -4.9459 deg. 
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Verification of General Trim Results by Direct Simulation  
The of general trim problem is achieved by supplying the trim control inputs as a constant 

function of time to direct simulation code, the simulation code that integrates the equations of 

motion by Runge-Kutta method. The results of this code indicates that the vehicle moves in a 

steady flight with the required trim conditions as shown in Fig. 6 

 

Fig. 6   Flight trajectory at trim control inputs 

 

 

These results demonstrate the accuracy and correctness of the direct simulation and the trim 

code outputs.  

 

 

7. Conclusion 
In this paper, General expressions for aerodynamic forces and moments acting on helicopter 

due to its main components, main rotor, tail rotor and fuselage, at any flight condition are 

derived in detailed by using momentum theory and blade element theory. The obtained 

expressions from aerodynamic loads are used in the rigid body equations of motion, derived by 

Newton’s second law, to get a complete non-linear model for helicopter. The vehicle response 

to any set of control inputs is determined by this general model. This model is used in designing 

the control of autonomous helicopter and the automatic helicopter pilot. Many maneuvers are 

achieved by this model.  

The first step in helicopter controller design is the linearization of vehicle model. The 

linearization process is about the trim point. In this study, the trim problem is solved at any 

flight condition; forward flight with several flight path angles, side slip angles and turn 

maneuvers. The solution of trim problem is determining the control inputs and helicopter pitch 

and roll attitudes required to fly helicopter at a steady maneuvers.  

The verification of trim results is verified by direct simulation code. The resulted control input 

is supplied to the direct simulation code as a constant function of time. The resultant states from 

the simulation code are also constant with time which means that the helicopter in a steady 

flight and moving in the trim conditions. These results asserts that the trim results and the direct 

simulation code are accurate and correct. 
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