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Abstract: This paper presents a proposed approach for improving the design of a composite 

pressure vessel (CPV) under internal pressure. Thin shell theory, membrane theory, classical 

lamination theory and Tsai–Wu failure criterion are carefully integrated into an efficient 

mathematical model. The mathematical model is successfully combined with an in-house 

developed algorithm that is used to improve the design of any given CPV. Case results show 

that the proposed approach successfully improved the design of a composite pressure vessel 

relative to the base design made from steel and also relative to a conventional CPV design 

approach. 
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1. Introduction 
Fiber reinforced polymer (FRP) composite materials with their higher specific strength and 

stiffness characteristics will result in reduction of weight of the structure. So, CPVs are an 

important type of high-pressure container that is widely used in the commercial and aerospace 

industries.  

 

The design objective is to make the pressure vessel as lightweight as possible; within the 

bounds of technology, cost, structural strength, handling and storage. When the metal alloys 

are replaced by composite materials, in general the structure’s mass will be reduced by 20–

30% [1]. Additionally, Laminate patterns and ply buildup in a part can be tailored to give the 

required mechanical properties in various directions. Design of CPVs is very complicated and 

requires careful consideration of factors. Material properties, fiber orientation, stacking 

sequence are considered the most important parameters in designing of Composite pressure 

vessels. It was found that most of the design and analysis of CPVs are based on thin-walled 

theory; which outer diameter is less than 1.1 times its inner diameter [2]. Roylance [3] used 

netting analysis for filament wound pressure vessels which assumed that all loads are 

supported by the fibers only, neglecting any contribution by the matrix and any interaction 

between the fibers. He noted that the optimum winding angle for filament-wound pressure 

vessels is 54.74°. 

 

The classical lamination theory (CLT) is utilized to determine the stresses and strains at any 

position of laminates subjected to force and/or moment resultants. On the other hand, the 

Tsai–Wu failure criterion used to predict the first-ply failure load. Liang [4] used CLT as 

optimization core for domes of rocket motor case. He also used Tsai-Wu failure criterion to 
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assess the first ply failure. Chapelle, D. [5] provided an exact solution for stresses and strains 

on the cylindrical section of the vessel under thermo-mechanical static loading based on CLT 

and on Tsai Hill’s criterion. Tsai-Wu failure criterion was used to evaluate the fracture 

behavior of composite layers [6, 7]. Additionally, Tsai-Wu failure criterion was used to 

determine the laminate thickness distributions [8]. 

 

However, one disadvantage of the composite materials is dull design processes [9]. So, it was 

important to do a computer program in order to reduce the calculating time of designing the 

CPV. MATLAB, a numerical computing package, was used as a basis for the programs as it 

is more than sufficient to handle the numerous matrix computations [9]. This program is 

improved to achieve the minimum thickness of the CPV those can safely withstand the 

applied load given the available composite material. 

 

 

2. Mechanics of Composite Materials 
The unit cell structure of a composite material is called a lamina. A lamina is a flat 

(sometimes curved as in shell) arrangement of unidirectional or woven fibers in a supporting 

matrix. When several laminas are stacked together, this structure is called a laminate. A 

laminate is a stack of laminas with various orientations of principal material directions in the 

lamina. A laminate’s layers are usually bound together by the same matrix material that is 

used in the lamina. Strain-stress relations for plane stress orthotropic lamina can be described 

as follows [10]:  
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where  S   is the compliance matrix and its elements are: 
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where E1,2 are Young’s modulus in directions 1 and 2; G12 is the shear modulus in the 1-2 

plane; υ12,21 are Poisson’s ratios in the 1-2 and 2-1planes. 

 

Stress-strain relations for a lamina with arbitrary orientation are: 
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where  Q is the stiffness matrix and it is equal to the inverse of  S ; m and n are cosine and 

sine of angle (θ) between global (x,y,z) and material coordinates (1,2,3), respectively (as 

shown in Figure 1. For simplicity equation (2) can be written as follows:  

 

    
x x

Q      (3) 

where Q   is called the transformed stiffness matrix. 
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The stress strain relation in equation (3) can now be used in finding stresses and strains under 

external applied loads using the CLT [11]. The theory assumes that for a laminate consisting 

of orthotropic laminas, a line that passes perpendicularly to the mid-surface remains straight 

and perpendicular after deformation as shown in Figure 2. The mid-surface strains and 

curvatures in the global coordinate can be used to find stresses of the number k lamina as 

follows: 

      
k kk

o x
Q z Q            (4) 

where  
o

 and  
x

 are mid-surface strain and curvature, respectively. 

The in-plane forces  x y xyN , N , N and moments  x y xyM ,M ,M per unit length are defined as 

the through-thickness integrals of the planer stress in the laminate as shown in Figure 3. 

 

Figure 3 and can be expressed as follows: 
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Substitution of (4) into (5) yields the following matrix relations that relate the force and 

moment resultants to the mid-surface strains and curvatures, 
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The integral over laminate thickness can be replaced by a summation of integrals over the 

individual layer’s thickness, where   o  and    are independent of z. Thus, 
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Or more simply  
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where A
 
is called the extensional stiffness,  B  is the bending-extensional coupling stiffness 

and  D  is the bending stiffness; and each can be defined as follows: 
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Combining the above equations gives the most general expression for stress at any z-location 

in a laminate with given forces and moments as: 
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where [I] is an identity matrix and [W] is 
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The presence of nonzero elements in the coupling matrix  B  indicates that the application of 

in-plane traction will lead to a curvature or warping of the plate, conversely an applied 

bending moment will also generate an extensional strain. In structural design, these effects are 

usually undesirable; however they can be avoided by making the laminate symmetric about 

the mid-plane. A laminate is called symmetric when for each layer on one side of a mid-plane 

there is a corresponding layer at an equal distance from the mid-plane on the other side with 

identical thickness, orientation, and properties. The laminate is symmetric in both geometry 

and material properties. The stress at any z-location in a symmetric laminate with given forces 

and moments can be given as: 

 

  
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In a case of pressure vessel subjected to internal pressure, the stresses in cylindrical part is 
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where p and r are the internal pressure and inner radius, respectively [12]. 

 

 

3. Failure Criterion 
A failure criterion is now required to evaluate and differentiate different composite designs 

according to their structural efficiency. There are various failure theories such as maximum 

stress, maximum strain, Tsai-Hill, and Tsai-Wu. There are large differences between the 

results of maximum stress, maximum strain, and experimental results. The results of Tsai-Hill 

and Tsai-Wu are found in good agreement with the experimental results.  Tsai-Wu is more 

accurate than Tsai-Hill failure theory, because the interaction between the stress components 

and Tsai-Wu theory does distinguish between the tensile and compressive strengths [13]. 

 

The second-order tensor polynomial criterion as proposed by [14] is considered here. The 

criterion assumes that there exists a failure surface in the stress-space in the following scalar 

form: 

 ( ) 1k i i ij i jf F F       (13) 

where the contracted notation is used; and i, j, k = 1,...6; Fi and Fij are strength tensors of the 

second and fourth rank, respectively.  

 

By assuming that Fi and Fij are symmetric tensors, equation (13) in expanded form is 
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Other simplification of equation (14) can be effected through recognition that the shear terms 

F4 = F5 = F6 = 0 and the normal/shear coupling terms F14 = F15 = F16 = F24 = F25 = F26 = F34 = 

F35 = F36 = F45 = F46 = F56 = 0. 

 

Thus, the reduced form of the scalar function ( )kf   for orthotropic material is  
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The expanded form of this theory is stated as [15] 
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where F1, F2, and so on are called the strength coefficients and are given by [15] 
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where 
T

1  is the tensile strength in the longitudinal direction, 
T

2  is the Tensile strength in the 

transverse direction, C

1 is the compression strength in longitudinal direction, 
C

2  is the 

compression strength in the transverse direction, and 
F

12 is the in-plane shear strength.  

 

Tsai-Wu failure criterion can be determined whether a lamina has failed or not. However, this 

does not give the information about how much the load can be increased if the lamina is safe 

or how much the load should be decreased if the lamina has failed. The definition of strength 

ratio (SR) is helpful here. The strength ratio is defined as the ratio between the maximum load 

which can be applied and load applied [13]. Each stress component of equation (16) was 

multiplied by the SR as: 

    2 2 2 2

1 1 2 2 11 1 22 2 66 12 12 1 2F F SR F F F 2F SR 1              (18) 

 

The criterion for SR is that it can only be positive. If SR is < 1, then failure occurs because it 

means that the loading needs to decrease to avoid failure. A value SR =1 implies that the 

composite structure is perfectly suited for the applied loading conditions. If SR >1, then the 

lamina is more safe and we have to increasing the applied stress by a factor of SR or 

decreasing the lamina’s thickness (mass of the structure) for the same stress with in the safety 

limits.  
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4. Proposed Approach 
The proposed approach to improve the design of a composite pressure vessel is described in 

this section. The approach employs a mathematical model for calculating the minimum 

number of composite layers those can safely withstand the applied load given the available 

composite material. This approach improves on the conventional approach which only 

ensures that the laminate will safely withstand the applied load regardless of it is 

overdesigned (non-optimal) or not. The mathematical model is represented by a flow chart in  

Figure 4. The mathematical model starts with given input: composite material properties, 

stacking sequence of one laminate, applied load, and required dimensions and safety factor.  

 

Then focusing on this laminate, the [A], [B], and [D] matrices are calculated and used to 

estimate the minimum strength ratio (SR) over all laminate’s plies. Since the laminate will 

obviously not be able to withstand the applied load, SR will be less than one, which means 

composite failure. However, calculating the reciprocal of SR and multiplying it by the value 

of the required safety factor will give us a rough estimate of the number of multiple laminates 

required to increase the loading capacity until SR is higher than one and is equal to the value 

of the safety factor. This rough estimate of laminates number will give an over designed 

composite and the program will now start to iterate to decrease unnecessary laminates until 

the minimum value of SR over all laminate’s plies is equal to the value of the required safety 

factor. The program then stops and uses the density of composite material to calculate the 

required material mass per unit area; hence this value can be compared with the mass of a 

base design of a pressure vessel made from steel. A comparison between the normalized 

weights of different patterns is shown in Figure 5. 

 

 

5. Results and Discussion 
Before presenting the design improvement results, the verification of the mathematical model 

is firstly presented. The mathematical model has been verified against the published results of 

example 4.3 in page 335 in Ref. [13]. In this example, a composite laminate is made from 

[0°/30°/–45°] graphite epoxy laminate where each lamina is 5 mm thick. The material 

properties are given in Table 3. The laminate is subjected to 1000 N/m in the x and y global 

coordinates. 

 

The local stresses and strains are calculated using the mathematical model and are compared 

with the published results presented in Ref. [13] as presented in Table 1. It is clear that there 

is a complete agreement between both results.  

 

In the next step, the mathematical model is also verified in order to ensure that failure 

criterion calculations are correct. The mathematical model is verified using the  published 

results of example 5.3 in page 381 in Ref. [13]. In this example, a composite laminate is made 

from  0 / 90
s
graphite epoxy laminate where each lamina is 5 mm thick. The laminate is 

subjected to 1 N/m in the x global coordinate parallel to the fibers in the 0 ply. Strength ratios 

are calculated using the mathematical model and are compared with the published results in 

Ref. [13] as presented in Table 2. Again, there is a complete agreement between both results. 

The mathematical model is verified and can be used in developing the proposed approach. 

 

A case study of a composite pressure vessel is used to demonstrate the proposed approach. A 

vessel of 540 mm diameter made from Kevlar 49/ Epoxy 934 [16] subjected to 120 bars 

internal pressure is considered. It is assumed that all plies have equal 0.125 mm thickness.  
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The objective now is starting with an initial design find an optimum design that sustain the 

applied load with the required safety at the minimum possible material weight. In order to 

obtain meaningful results, all results are compared with a base design of a pressure vessel 

made from AISI 4140 steel which its material properties are given in Table 4. 

 
Different laminate stacking sequences are used for the composite pressure vessel and the 

values of mass per unit area for conventional composite design, i.e. overdesigned where 

strength ratio is higher than the required safety factor. In other words, an overdesign has 

unnecessary laminates those have been eliminated using the proposed approach. Values of 

mass per unit area [kg/m
2
] for conventional and improved composite designs along with a 

base steel design are all given in Table 5. 

 
It should be noted that only symmetric composite laminates have been used in order to avoid 

unwanted warping under axial loading which is achieved by ensuring that the coupling [B] 

matrix is zeroed. The results are discussed in the following sections. 

 
It is interesting to note that lowest values are achieved at an angle ply stacking sequence of 

[54.74/-54.74]s. This can be explained by the fact that this is the optimum stacking sequence 

for a composite pressure vessel, which can be considered the final design of a conventional 

design approach. This specific angle allows for uniform tension in all fibers, a situation 

known as isotensoid. An analytical derivation is neatly explained in Ref. [17]. However, 

although this is the optimum stacking sequence, the proposed approach has even successfully 

improved it and managed to decrease the required mass even more as shown in the grayed 

row in Table 5. 

 
Another interesting note is that all composite stacking sequences gave even much higher 

masses per unit area except for [54.74/-57.44]s and [0/90/90]s. The [54.74/-57.44]s is the 

optimum (best) stacking sequence where the [0/90/90]s (row 3 in Table 5) is the natural 

intuitive selection for fiber orientation. This is because in a pressure vessel, hoop stresses (σy) 

are twice the values as axial stresses (σx), hence it is only logical to put two times fibers in the 

hoop (90°) direction as in the axial (0°) direction. 

 
The highest mass per unit area has been obtained with a composite with all fibers oriented in 

the axial (0°) direction (row 1 in Table 5). This is because aligning all fibers along the axial 

direction meant that fibers were able to provide only their lowest contribution to the hoop 

(90°) direction, subsequently much more fibers were required in order to give strength 

capacity in the hoop direction. 

 
Aligning all fibers along the hoop direction (row 2 in Table 5) gave lower mass per unit area 

values than the previous unidirectional case. This is because in the [90/90/90]s case all fibers 

are now aligned along the higher stress (hoop direction). On the other hand, it can be noted 

that aligning fibers in other angle ply arrangement at [30/60] and [±45] will also lead to sub-

optimal results where the [±45] is better than the [30/60] since the former arrangement 

distributes the load carrying fibers equally in the axial and hoop directions.  
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6. Conclusion 
In this paper, a proposed approach for improving the design of pressure vessels made from 

composite materials has been presented. A mathematical model has been developed for 

modeling composite pressure vessels under loading and this model has been solved using 

MATLAB and the mathematical model has been validated using published data. An algorithm 

has been developed in order to improve the design of a composite pressure vessel relative to a 

base design made from steel. The proposed approach managed to successfully improve the 

design of a composite pressure vessel by reducing 37% of its weight compared to only 20% 

reduction of a conventional approach. 
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Figure 1 Global and local coordinates of a lamina 
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Figure 2 A schematic drawing of a laminate before and after loading 
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Figure 3 Representation of a composite laminate subjected to 

 external force and moment 

 

 
 

Figure 4 Flow chart of the proposed approach 
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Figure 5 Comparison between the normalized weights of different patterns 

 

 

 

Table 1 Model verification results of stresses and strains for each layer 
 

Stacking Sequence 

Ref. [13] Mathematical model 

Local Stress 

(pa) 

Local Strain 

(m/m) 

Local Stress 

(pa) 

Local Strain 

(m/m) 

0° 

Top 

3.351
4

6.188 10

2.750

 
 
 
 
 





 
0.08944

6
5.955 10

3.836

 
 
 
 
 






 
3.3513

4
6.1875 10

2.7504

 
 
 
 
 





 

0.0894
6

5.9555 10

3.8359

 
 
 
 
 






 

Bottom 

5.577
4

4.531 10

1.280

 
 
 
 
 





 
0.238

6
4.313 10

1.785

 
 
 
 
 






 
5.5767

4
4.5312 10

1.2800

 
 
 
 
 





 

0.238
6

4.313 10

1.7852

 
 
 
 
 






 

30° 

Top 

9.973
4

4.348 10

1.890

 
 
 
 
 

  
0.4837

6
4.067 10

2.636

 
 
 
 
 


  

9.9730
4

4.3482 10

1.8903

 
 
 
 
 

  
0.4837

6
4.0672 10

2.6364

 
 
 
 
 


  

Bottom 

20.07
4

2.364 10

1.513

 
 
 
 
 

  
1.073

6
1.985 10

2.111

 
 
 
 
 


  

20.075
4

2.364 10

1.513

 
 
 
 
 

  
1.0725

6
1.9845 10

2.1106

 
 
 
 
 


  

-45° 

Top 

25.86
4

2.123 10

1.638

 
 
 
 
 





 
1.396

6
1.661 10

2.284

 
 
 
 
 






 
25.858

4
2.123 10

1.638

 
 
 
 
 





 

1.3958
6

1.6613 10

2.2839

 
 
 
 
 






 

Bottom 

6.285
4

1.898 10

0.3533

 
 
 
 
 







 

0.3766
6

1.940 10

0.4928

 
 
 
 
 








 

6.2848
4

1.8977 10

0.3533

 
 
 
 
 







 

0.3766
6

1.9397 10

0.4928

 
 
 
 
 







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Table 2 Model verification results of strength ratios for each layer 
 

Stacking Sequence 
Ref. [13] Mathematical model 

SR SR 

0° 
Top 71.339 10  71.3394 10  

Bottom 71.339 10  71.3394 10  

90° 
Top 70.7277 10  70.7277 10  

Bottom 70.7277 10  70.7277 10  

0° 
Top 71.339 10  71.3394 10  

Bottom 71.339 10  71.3394 10  

 

 

Table 3 Mechanical properties of kevlar/epoxy [16] 
 

Material Properties Material Limits 

1
E  

(GPa) 

2
E  

(GPa) 

12
G  

(GPa) 
12
  V

f
   

(kg/m3) 
1

T  

(MPa) 

1

C  

(MPa) 

2

T  

(MPa) 

2

C  

(MPa) 

12

F  

(MPa) 

72 5 2 0.41 0.60 1350 1151 281 12 134 443 

 

 

Table 4 Mechanical properties of AISI 4140 [15] 
 

Property Value 

E [GPa] 207 

Υ 0.27 

Y  [MPa] 680 

U  [MPa] 850 

Density [kg/m
3
] 7850 

 

 

Table 5 Results of mass per unit area [kg/m
2
] for conventional and improved 

 composite and steel designs for different laminate stacking sequence 
 

Stacking 

sequence 

Conventional 

composite design 

Improved 

composite design 

Base steel 

design 

[0/0/0]s 724.5127 534.6506 

36.5246 

[90/90/90]s 274.6406 209.7900 

[0/90/90]s 45.0056 36.0506 

[54.74/-54.74]s 30.1806 23.6725 

[0/30/60]s 390.1556 295.7189 

[0/60/30]s 390.1556 295.7189 

[0/45/-45]s 189.2756 145.8127 

[0/-45/45]s 189.2756 145.8127 

 


