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Abstract: In an airplane of tail-controlled aerodynamic missiles, when the control surfaces 

are deflected to provide an elevator angle with trailing edge upward to produce a positive 

normal acceleration, this creates a downward increment of force on the tail. The result is that 

the missile c.g. may drop momentarily during the pitch-up, so the normal acceleration may 

briefly become negative before it builds up positively. If the accelerometer is located at 

missile c.g., it will sense a negative normal acceleration and the senses a positive normal 

acceleration in a manner similar to non-minimum phase system. If the accelerometer is 

located ahead of the c.g., the normal acceleration measured will change and this depends on 

the pitch acceleration about the c.g., so only a positive normal acceleration may be sensed. 

This paper represents the physical explanation for the non-minimum phase behavior in tail-

controlled aerodynamic missiles, its source, disadvantages and solution for this problem and 

finally the optimum location for accelerometer in the vehicle. 
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Nomenclature  
A,B, C State-space matrices Q Dynamic pressure 

an Normal acceleration at accelerometer position qc Commanded pitch rate 

anc Commanded normal acceleration s Laplace operator 

an,cg Normal acceleration at c.g position t Time 

ean Error in normal acceleration u, v, w Velocity component in body axes 

eq Error in pitch rate u0 Undisturbed longitudinal velocity 

Gc Compensator transfer function uη Control signal 

Gfp Forward path transfer function Xu Axial force due to longitudinal velocity 

Kacc Accelerometer gain xa Accelerometer position from missile nose 

Kq Pitch rate gain Yr Side force due to yaw rate 

Lp Rolling moment due to roll rate Yv Side force due to side velocity 

L Rolling moment due to aileron angle Yζ Side force due to rudder angle 

lp Accelerometer position in front of c.g. Zq Normal force due to pitch rate 

M Pitching moment, Resultant of external 

moments w.r.t. body axes 

Zw Normal force due to vertical velocity 

Ma Mach number Z Normal force due to angle of attack 

Mq Pitching moment due to pitch rate Zη Normal force due to elevator angle 

Mw Pitching moment due to vertical velocity α Angle of attack 

M Pitching moment due to angle of attack β Side slip angle 
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Mη Pitching moment due to elevator angle ζ Rudder angle 

N Transfer function numerator ζsp Short period mode damping ratio 

Nr Yawing moment due to yaw rate η Elevator angle 

Nv Yawing moment due to side velocity ξ Aileron angle 

Nζ Yawing moment due to rudder angle ωsp Short period mode natural frequency 

p, q, r Roll, pitch and yaw rates   

 

 

1. Introduction  
The physical explanation for the non-minimum phase behavior is that when the control fins are 

deflected to provide an elevator angle with trailing edge upward to produce a positive normal 

acceleration an, this creates a downward increment of force on the tail. The result is that the 

missile c.g. may drop momentarily during the pitch-up, so the normal acceleration may briefly 

become negative before it builds up positively and at this small time the missile performs general 

plane motion. During this time, if the accelerometer is translated ahead of the c.g., the normal 

acceleration measured will change and this depends on the pitch acceleration about the c.g., till a 

point on the missile the accelerometer senses zero acceleration and only rolling motion is sensed. 

This point is called "instantaneous center of rotation". If the accelerometer is place ahead of this 

point, so only a positive normal acceleration will be sensed ‎[1]. 

 

The non-minimum phase system is undesirable from a feedback point of view as this zero cannot 

be removed from a system through inverse compensation (pole-zero cancelation) because it is 

never known exactly due to change of missile parameters during flight. The compensation to 

remove it would be unstable, and if there was any error in the zero location, the zero would not be 

cancelled and the compensator and would introduce instability ‎[1], ‎[2]. 

 

In this paper, investigation for non-minimum phase behavior will be performed representing its 

reason and its solution and the derivation of position of "instantaneous center of rotation" along 

the flight time including the design of normal acceleration autopilot. 

 

 

2. Missile Model 
Equations of motion from ‎[1] and ‎[4], aerodynamic coefficients are calculated from ‎[5] and as 

represented in ‎[6]. 

 

Linearization of Missile Model 
The linear equations needed for control system design will be derived using the small 

perturbation method from the nonlinear model. In ‎[7], a complete linearization for force and 

moment equations in the state model is presented for design of model-predictive controllers. The six 

equations of motion can be written as: 
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Choice of Trim Conditions  
In order to select the design points, the Mach number and altitude must be plotted with the flight 

time, or instead of them the dynamic pressure can be introduced with the change of flight time as 

shown in ‎Fig. 1. 

 

 

Fig. 1 Time variation of dynamic pressure 

 

The design points must be at different dynamic pressure during the powered phase (which is from 

0 to 13sec) and unpowered phase (from 13sec till flight end) in order to avoid repeating of design 

points or introducing large number of design points. Due to rapid change in dynamic pressure and 

missile states during the powered phase, a point is selected at every 5 sec. Due to moderate 

change in dynamic pressure and missile parameters during the unpowered phase, it is divided into 

regions with mid and final-points for each region are selected. Then the set of designing points 

are shown in ‎Table 1 and ‎Fig. 1. 

 

Table 1 Set of designing points 

point 1 2 3 4 5 6 7 8 9 

Time [sec] 1 5 10 13 20 40 90 150 180 

 

1, 0.2518 

5, 8.564 

10, 30.6545 

13.05, 40.8153 

20, 21.8575 

40, 1.9952 90, 0.1742 150, 4.0208 
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It is necessary to select a point at which the autopilot design is carried out and to generalize the 

structure of the controller for the other points. This point needed to be of moderate coefficients to be 

near to higher dynamic pressure point and lower dynamic parameters point or in between of them. 

From ‎Fig. 1, it will be acceptable if choosing point at time (t=5sec) to be the nominal design point 

which has the state-space model for pitch rate and normal acceleration at missile c.g.: 
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3. Controller Design  
 

Normal Acceleration Autopilot Design  
The autopilot is designed to control the normal acceleration, which its input is a desired normal 

acceleration (anc [g]) command sent from the guidance-loop. The complete normal acceleration 

control system block diagram is shown in ‎Fig. 2, where the inner loop is the pitch damper system 

to ensure adequate damping ratio. 

 

                    
Fig. 2 Normal acceleration control system block diagram 

 

Inner Loop Design  
The block diagram of the inner-loop is shown in ‎Fig. 3, which shows its structure with Ga is the 

actuator transfer function, Gp is the airframe transfer function and Kq is the feedback gain.  

 

                   
Fig. 3 Block diagram of normal acceleration inner-loop  
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Introducing the airframe state space for inner loop at (t=5sec): 
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The characteristic equation of the above system can be obtained from the determinant of the 

matrix |sI-A| as: 

 

           (             )  (             )    (4) 

 

Rearranging this equation yields:  

 

    

             

                      
   (5) 

 

The root locus of 1+KqG=0 for gain Kq>0 is shown in ‎Fig. 4‎Fig. 4 where the poles for (Kq = 1) 

are obtained as: Short period poles:  -0.589±4.57i‎→‎(ζsp =‎0.128,‎ɷsp = 4.61 rad/sec) 

 

                   Actuator pole: first order -59.2‎→‎(ζ‎=‎1,‎ɷ‎=‎59.2‎rad/sec) 

 

The two short period complex poles (-0.3237±4.575i)‎have‎low‎damping‎(ζsp=0.0705)‎and‎move‎

on the imaginary axis due to increase of Kq and then intersecting on the real axis, one of them 

moves to the short period zero (-0.13) and the other pole intersects with actuator pole (-60) and 

moves on the imaginary axis towards infinity. By increasing the value of Kq, the damping ratio of 

the short period mode increases about 0.7 where the value of Kq =‎11.8‎at‎(ζsp=0.706) ‎Fig. 4 ‎[8]. 

 

 
Fig. 4 Root locus of pitch damper loop 
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Gain Scheduling 
The nominal mathematical model, used in designing the control laws, only approximates the 

behavior of the physical missile, and even then at specific flight points only. Gain scheduling of 

Kq with dynamic pressure is accepted as being appropriate for good responses across the whole 

flight trajectory and to ensure acceptable damping ratio. The methodology of this method is to 

adjust the gain multiplied (Kq) in the inner loop and then scheduling the gain with the flight 

conditions ‎[9]. The scheduling is shown in ‎Table 2. 

 

Table 2 Kq and Ka scheduling 

Time 5 10 13 20 40 90 150 180 

Q [Pa] 85640 306545 408153 218575 19952 1742 40208 305857 

Kq 11.8 5.09 3.75 5.23 22.3 86 15.7 5.53 

ζsp 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 

 

 

Transfer Function Change with Accelerometer Position  
If the accelerometer is placed at missile c.g., then the normal acceleration sensed at the missile 

c.g. yields ‎[1]: 

 

, ( ) / 9.81n cg qa Z Z q Z         [g] (6) 

 

The normal acceleration block diagram is shown in ‎Fig. 5 where the state space of the outer-loop 

is: 
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Fig. 5 Normal acceleration pitch channel block diagram 
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Considering the accelerometer gain Kacc = 1, the forward-path transfer function without the 

compensator is: 
2

3 2 2

2

5.162 0.3825 146.7 ( 5.368)( 5.294)
(5.162)

60.65 398.2 1306 ( 53.7)( 6.96 24.32)

(1 0.1863 )(1 0.189 )
     ( 2.7317)

(1 0.0186 )( 6.96 24.32)

fp

s s s s
G

s s s s s s

s s

s s s

   
 
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 
 

  

  

The root locus and bode plot of the forward path transfer function is shown in ‎Fig. 6, while the 

step response of closed-loop transfer function is shown in ‎Fig. 6. The dynamics of the channel 

has: Zeros: +5.368, -5.294 

        Poles: Actuator pole -53.7 

        Short period poles (-3.48±3.49i) 

 

The responses clarify that there are two problems; the first one is that the response of the normal 

acceleration is reversed to the negative effect as shown in ‎Fig. 6 and this problem can be solved 

by adding an inverter in the forward path. The second problem appears in the vicinity of positive 

zero (+5.368), which in turn results in a non-minimum phase system behavior in the step 

response of the normal acceleration as shown in ‎Fig. 7. 

 

 
Fig. 6 Root locus, bode plot and step response of normal acceleration 
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Fig. 7 Step response of normal acceleration 

 before compensation 

 

From ‎Fig. 6, the root locus shows that one of the open-loop short period poles moves towards the 

zero and thus the non-minimum phase system goes unstable at gain (K = 9.69). 

 

Actually in designing the normal acceleration autopilot, the steady-state error must equal zero. As 

the system is of type zero, an integrator in the forward path is required and adding this integrator 

pole in the root locus in ‎Fig. 6 will cause moving of this pole into right hand plane to non-

minimum phase zero and results in system instability. So, this zero must be eliminated not only to 

remove the non-minimum phase behavior of the normal acceleration response, but also to 

maintain system stability. 

 

If the accelerometer is placed at a distance lp ahead of missile c.g., then the normal acceleration 

sensed yields ‎[1]: 

 

(( ) ( ) ( ) ) / 9.81n p p q q pa l M Z l M Z q l M Z             [g] (6) 

 

From transforming state-space model into transfer function ‎[8], the numerator of forward-path 

transfer function equals: 
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‎Table 3 shows the elevator-to-normal-acceleration transfer function zeros for a range of 

accelerometer positions from the c.g. forward with distance lp.  

 

‎Table 3 shows that as the accelerometer position is moved forward, the non-minimum phase zero 

moves out toward infinity, thus keeping constant the transfer function dc gain. Eventually, the 

outer loop sensitivity changes sign and a zero comes in from infinity along the negative real axis, 

finally combining with the other real zero to form a complex pair [1, 5, 10, 11]. 
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Table 3 Change of zeros with accelerometer position 

lp [m] Forward-path transfer function numerator 

0 ( 5.162)( 5.368)( 5.294)s s  
  

0.5 ( 3.701)( 6.3736)( 6.219)s s    

1 ( 2.24)( 8.2643)( 7.9245)s s  
 

1.5 ( 0.779)( 14.347)( 13.126)s s  
 

1.7 ( 0.1946)( 30.22)( 24.945)s s  
 

1.9 (0.3898)( 1.414 19.35 )( 1.414 19.35 )s j s j   
 

 

 

4. Choice of Accelerometer Position    
From ‎Table 3 at a position near 1.9 [m] forward of the c.g. the non-minimum phase effect 

disappears, and this point corresponds to an "instantaneous center of rotation" when an elevator 

input is suddenly applied. If the accelerometer is placed at this location, the system poles and 

zeros will be completely located in the left hand plane and then it will not be hard for the system 

to be compensated. It is also important to place the accelerometer close to a node of the most 

important fuselage bending mode. If this is not done, structural oscillations will be coupled into 

the rigid-body control system and may degrade the flying qualities [1, 2, 3, 11]. 

 

It is necessary at first to find the position of the instantaneous center of rotation. The numerator 

of the forward-path transfer function is: 
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Dividing the whole equation by s
2
 and‎then‎finding‎the‎limit‎at‎s‎→‎∞‎yields: 
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Finally the value of lp at which the non-minimum phase zero moves towards infinity is: 

minp

Z
l

M





  (7) 

where lp < lpmin yields to locate the non-minimum phase zero in the right hand plane while lp > 

lpmin moves the non-minimum phase zero to the left hand plane combining with the other real zero 

to form a complex pair. 

 

However, it must be taken into consideration that missile c.g. changes its position during 

powered phase while the value of Zη and Mη changes during the flight time. This means that lpmin 

changes during the whole flight time whereas the accelerometer position is fixed during flight 
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time and it is very hard to move it along the missile longitudinal axis during flight. To overcome 

this problem, the value of lpmin would be calculated at the whole design points and at every point 

the distance from missile nose to accelerometer (xa) is calculated and then the minimum value 

will be chosen to be the accelerometer position as shown in ‎Table 4. The minimum value of this 

distance guarantees that the whole zeros of the forward path transfer function are always placed 

in the left hand plane during the whole flight even they were real or imaginary. 

 

Table 4 The value of lpmin and accelerometer position xa at design points 

Point Time [sec] Zη Mη lpmin [m] xcg [m] 
xa [m] 

= xcg - lpmin 

1 1 -0.0211 -0.0128 1.648438 4.89 3.241563 

2 5 -0.8459 -0.4778 1.770406 4.804 3.033594 

3 10 -1.7718 -0.9234 1.918778 4.652 2.733222 

4 13.05 -2.1708 -1.04 2.087308 4.531 2.443692 

5 20 -1.1815 -0.5718 2.066282 4.441 2.374718 

6 40 -0.1313 -0.0646 2.032508 4.438 2.405492 

7 90 -0.0141 -0.0069 2.043478 4.438 2.394522 

8 150 -0.2595 -0.1279 2.028929 4.438 2.409071 

9 180 -2.5379 -1.248 2.033574 4.438 2.404426 

 

Then xa = xamin along the flight time and hence xa = 2.35 [m] and this position guarantees the 

elimination of the non-minimum phase behavior of the normal acceleration response along flight 

time. 

 

 

5. Conclusion 
The optimum position for acceleration sensor in surface-to-surface aerodynamically tail-

controlled missile is determined. The mathematical model was derived and the aerodynamic 

coefficients for this model were calculated using Missile Datcom. The inner loop of the normal 

acceleration autopilot is designed to increase the damping ratio of the open-loop poles o f the 

outer loop. Gain scheduling is used to maintain the value of damping ratio along flight time. The 

open-loop zeros are calculated in case of moving accelerometer ahead of missile c.g. till they 

become imaginary. The position of accelerometer which eliminates non-minimum phase behavior 

is determined at specific point. The position of accelerometer is then calculated along flight time 

and the most suitable is chosen. 
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