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Abstract. Future space missions will rely on novel high-performance computing to support
advanced intelligent on-board algorithms with substantial workloads that mandates firm real-
time and power constraints requirements. Consequently, these advanced algorithms require
significantly faster processing beyond the conventional space-grade central processing unit
capabilities. Moreover, they require careful selection of the target embedded platform from a
diverse set of available architectures along with several implementation tactics to map the
algorithms to the target architecture to fully unlock its capabilities. In this paper, we present a
study of different architectures and embedded computing platforms for the satellite on-board
computers. Moreover, we present a comprehensive overview of recent implementation tactics
such as source code mapping and transformations. Additionally, we highlight some optimization
techniques such as partitioning and co-designing using hardware accelerators. Finally, we discuss
several implementation analysis methodologies to derive optimized code implementations. The
top ranked YOLO-v3, as a deep learning based object detection algorithm, is selected as a case
study model to be optimized using OpenVINO toolkit. The experimental results show an
improvement ratios up to 73%, 41%, and 34% in terms of frames per second, CPU utilization, and
cache memory, respectively. The study presented in this paper aims to guide the researchers in the
field of high performance embedded computing in terms of different hardware architectures along
with several implementation tactics.

1. Introduction
Recently, Cubesat satellites attracted attention on both commercial and academic levels. These
satellites have restricted image processing capabilities due to their limited resources. Thus, they
may restrain the exploitation of automated and intelligent image on-board processing tasks
that can be considered as the future trends for satellite missions. Additionally, these tasks are
crucial in some applications that require automated decision support or low latency conclusions
[1, 2, 3, 4, 5].

One of the challenging automated task is oriented toward onboard deep learning based
applications such as: telemetry compression [6, 7] and image processing [1, 2]. However, deep
learning based models are characterized by a larger number of parameters with high degree of
precision accuracy. Due to hardware and power limitations of the on-board computer (OBC)
of the satellites, in general and Cubesats in particular, efficient optimization techniques should
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be applied on the target deep learning based approach taking into consideration the hardware
specification of the current OBCs [8, 9, 10, 11, 12].

In this paper, we provide a survey of recommended tactics for efficient optimizations that can
be utilized for performing complex computations on the OBC of the satellites. Our survey is
followed by a case study of optimizing the pre-trained YOLO-v3 deep learning based model for
object detection in order to be accommodated on the OBC of the satellite. In our case study,
we provide an experimental comparison between the typical YOLO-v3 deep learning model and
the optimized one, in terms of the processing time (frame per second). Moreover, the paper
provides a survey about the OBCs that are commonly used in satellite systems.

The paper is organized as follows. Section 2 presents an overview of OBCs. In section 3, an
overview of the deep learning model of the YOLO-v3 structure is demonstrated. General tactics
for implementing efficient optimization are described in details in Section 4. In Section 5, we
present our experimental results in which we apply the optimization tactics presented in the
paper on the YOLO-v3 model [13] using the OpenVINO™ [14] toolkit. Conclusions and future
work are suggested in section 6.

2. Satellites on-board computers
The satellite OBC is the heart subsystem of the satellite that connects, manages and controls
other subsystems. It also handles payload and housekeeping data to accomplish the targeted
mission of the satellite [15, 16, 17, 18, 19].

The main tasks of the OBC includes the span [20] of:

• Attitude Determination and Control (ADCS), such that the attitude of the satellite is
measured by sensors. i.e. magnetic field and solar sensors, and corrected by magnetorquers.

• Platform monitoring and control (housekeeping functions) through periodically checking
measured sensors values (voltage, temperature, attitude, and orbit) for safe operation and
monitoring telemetry data sent to the ground station.

• Experimental measurement and analysis, in which operational data and experimental
measurements of new sensors, actuators and control techniques are collected, processed
and analysed.

The architecture of the OBC belongs mainly to one of the following three architectures showed
in Fig. 1 and listed in Table. 1 associated with their advantages and disadvantages.

(a) (b) (b)

Figure 1. Different OBC architectures: (a) centralized architecture, (b) distributed
architecture, and (c) bus architecture.

The hardware of the satellite OBC computing platforms [15, 16, 17, 18, 19, 20] has limited
resources. Examples of such platforms are: (1) Microprocessor based, (2) Micro-controllers, (3)
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Field Programmable Gate Array (FPGA), (4) Application Specific Integrated Circuit (ASIC) ,
and (5) System-on-Chip (SOC). The differences of these platforms are summarized below

• Microprocessor based platform. It focus on computation, requires peripheral ICs, supports
fastest generic computation, and has typical power consumption higher than 10 Watt.

• Micro-controllers based platform. It focus on embedded systems, has memory integrated,
supports integrated peripheral function: ADC, DAC, PWM, I2C, UART, etc, and has a
typical power consumption less than 1 Watt.

• FPGA based platform. It is a Re-programmable logic, has IP-cores for specific and complete
micro-controllers, provides fast and low power for specific functions, has higher power than
micro-controllers.

• ASIC based platform. It is a complete hardware solution for specific application, supports
IP-cores for specific function, and has fast and power efficiency.

• SOC based platform. It provides a complete hardware and generic application. It has the
smallest complete systems.

Table 1. General OBC architectures presented in Fig. 1.

Advantages Disadvantages

Centralized
– Adequate for a small number of

well-defined sub-systems with a
direction interfaces to the central
computer.

– High reliability that is achieved
by isolating sudden failure at any
interface and preventing influence
on others.

– Required changes in both
hardware and software of
the central node in order to
connect to a new one.

– Large wiring harnesses is
needed for transmitting data
to multiple recipients.

Distributed
– Small wiring harnesses with the

capability of being distributed
along the structure of the space-
craft .

– Limited effect on the central node
when adding new nodes.

– Reliability reduction is be-
cause each node is required to
achieve data transmission to
the next node.

Bus
– High processing capacity with

high reliability can be achieved
through the ability of adding
multiple processing units.

– More complex testing proce-
dures are relatively required
for these systems.

3. YOLO-v3 deep learning model
Our case study in this paper is the optimization of the pre-trained YOLO-v3 deep learning
based object detection model. It is a deep neural network that contains a set of 53 convolutional
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layers each followed by Batch Normalization (BN) layer and Leaky ReLU (LRELU) activation
function. The YOLO-v3 deep network model, shown in Fig. 2, can recognize up to 80 different
shapes in images and videos [21].

Figure 2. YOLO-v3 fully convolutional network.

The detection phase of YOLO-v3 model is achieved at three different scales by three strides
of values 32, 16, and 8. At each scale, a count of 3 bounding boxes are detected by 3 anchors,
different anchors for different scales, resulting a total number of 9 anchors is used. For such
deep learning based detection model, detections at scales of 13 x 13, 26 x 26 and 52 x 52 are
achieved for 416 x 416 input size [21].

4. Efficient optimization tactics for complex computations
Optimizations is used to mitigate the cost the expensive instructions, which results in reducing
the execution time. It includes several components that can be either hardware or software. We
will summarize them below.

4.1. Hardware accelerators
Hardware accelerators are used to offload the computations from a host processor to
an accelerator element in order to enhance the performance and meet the nonfunctional
requirements (such as strict execution time limit). There are many types of the H/W accelerators
such as ASICs, GPUs and FPGAs. The programming models of these devices exhibit different
levels of trade-offs between accuracy and the nonfunctional requirements.

GPU accelerators consists of lightweight cores and on chip memories are used to increase the
degree of parallelism for a single program. Originally, GPUs are used for the acceleration of
graphical applications but it has been evolved to support many intensive applications. Recently,
GPUs are used in embedded systems as hardware accelerators, thanks to their increasing
capabilities and capacities [22] [23].

The enhances introduced in CPU cores nowadays, allow them to further support parallelism
which includes the support of multi-threading. Single Instruction Multiple Data units (SIMD)
is one example, in which the CPU can concurrently operate on multiple data operands and
perform the same operation. Another example is the Fused Multiple-add units (FMA) that are
used to perform multiple-add or multiple-subtract operations [24].

To enhance the performance of a complex algorithm, it is common to develop the code on
different architectures. The code in Fig. 3 shows a code that uses different directives to speak
to different targets to measure the execution time for a PC or an embedded system using a
Xilinx MicroBlaze [25, 26, 27, 28, 29]. To get the maximum performance from every computing
element in the computing platform, it is required to split the code into different sections and map
these sections of the code to distinct processing elements in the computing platform [30, 31],
in order to meet the nonfunctional requirements. This process can be performed in two ways:
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Figure 3. Code developing for different targets.

static partitioning and dynamic partitioning. The static partitioning mapping is determined at
compile time and remains unchanged at run-time. The static partitioning follows the following
steps

(i) Mapping: in which the code is inspected and a static call graph is generated. The graph
is G=(N, E), where nodes N represent the function calls while edges E represent the data
flow and control that relates the two nodes connected by the edge E.

(ii) Mapping to the target heterogeneous architecture.

(iii) Finding a configuration in which the overall cost∑
task

cost(PEt, task), (1)

is minimized. This minimization is required to meet a given performance goal.
Dynamic partitioning [32] on the other hand determines the mapping during run-time

according to existing workload and device availability. We use dynamic partitioning because the
input size is determined only during the run-time. The efficient processing element is determined
based on an estimation model for a particular job.

4.2. Code transformations and optimizations
Developers need to perform the code optimizations in order to meet the nonfunctional
requirements. Some basic code optimizations are internally done by the compilers [33] such as
the strength reduction. There are many examples of strength reduction such as the replacement
of multiplication and division by left and right shifts, respectively. Another example of the
strength reduction is when we need to negate a value, as shown in Fig. 4.

Figure 4. Basic code optimizations.

However, compilers do not have all code transformation so some optimizations must be
done manually. Example of such manual optimization is the Loops optimizations. Loops are



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012034

IOP Publishing
doi:10.1088/1757-899X/1172/1/012034

6

considered as very important hot-spots as they have a very high impact on performance. There
are many types of loop optimizations such as

• Loop splitting: It simply partitions a single loop into many other loops [34] which is very
important when considering data parallelism, as shown in Fig. 5 (a).

• Loop Strip-mining: In this transformation we transform a loop into a nested loop[35], as
shown in Fig. 5 (b).

• Loop Perforation: In this loop transformation, we only consider a part of the iterations to
give approximate results but better performance [36] [37]. An example is shown in Fig. 5
(c).

• Loop Unrolling: To unroll a loop by a factor K is to repeat the body of the loop K times
which is very important when considering the usage of SIMD units [38]. An example is
shown in Fig. 5 (d).

• Loop UN-switching: In this transformation, the invariant conditions are moved outside the
loop to avoid unnecessary processing[39]. An example is shown in Fig. 5 (e).

To perform the code optimization, first we need to perform source code analysis[40]. Source
code analysis is used in understanding the structure of the code. In this phase, the procedures
are being analyzed to determine which procedures invoke other procedures or which procedures
allocate storage and understanding where the execution spends the bulk of its time. But before
we speak about the source code analysis we need to understand the data dependencies first.

Data dependency is the relationship between the instructions. We must check for it in order
identify the legal optimizations that can be done within the code[41]. There are four types of
data dependencies. The first type is True-data dependency which happens when an operand is
modified and then read in a later instruction. The second type is Anti-data dependency which
happens when an operand is read and then modified in a later instruction. The third type is
Output-data dependency which happens when an operand is modified by two instructions. The
last type is Input-data dependency which happens when an operand is read by two instructions.

For a compiler to check for data dependency in a loop, the compiler first generates code
to check for data dependency at run-time during the first iteration. If no dependencies are
detected, then the rest of the iterations can run concurrently. Another optimization is called
Loop Permutations, in which the order of execution is changed between two loops in a nested
loop. This change reduces the dependency which enables us to use data parallelism as shown in
Fig. 6.

Source code analysis can be classified into two types: Static and dynamic code analysis.
Static code analysis aims at understanding the properties of the code without running the app.
To perform the static analysis we must follow the following steps. First, we need to parse the
code to generate a flow graph. Then, we need to identify the data dependencies to decide the
legal optimizations that can be done within the code in order to exploit the characteristics of the
target computing platform [42] [43]. In dynamic analysis, the goal is to uncover the metrics of
performance during execution time. Specifically, the dynamic analysis tries to find the hot-spots
which are the prime candidates for optimization. These spots can be found by profiling [44]
and instrumenting the code by adding primitives to the code to inspect the code during the
run-time. This can by done manually or by using the LARA language [45].

5. Experimental work
In this section, we provide an experimental comparison between the typical YOLO-v3 deep
learning model and the optimized one using the optimization tactics presented in Section 4. We
utilized the OpenVINO™ [14] toolkit to perform the optimization. First, we give an overview
about the OpenVINO toolkit, then we demonstrate the performance metrics used for evaluating
the optimization gain, and finally our results are figured out.
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(a) Loop splitting

(b) Loop strip-mining

(c) Loop perforation

(d) Loop unrolling

(e) Loop un-switching

Figure 5. Different loop optimizations.

Figure 6. Loop Permutations

5.1. OpenVINO™ toolkit
OpenVINO toolkit is an Intel toolkit used to perform tasks such as automatic speech recognition
and emulation of human vision using latest artificial neural networks [46, 47, 48]. The model



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012034

IOP Publishing
doi:10.1088/1757-899X/1172/1/012034

8

Figure 7. Overview of OpenVINO™ toolkit [14].

Figure 8. Visual result that shows two frames from the video used in our experiments.

optimizer which is the most important component in the OpenVINO™ toolkit converts the
trained models to an Intermediate Representation (IR) (.xml and .bin) to be used in inference
operations, as shown in Fig. 7. The Model Optimizer performs a group of code optimizations to
produce simpler and faster models and it is applicable for models trained in popular frameworks.

5.2. Performance evaluation metrics
For evaluation the performance gain due to applying optimization techniques, we implement the
following three metrics:

• Frames per second: The higher the better. It is the average count of frames accessed per
second.

• CPU utilization: The lower the better. It measures the amount of CPU resource
requirements for handling the task.

• Cache memory: The higher the better. It indicates the size of data cached, in repeated
access cases, to avoid the delay in going back to access the storage memory.

5.3. Results
We have benchmarked the YOLO-v3 on CPU as a processing element without any optimizations
and with the optimizations applied by the model optimizer from the OpenVINO toolkit. The
application used here is to calculate the social distancing between persons using YOLO-v3.
Fig. 8 shows two frames from the video used in our experiments.

Table. 2 represents the performance enhancement in frames per second (FPS), cache memory,
and CPU utilization after implementing the optimization techniques using the OpenVINO
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Figure 9. Enhancement ratios (%) due to optimization.

toolkit. The listed results, in table 2, show that the performance gain is about 73%, 41%,

Table 2. Performance enhancement after optimization.

Without optimization With optimization

Average FPS 1.28 2.22

Cache memory 911 MB 1.2 GB

CPU utilization 90% 53%

and 34% in terms of frames per second, CPU utilization, and cache memory, respectively, as
shown in Fig. 9.

6. Conclusion
This paper demonstrates how we can improve the performance of complex and intensive
algorithms, especially intelligent ones, using optimizations such as offloading the computations
from the host processor to a co-processor and analysing the code to find the hot-spots and
apply code optimizations to them. The paper showed experimentally that code optimization
techniques can lead to a better performance in terms of frames per second, CPU utilization,
and cache memory, that helps to implement the high-performance computing algorithms on
embedded platforms with limited resources as in case of satellite on-board computers.
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